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Abstract: Over recent decades, the number and frequency of severe pathogen infections have been 
increasing. Pathogen mitigation strategies in human medicine or in livestock operations are vital to 
combat emerging arsenals of bacterial virulence and defense mechanisms. Since the emergence of 
antimicrobial resistance, the competitive nature of bacteria has been considered for the potential 
treatment or mitigation of pathogens. Previously, we identified a strong E. coli competitor with 
probiotic properties producing a diffusible antimicrobial molecule(s) that inhibited the growth of 
Shiga toxin-producing E. coli (STEC). Our current objective was to isolate and examine the 
properties of this antimicrobial molecule(s). Molecules were isolated by filter sterilization after 12 h 
incubation, and bacterial inhibition was compared to relevant controls. Isolated antimicrobial 
molecule(s) and controls were subjected to temperature, pH, or protease digestion treatments. 
Changes in inhibition properties were evaluated by comparing the incremental cell growth in the 
presence of treated and untreated antimicrobial molecule(s). No treatment affected the antimicrobial 
molecule(s) properties of STEC inhibition, suggesting that at least one molecule produced is an 
efficacious microcin. The molecule persistence to physiochemical and enzymatic treatments could 
open a wide window to technical industry-scale applications. 

Keywords: E. coli; Shiga toxin; inhibition; heat resistance; pH resistance; enzyme resistance; 
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1. Introduction 

At a certain point in time, humans triggered an evolutionary Big Bang by shaping a new 
microbial multiverse. Ancestral humans were “hunter-gatherers”, living in small nomadic 
communities foraging for food. Later those communities transitioned to settle permanently in one 
place, cultivating food and resources. This was the origin of forming areas with dense populations of 
humans and livestock [1,2]. Simultaneously, microbial communities adapted, competed, evolved, 
and proliferated within those close interactions across agriculture and humans alike. Commensal or 
virulent Escherichia coli were some of the species among them. The emergence of lethal diseases (e.g., 
as early as pandemic reports of the Justinian Plague or Black Death) carried by host-adapted 
pathogens could only be sustained in areas of dense human populace [2]. These environments are 
also prime spaces to foster bacterial competition for the existence, often coined as the “survival of the 
fittest” [3–6]. 

Competition can be categorized as exploitative or interference-based [7]. Exploitative 
interactions are those where one bacterium is using nutrients more efficiently, effectively starving a 
competitor. However, exploiter champions can be out-competed by a weaker exploiter using 
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interference competition. Interference competition is based on the production of antagonistic factors 
that eliminate competitors using contact-dependent (growth inhibition and Type VI secretion 
systems), or contact independent (bacteriocins and other diffusibles, such as antibiotics) means [3,8]. 

Bacteriocins are molecules (proteins and peptides) produced by both Gram-positive and Gram-
negative bacteria [9] and are most often inhibitory to close relatives only [10,11]. However, some 
Gram-positive bacteriocins have been shown to combat Gram-negative bacteria [12]. Gram-negative 
bacteriocins have been studied and identified in E. coli and are coined colicins and microcins [13]. 
Colicins are high-molecular-mass (30–80 kDa) proteins [12] and tightly controlled by the bacterial 
SOS system [4,14]. In contrast, microcins, peptides with molecular masses below 10 kDa, are protease 
and temperature resistant and are reported to resist pH extremes [12,15]. These characteristics are 
often associated with bacteriocins of lactic acid bacteria [12]. 

Bacteriocins are being considered as potential agents to replace antibiotics and have been 
suggested for use in humans and in livestock as a method to mitigate pathogens [16]. Bacteriocins are 
considered “agents of competition” [10] and represent a microbial strategy to out-compete their rivals 
[4,12]. Bacteriocins are unique compared to traditional antibiotics, as they harbor a restricted killing 
spectrum, targeting specific bacteria or species [10,16]. The targeted killing of specific bacteria makes 
producers of these bacteriocins an ideal probiotic. In fact, discovered 100 years ago, Mutaflor® is a 
commercially available probiotic that contains the strain E. coli Nissle which produces two microcins, 
which are thought to be crucial in the ability of this strain to antagonize E. coli and Salmonella 
pathogens [17–19]. 

Among bacterial pathogens, Shiga toxin-producing E. coli (STEC) produces a potent toxin (Shiga 
toxin), which, in conjunction with other factors, causes severe, often foodborne infections in humans 
[20,21]. Various mitigation strategies for this pathogen have been considered, including vaccines [22], 
direct-fed microbials [23], and tannins [24], but none have consistent efficacy. Another mitigation 
strategy being considered to control STEC is using probiotic bacteria to competitively eliminate the 
pathogens [25], as demonstrated by the effective use of E. coli Nissle to alleviate intestinal infections 
in humans [17]. Likewise, a colicin-producing E. coli isolated from sheep fecal samples was shown to 
inhibit the STEC O157:H7 [25]. 

In a previous study in our laboratory, we demonstrated that various E. coli strains isolated from 
beef cattle feces produce diffusible molecules capable of affecting competitor growth when separated 
by a 4 to 10 mm barrier of agarose [26]. However, the strength of these molecules varied among 
strains, which led to the identification of a strong competitive non-pathogenic E. coli champion that 
produces a diffusible molecule(s) capable of out-competing 31 different E. coli strains including STEC 
O26, O111 and O157 [26]. 

The objective of this project is to characterize further the diffusible molecule(s) produced by this 
E. coli champion, while investigating the physicochemical and biological properties of the molecule 
as well as its antimicrobial potential. 

2. Materials and Methods 

2.1. Bacterial Strains: Cultures, Media and Culture Conditions 

Both E. coli strains used in this study, O157A and O103F, were described previously [26]. Briefly, 
E. coli strains were streaked from glycerol stocks onto MacConkey Agar (MAC, BD, Sparks, NV, 
USA). Plates were incubated overnight (16–18 h) at 37 °C. A single colony was selected from each 
plate and inoculated into E. coli broth (EC, EMD Millipore, Etobicoke, ON, Canada) and incubated 
overnight at 37 °C with shaking at 150 rpm. Overnight cultures of O157A (STEC) and O103F (no 
detected virulence genes) were diluted to an optical density (OD) of 0.1 measured at a wavelength of 
600 nm in fresh EC and grown for 3 h. The 3 h culture was then used as inoculation for the treatments. 

2.2. Molecule Isolation Assay 
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Molecule isolation assay was adapted from Kulp and Kuehn, 2010 [27] by following the isolation 
protocol for natural outer membrane vesicles up to and including step 2. O103F molecule is the cell-
free supernatant collected after 12 h of growth of O103F in EC, containing AntiMicrobial Molecule(s) 
and will subsequently be referred to as AMMO. O157A molecule is the cell-free supernatant collected 
after 12 h growth of O157A in EC and will be subsequently referred to as SPENT. After isolation, 
AMMO and SPENT underwent various treatments. 

Both E. coli (O103F and O157A) cultures were grown individually for 12 h and centrifuged 
(10,000× g) for 10 min to prepare the supernatant (Figure 1). The supernatant was then filter-sterilized 
using a 0.22 µm filter (Pall Life Sciences, Ann Arbor, MI, USA) to remove all bacterial cells. The O103F 
supernatant (AMMO) was added to fresh EC to test the growth of O157A cells during the inhibition 
assay. Each experiment had a complete set of four controls to measure the effect of AMMO. The first 
control, O157A, was diluted to a starting OD of 0.1 in a final volume of 5 mL of fresh EC to 
demonstrate regular/healthy growth of E. coli O157A in fresh media. The second control, O157A, was 
diluted to a starting of OD 0.1 in a total of 5 mL (3.75 mL SPENT and 1.25 mL culture and fresh EC) 
to take into account the effect of depletion of nutrients and metabolic end products in the isolated 
supernatants on O157A growth. The third and fourth controls, 3.75 mL of the supernatants (AMMO 
or SPENT), were each individually added to 1.25 mL fresh EC to ensure that filter-sterilization was 
successful, and all live cells were removed from the supernatants (AMMO and SPENT). 

 

 
Figure 1. Schematic of the Molecule Isolation Protocol and Inhibition Assay. (A): Isolation and 
Treatment. E. coli O103F was grown overnight on a MacConkey Agar plate, and a single colony was 
grown in EC for 12 h. Cells were pelleted at 10,000× g for 10 min. The cell pellet was discarded, and 
the supernatant was filter-sterilized using a 0.22 µm filter. The sterilized supernatant was then treated 
to examine, heat, pH, or protease digestion. Note: SPENT was also prepared using the same protocol. 
(B): Inhibition Assay. O157A was grown overnight for 12 h in EC. The cells were then diluted to an 
OD600nm of 0.1 and grown for 3 h. This culture was then used to inoculate the AMMO and the controls. 
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OD600nm measurements were taken at 0, 2, 4, 6, and 8 h. Note: (1) O103F was also prepared using the 
same protocol when utilized in the experiment. (2) AMMO is the cell-free supernatant collected after 
12 h E. coli O103F growth. SPENT is the cell-free supernatant collected after 12 h E. coli O157A growth. 

2.2.1. Isolation Confirmation 

A culture of either O157A or O103F was diluted to a starting OD of 0.1 in a final volume of 5 mL 
(3.75 mL of AMMO or SPENT and 1.25 mL culture and fresh EC). A second control was prepared 
with O157A or O103F diluted into fresh EC. Subsequently, all cell preparations were incubated at 37 
°C at 150 rpm for 24 h. OD measurements were taken at 0, 2, 4, 6, 8, and 24 h to extrapolate cell 
densities using an initially determined strain-specific growth curve data (slope equation: O157A → y 
= −6 × 106 × 2 + 4 × 107 × −2 × 106 and O103F → y = −2 × 107 × 2 + 7 × 107 × −3 × 106). 

The growth curve data were analyzed by comparing strain-specific OD values versus CFU plate 
counts in parallel at the time point 0, 2, 4, 6, 8, and 24 h (data not shown). All experiments with 
AMMO and SPENT supernatants were conducted likewise, following the treatments as described 
below. All experiments were replicated on alternate days with fresh cultures, AMMO, and SPENT. 

2.2.2. pH Treatment 

To examine the effect of pH on AMMO, hydrochloric acid (HCl) or sodium hydroxide (NaOH) 
was added to the supernatants containing the isolated AMMO or SPENT to lower or increase the pH 
of the solutions to 3 or 11, respectively. The supernatants were then incubated at either pH for 3 h. 
After the incubation, the supernatants (AMMO and SPENT) pH were neutralized to the pH pre-
treatment by titrating either HCl or NaOH solutions and subsequently used for the inhibition assay 
(Figure 1B). 

2.2.3. Autoclave Treatment 

To examine the effect of heat and pressure treatment, the prepared AMMO and SPENT 
supernatants were autoclaved for 20 min at 121 °C and 18 psi. After cooling to room temperature, the 
supernatants were subsequently used for the inhibition assay (Figure 1B). 

2.2.4. Trypsin Treatment 

To examine the effect of trypsin (Calbiochem, La Jolla, CA, USA) digestion, 5 µL of a prepared 
trypsin solution (7.5 units/µL) was added to 20 mL of the prepared AMMO and SPENT supernatants 
and incubated for 3 h at 37 °C. After the incubation, trypsin digestion was stopped by heating the 
mixture for 10 min at 95 °C. After cooling to room temperature, AMMO, and SPENT supernatants 
were used for the inhibition assay (Figure 1B). 

2.2.5. Chymotrypsin Treatment 

To examine the effect of chymotrypsin (Sigma-Aldrich, Oakville, ON, Canada) digestion, 4 µL, 
n or 40 µL (1 unit/µL) of prepared chymotrypsin solution was added to 20 mL of the prepared AMMO 
and SPENT supernatants. The supernatants were then incubated for 3 h at room temperature. After 
the incubation, chymotrypsin digestion was stopped by heating the mixture for 10 min at 80 °C. After 
cooling to room temperature, AMMO, and SPENT supernatants were used in the inhibition assay 
(Figure 1B). 

2.3. Analysis of Cell Densities 

Extrapolated cell densities of O157A grown in either AMMO or SPENT were examined for the 
difference in cell numbers between the two supernatants by subtracting the number of cells in the 
AMMO from the SPENT. 
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2.4. Statistical Analysis 

Numerical OD data measured for each experiment were examined for normality and 
subsequently used for analyses. Time, treatment, control, and interactions were determined for all 
the experiments using a mixed linear model (Proc Mixed, SAS 9.4, SAS Institute Inc., Cary, NC, USA). 
p values < 0.05 were considered significant. Calculated standard deviations from each experiment are 
shown as bars within the Figures. 

3. Results 

3.1. AMMO Isolation Protocol Confirmation 

Preliminary studies for both strains determined that OD measurement corresponded to plate 
counts in the provided growth curve in Section 2.2.1. OD based measurements were subsequently 
used to determine cell densities. 

A comparison of OD measurements of O157A grown in a mixture of EC and AMMO to O157A 
grown in a mixture of EC and SPENT demonstrated that O157A inoculated into AMMO had 
significantly lower growth at 4, 6, and 8 h (p < 0.05) (Figure 2B). Furthermore, the difference in cell 
density increased over time, and the E. coli O157A in SPENT had −6 × 107 CFU/mL more cells than 
O157A in AMMO at 8 h (Figure 2A). In contrast, the OD of O103F grown in a mixture of EC and 
SPENT compared to O103F grown in a mixture of EC and AMMO, demonstrated that the O103F cell 
proliferation was significantly greater (p < 0.05) in the presence of SPENT than in AMMO (Figure 2B). 
Concurrently, the difference in cell density demonstrated that O103F in SPENT had −1.0 × 108 
CFU/mL more O103F cells than O103F in AMMO at 8 h (Figure 2A). Furthermore, comparing the 
growth of O157A in SPENT to O103F in AMMO did not identify a significant difference in growth (p 
> 0.05). Expectedly, all controls of O103F or O157A in fresh EC grew to higher turbidity than O103F 
and O157A grown in SPENT (Figure 2B). 

 
Figure 2. The molecule isolation protocol confirmation results for E. coli O157A grown in AMMO and 
SPENT in comparison to E. coli O103F grown in SPENT and AMMO. (A): The difference between the 
cell numbers for either O157A or O103F in the SPENT and in AMMO. (B): The OD600nm data for O157A 
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in AMMO, O157A in SPENT, O103F in SPENT, and O103F in AMMO and * control in fresh EC as a 
numerical value below the bars. Symbols: α and β denote a significant difference between growth in 
AMMO and SPENT for O157A and O103F, respectively (p < 0.05). A comparison of O103F growth in 
AMMO to O157A growth in SPENT revealed they are not significantly different. Note: (1) AMMO is 
the cell-free supernatant collected after 12 h E. coli O103F growth. SPENT is the cell-free supernatant 
collected after 12 h E. coli O157A growth. (2) Bars are the calculated standard deviation for AMMO 
and SPENT in each experiment (O157A and O103F) at each time point. 

3.2. Investigation of AMMO Properties 

Preliminary studies revealed that between 8 and 24 h, AMMO inhibition was diminishing and 
at 24 h no longer detectable (data not shown). Data are reported for the period up to 8 h. 

3.2.1. The Effect of pH, Autoclaving, Trypsin and Chymotrypsin Digestion 

The OD of O157A grown in a mixture of EC and AMMO after treatment (pH, Autoclaving, 
Trypsin, and Chymotrypsin) was not significantly different from O157A grown in EC with untreated 
AMMO (Figures 3B, 4B, 5B, and 6B). In contrast, a comparison of O157A grown in EC and AMMO 
(treated or untreated) to the O157A grown in EC and SPENT (treated or untreated) revealed 
significant inhibition of O157 growth at 4, 6, and 8 h (p < 0.05). Additionally, the difference in cell 
density for treated or untreated AMMO and SPENT increased over time (Figures 3A, 4A, 5A and 6A) 
with the largest difference in cell density at 8 h (Table 1). The pure culture control of O157A in fresh 
EC grew to higher turbidity than O157A grown in SPENT in each experiment (Figures 3B, 4B, 5B, and 
6B). 

Table 1. Difference in cell density between O157A grown in SPENT versus O157A grown in AMMO 
at 8 h. 

 Supernatant Trials (Cell numbers in x107) 
Treated  pH 3 pH 11 Autoclaved Trypsin C-Trypsin 1x C-Trypsin 10x 

SPENT minus AMMO* 5 6 3 5 3 3 
Untreated Control pH Autoclaved Trypsin Chymotrypsin 

SPENT minus AMMO* 6 4  6 4 

* Differences in cell density. * Note: In all the tests, the OD600nm of the 12 h culture was measured prior 
to preparing the supernatant and in each case, both O103F and O157A had similar growth densities 
at 12 h. Note: (1) Difference in cell density is approximate and calculated using previously generated 
growth curve numerical data for O157A. (2) AMMO is the cell-free supernatant collected after 12 h E. 
coli O103F growth. SPENT is the cell-free supernatant collected after 12 h E. coli O157A growth. (3) 
C-Trypsin = Chymotrypsin. 
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Figure 3. The effect of pH treated AMMO on growth inhibition of E. coli O157A at two pH’s 3 and 11. 
(A): The difference between the cell numbers for O157A in SPENT and in AMMO at pH 3, pH 11, and 
untreated supernatant. (B): The OD600nm data for O157A grown in AMMO, in SPENT (pH 3, pH 11, 
and untreated) and * control in fresh EC as a numerical value below the bars. Symbols: α, β and ɣ 
denote a significant difference between O157A grown in AMMO and in the SPENT for pH 3, 
untreated, and pH 11 supernatants, respectively (p < 0.05). Note: (1) AMMO is the cell-free 
supernatant collected after 12 h E. coli O103F growth. SPENT is the cell-free supernatant collected 
after 12 h E. coli O157A growth. (2) Bars are the calculated standard deviation for the treated or 
untreated AMMO and SPENT at each time point. 
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Figure 4. The effect of autoclaving AMMO on growth inhibition of E. coli O157A. (A): The difference 
between the cell numbers for O157A in SPENT and in AMMO with treated and untreated 
supernatant. (B): The OD600nm data for O157A grown in AMMO, in SPENT (treated and untreated), 
and * control in fresh EC as a numerical value below the bars. Symbols: α and β, denote a significant 
difference between O157A grown in AMMO and in SPENT for treated and untreated supernatants, 
respectively (p < 0.05). Note: (1) AMMO is the cell-free supernatant collected after 12 h E. coli O103F 
growth. SPENT is the cell-free supernatant collected after 12 h E. coli O157A growth. (2) Bars are the 
calculated standard deviation for the treated or untreated AMMO and SPENT at each time point. 
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Figure 5. The effect of trypsin protease digestion of AMMO on growth inhibition of E. coli O157A over 
time. (A): The difference between the cell numbers for O157A in SPENT and in AMMO treated and 
untreated supernatant. (B): The OD600nm data for O157A grown in AMMO, in SPENT (treated and 
untreated), and * control in fresh EC as a numerical value below the bars. Symbols: α and β, denote a 
significant difference between O157A in AMMO and in SPENT for treated and untreated 
supernatants, respectively (p < 0.05). Note: (1) AMMO is the cell-free supernatant collected after 12 h 
E. coli O103F growth. SPENT is the cell-free supernatant collected after 12 h E. coli O157A growth. (2) 
Bars are the calculated standard deviation for the treated or untreated AMMO and SPENT at each 
time point. 
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Figure 6. The effect of chymotrypsin protease digestion of AMMO on growth inhibition of E. coli 
O157A over time. (A): The difference between the cell numbers for O157A in SPENT and in AMMO 
with treated and untreated supernatants. (B): The OD600nm data for O157A grown in AMMO, in SPENT 
(treated and untreated), and * control in fresh EC as a numerical value below the bars. Symbols: α, β 
and ɣ, denote a significant difference between: O157A in AMMO and in SPENT for 1×, 10×, and 
untreated supernatants, respectively (p < 0.05). Time-point = 2 difference in cell number data not 
shown for chymotrypsin treated AMMO and SPENT (1× and 10×) due to parallel OD600nm data, and 
the difference is ~zero. Note: (1) AMMO is the cell-free supernatant collected after 12 h E. coli O103F 
growth. SPENT is the cell-free supernatant collected after 12 h E. coli O157A growth. (2) Bars are the 
calculated standard deviation for the treated or untreated AMMO and SPENT at each time point. 

3.2.2. Comparison of Inhibition Activity 

The comparison of the average inhibition activity of AMMO across the different treatments at 4, 
6, and 8 h to untreated AMMO further revealed no effect of treatment on inhibition (Figure 7). Variability 
between the treated and untreated AMMO is minor, as demonstrated by the standard deviation, 
shown as bars on the graph. 
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Figure 7. Comparison of average inhibition activity against E. coli O157 of treated AMMO across all 
treatments versus untreated AMMO (control) at time point 4, 6, and 8 h. Note: (1) Bars are the 
calculated standard deviation for the treated or untreated AMMO, respectively, at each time point. 
(2) AMMO is the cell-free supernatant collected after 12 h E. coli O103F growth. 

4. Discussion 

Interference competition is either contact-dependent or contact independent. Due to the removal 
of viable bacterial cells in our study, the inhibition of the competitor growth was solely based on 
contact-independent mechanisms. Contact independent inhibition occurs by one of the following 
known mechanisms—release of small molecules (less than 10 kDa), proteins (larger than 10 kDa), 
membrane vesicles, tailocins, and bacteriophages [28]. Across these mechanisms, a striking difference 
is the sensitivity of the active substances to physiochemical and biological treatments. Except for 
microcins, none of those known inhibitory agents are reported to persist the combination of extreme 
heat and pressure (autoclaving). In addition to heat resistance, microcins excreted by Gram-negative 
bacteria have been reported to be resistant to extreme pH and are resistant to proteolysis [29]. 

4.1. AMMO Isolation Protocol Confirmation 

A previous study in our laboratory [26] revealed a competitive O103F champion producing 
strong diffusible molecule (AMMO), which inhibited the growth of a wide range of STEC isolates, 
including a STEC runner-up (O157A). Here we isolated and further investigated the AMMO, 
properties. The trials after isolation confirmed that O157A grown in AMMO was significantly 
inhibited compared to the O157A grown in SPENT (p < 0.05). Additionally, the cell density was 
greater in SPENT than in AMMO and the difference in cell density between them increased over time. 
Furthermore, our data are demonstrate that SPENT did not inhibit O103F growth, further confirming 
our previous results [26], and, in fact, O103F grown in SPENT had a higher cell density than O103F 
grown in AMMO. Feasibly, O103F has a metabolic advantage and is able to utilize nutrients not used 
by O157A as the metabolic pathways of different E. coli strains have been shown to vary in their 
ability to utilize different carbon sources [30]. Likely, O103F utilized a remaining nutrient source still 
present in SPENT. Comparison of O103F grown in AMMO to O157A grown in SPENT did not 
identify a significant difference in growth in the utilized media, providing evidence that the 
inhibition effect on O157A growth in AMMO is due to the presence of an antimicrobial compound(s) 
and not due to a lack of nutrients in the media. In addition, grown in fresh media, O157A and O103F 
had higher turbidity, demonstrating that inhibition (O157A) or no inhibition (O103F) was due to an 
external factor (AMMO synthesis) and not due to a strain fitness effect. In confirmation with our 
previous data, which demonstrated the production of a diffusible antimicrobial through an agarose 
barrier (no contact between competitors), the isolation of a diffusible and inhibitory AMMO occurred 
as E. coli has been reported to produce colicins and microcins targeting other E. coli and close relatives 
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[13,31]. Furthermore, our results revealed that AMMO is effective in the absence of live bacterial cells, 
which may alleviate regulatory hurdles probiotic bacteria encounter when being considered as a drug 
to treat human disease [32]. In accordance with previous studies, AMMO inhibited the STEC O157A, 
and similar effects have been reported for the microcin producing probiotic E. coli Nissle, which 
displaced pathogens from an inflamed gut [19] or reduced the number of STEC O157:H7 and O104:H4 
in vitro [33]. 

Colicin and microcin producers target various systems in their prey and kill them using several 
mechanisms from forming cell wall channels to the corruption of the intracellular machinery but are 
themselves resistant to this activity [34,35]. Production of either microcins or colicins is always 
coupled with resistance genes and antidote synthesis. O157A succumbs to at least one AMMO 
produced by O103F, suggesting a lack of resistance. In contrast and in accordance with our previous 
results [26], O103F is not inhibited by any antimicrobial produced by O157A, suggesting O103F is 
resistant to any antimicrobials produced by O157A. Resistance to colicins and microcins can occur 
through the production of these antimicrobials since production is always paired with the synthesis 
of resistance proteins or through mutations in receptors or uptake mechanisms for the bacteriocin 
[34]. E. coli has been shown to produce more than one colicin and microcin [36]. Plasmids encoding 
bacteriocins are stably maintained in microbial populations, most likely due to the lethal 
disadvantage of lost resistance [4]. Here, O103F may either have resistance to any O157A 
antimicrobial because it can produce the antimicrobial or has mutations in the receptors for the 
O157A antimicrobial as previous research revealed that E. coli could acquire resistance to bacteriocins 
in competition assays [37]. 

4.2. Investigation of AMMO Properties 

The results across all trials revealed that AMMO was not affected by any of the treatments. 
Neither pH, heat (pressure) nor protease digestion affected the inhibitory properties of AMMO. In 
an applied scenario, the stability of the molecule would offer a wide range of technical treatment 
options for the implementation of purifications within an industrial-scale setting. 

In each trial, there were no significant differences in O157A growth between treated and 
untreated AMMO, and comparison of the inhibition activity of only the treated AMMO revealed a 
similar inhibition pattern across all treatments, further demonstrating that treatment had no effect. 
Additionally, O157A growth was significantly inhibited (p < 0.05) when grown in the presence of 
AMMO compared to SPENT, regardless of treatment, showing treatment did not affect the ability of 
AMMO to inhibit O157A growth. Concurrently, this effect was further demonstrated when 
examining cell numbers of O157A, which were more numerous in treated or untreated SPENT 
compared to treated or untreated AMMO in each experiment. Additionally, pure culture controls of 
O157A grew to higher cell numbers compared to O157A grown in SPENT, demonstrating that the 
inhibitory effect was due to the presence of AMMO and not due to any variation of viability. The 
evidence of physicochemical and enzymatic resistant characteristics of AMMO suggests that at least 
one microcin is produced by O103F. 

Microcins are small antimicrobial peptides and have been mainly discovered in E. coli (one in 
Klebsiella) with a molecular weight of less than 10 kDa [38]. Microcins have a narrow killing range, 
primarily targeting E. coli and their close relatives. Remarkably, despite being these “killing 
machines”, the mode of action of many microcins is unknown, including microcin M, one of the 
microcins produced by E. coli Nissle, a probiotic that has been used for over 100 years to mitigate 
intestinal pathogens [29]. Microcin properties of extreme pH, protease, and heat resistance [39], are 
commonly shared with bacteriocins from lactic acid bacteria, [13,38]. Resistance to extreme pH or 
proteases varies among microcins. Microcin E492 is resistant to low pH [40], while J25 is resistant to 
both low and high pH extremes [41]. Others are resistant to the protease trypsin but not to 
chymotrypsin digestion, vice versa or resistant to both [40]. Heat resistance is shared among 
microcins [40], and microcin J25 has been shown to resist autoclaving (15 min at 121 °C) [41]. The 
AMMO produced by O103F has analogous characteristics, and plausibly is a molecule of similar 
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design. Furthermore, our data demonstrated that the AMMO effect was no longer detectable after 24 
h, an indicator for a “single-use” effect. Microcin C enters the host cells by mimicking nutrient 
properties and after cell uptake is cleaved by the host intracellular machinery to create the active 
compound [39]. Plausibly, this cleavage of microcin C is irreversible, and AMMO undergoes a similar 
transformation. 

Aside from those properties discussed above, microcins can be further differentiated from 
colicins because they are not induced by the bacterial SOS (response to DNA damage) system, and 
secreted microcins are not lethal to the producing cells [34]. To date, 14 microcins have been identified 
[12], but only eight have been structurally characterized [29]. Some microcins, such as H47 and I47 or 
C7 and C51, have similar microcin gene clusters and only differ by 3 or 1 additional genes, 
respectively [15]. Ultimately, AMMO produced by O103F appears to be a microcin with a change in 
the microcin gene cluster for an enhanced killing potential. Research comparing the microcin gene 
cluster of O103F with sequences of known microcins may elucidate such a probability. 

The production of microcins by E. coli [13] is a tactic used to out-compete their adversaries [4]. 
Microcins are deemed a potential replacement for antibiotics to mitigate pathogens both in human 
medicine and in the farm-to-fork continuum [16]. Antibiotic resistance is a global challenge evoked 
by their overuse in the livestock industry and human medicine, which led to the emergence of 
resistant pathogens. Contrary to traditional broadband antibiotics, microcins have a narrow, species-
specific killing range [10,16]. Since his discovery about 100 years ago in the battlefields of WWI, the 
E. coli Nissle strain has been effectively used to treat human intestinal infections, and the specific 
Nissle microcins are considered the active antimicrobial substance [17,19]. 

As a foodborne pathogen, STEC causes severe intestinal infections in humans [20,42], and 
effective mitigation strategies are lacking [22–24]. Use of probiotic bacteria that can out-compete 
STEC is being considered as an approach to eliminate this pathogen, and colicin producers isolated 
from sheep fecal samples have been shown to inhibit STEC O157:H7 growth [25]. 

A previous study in our laboratory showed a diverse STEC growth inhibition by AMMO 
produced by O103F [26], and the results from this study strongly suggest that O103F produces at 
least one very effective microcin. Microcins are considered part of the killing repertoire of the 
probiotic E. coli Nissle strain. The type of microcins produced by E. coli O103F holds the potential to 
be used as a STEC mitigation strategy. In logical stepwise approaches, we aim to evaluate this 
molecule further and gain more knowledge on the antimicrobial properties produced by O103F. 
Future studies examining the genome and plasmid sequences of O103F for microcins, the biochemical 
structure of AMMO and physiological properties, including metabolic pathways, are required to 
elucidate the therapeutic potential of this strain and the antimicrobial it produces. 

5. Conclusions 

Agriculture, as an evolutionary Big Bang, triggered a new microbial multiverse and changed the 
dynamics of human and microbe (pathogen) interactions. Most recent global transformation, 
including biological technologies (and the use of antimicrobial substances) have fundamentally 
altered the way, size, speed, and scope of how we produce and consume food, but in addition, 
promoted the emergence of virulent microbes with resistance to antibiotics. Microcin molecules are 
regarded as a potential alternative to antibiotics. Therapeutic microcin properties may warrant the 
use as a next-generation control strategy in livestock production systems or to mitigate pathogens 
after human infections. Ultimately, the microcin we tested here inhibited the growth of E. coli 
pathogens after a range of physicochemical and enzymatic inactivation treatments. The antimicrobial 
properties suggest that this type of isolated molecule could be an antibiotic candidate even in the 
absence of the viable E. coli producer. The resistance to treatments that make the molecule an ideal 
candidate for industrial-scale isolation and purification technologies. 

Author Contributions: Conceptualization, S.-J.P. and T.R.; Data curation, S.-J.P.; Formal analysis, S.-J.P.;  
Investigation, S.-J.P. and T.R.; Methodology, S.-J.P. and T.R.; Project administration, T.R. Resources, T.R.; 



Antibiotics 2020, 9, 6 14 of 16 

 
 

Supervision, T.R.; Writing – original draft, S.-J.P.; Writing – review & editing, T.R. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: We acknowledge and thank Susanne Trapp and Yidong Graham for assistance in the 
laboratory and Rahat Zaheer, Andrew Cameron, James Thomas, and Kim Stanford for their willingness to share 
their expertise and knowledgeable discussions. Lastly but not least, Shaun Cook for his critical review, sharing 
his expertise and invaluable suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Dethlefsen, L.; McFall-Ngai, M.; Relman, DA. An ecological and evolutionary perspective on human-
microbe mutualism and disease. Nature 2007, 449, 811–818, doi:10.1038/nature06245. 

2. Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–
283, doi:10.1038/nature05775. 

3. Gonzalez, D.; Sabnis, A.; Foster, K.R.; Mavridou, D.A.I. Costs and benefits of provocation in bacterial 
warfare. Proc. Natl. Acad. Sci. USA 2018, 115, 7593–7598, doi:10.1073/pnas.1801028115. 

4. Inglis, R.F.; Bayramoglu, B.; Gillor, O.; Ackermann, M. The role of bacteriocins as selfish genetic elements. 
Biol. Lett. 2013, 9, 20121173, doi:10.1098/rsbl.2012.1173. 

5. García-Bayona, L.; Comstock, L.E. Bacterial antagonism in host-associated microbial communities. Science 
2018, 361, eaat2456, doi:10.1126/science.aat2456. 

6. Darwin, C.R. The Variation of Animals and Plants under Domestication: 1st ed.; William Clowes and Sons Press: 
London, UK, 1868, pp. 414–443. 

7. Stubbendieck, R.M.; Straight, P.D. Multifaceted interfaces of bacterial competition. J. Bacteriol. 2016, 198, 
2145–2155, doi:10.1128/jb.00275-16. 

8. Garcia, E.C. Contact-dependent interbacterial toxins deliver a message. Curr. Opin. Microbiol. 2018, 42, 40–
46, doi:10.1016/j.mib.2017.09.011. 

9. Engevik, M.A.; Versalovic, J. Biochemical features of beneficial microbes: Foundations for therapeutic 
microbiology. Microbiol. Spectrum 2017, 5, doi:10.1128/microbiolspec.BAD–0012–2016. 

10. Kleanthous, C. Swimming against the tide: Progress and challenges in our understanding of colicin 
translocation. Nat. Rev. Microbiol. 2010, 8, 843–848, doi:10.1038/nrmicro2454. 

11. Naimi, S.; Zirah, S.; Hammami, R.; Fernandez, B.; Rebuffat, S.; Fliss, I. Fate and biological activity of the 
antimicrobial lasso peptide microcin J25 under gastrointestinal tract conditions. Front. Microbiol. 2018, 9, 
doi:10.3389/fmicb.2018.01764. 

12. Rebuffat, S. Microcins and other bacteriocins: Bridging the gaps between killing strategies, ecology and 
applications. In The Bacteriocins: Current Knowledge and Future Prospects; Dorit, R.L., Roy, S.M., Riley, M.A., 
Eds.; Caister Academic Press: Norfolk, UK, 2016; pp. 11–34. 

13. Duquesne, S.; Petit, V.; Peduzzi, J.; Rebuffat, S. Structural and functional diversity of microcins, gene-
encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol. Biotechnol. 2007, 13, 200–209, 
doi:10.1159/000104748. 

14. Chavan, M.A.; Riley, M.A. Molecular evolution of bacteriocins in gram-negative bacteria. In Bacteriocins: 
Ecology and Evolution; Springer: Berlin, Germany, 2007; p. 19–43. 

15. Duquesne, S.; Destoumieux-Garzon, D.; Peduzzi, J.; Rebuffat, S. Microcins, gene-encoded antibacterial 
peptides from Enterobacteria. ChemInform 2007, 38, doi:10.1002/chin.200745258. 

16. Gillor, O.; Etzion, A.; Riley, M.A. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. 
Biotechnol. 2008, 81, 591–606, doi:10.1007/s00253-008-1726-5. 

17. Sonnenborn, U. Escherichia coli strain Nissle 1917-from bench to bedside and back: History of a special 
Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 2016, 363, doi:10.1093/femsle/fnw212. 

18. Deriu, E.; Liu, J.Z.; Pezeshki, M.; Edwards, R.A.; Ochoa, R.J.; Contreras, H.; Libby, S.J.; Fang, F.C.; Raffatellu, 
M. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host 
Microbe 2013, 14, 26–37, doi:10.1016/j.chom.2013.06.007. 



Antibiotics 2020, 9, 6 15 of 16 

 
 

19. Sassone-Corsi, M.; Nuccio, S.P.; Liu, H.; Hernandez, D.; Vu, C.T.; Takahashi, A.A.; Edwards, R.A.; 
Raffatellu, M. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016, 
540, 2802–283, doi:10.1038/nature20557. 

20. Rahal, E.A.; Fadlallah, S.M.; Nassar, F.J.; Kazzi, N.; Matar, G.M. Approaches to treatment of emerging Shiga 
toxin-producing Escherichia coli infections highlighting the O104:H4 serotype. Front. Cell. Infect. Microbiol. 
2015, 5, 24, doi:10.3389/fcimb.2015.00024. 

21. Cleary, T.G. The role of Shiga-toxin-producing Escherichia coli in hemorrhagic colitis and hemolytic uremic 
syndrome. Semin. Pediatr. Infect. Dis. 2004, 15, 260–265, doi:10.1053/j.spid.2004.07.007. 

22. Stanford, K.; Hannon, S.; Booker, C.W.; Jim, G.K. Variable efficacy of a vaccine and direct-fed microbial for 
controlling Escherichia coli O157:H7 in feces and on hides of feedlot cattle. Foodborne Pathog. Dis. 2014, 11, 
379–387, doi:10.1089/fpd.2013.1693. 

23. Stephens, T.P.; Stanford, K.; Rode, L.M.; Booker, C.W.; Vogstad, A.R.; Schunicht, O.C.; Jim, G.K.; Wildman, 
B.K.; Perrett, T.; McAllister, T.A. Effect of a direct-fed microbial on animal performance, carcass 
characteristics and the shedding of Escherichia coli O157 by feedlot cattle. Anim. Feed Sci. Technol. 2010, 158, 
65–72, doi:10.1016/j.anifeedsci.2010.04.007. 

24. Jin, L.; Wang, Y.; Iwaasa, A.D.; Li, Y.; Xu, Z.; Schellenberg, M.P.; Liu, X.L. Purple Prairie Clover (Dalea 
purpurea Vent) reduces fecal shedding of Escherichia coli in pastured cattle. J. Food Prot. 2015, 78, 1434–1441, 
doi:10.4315/0362-028x.Jfp-14-426. 

25. Askari, N.; Ghanbarpour, R. Molecular investigation of the colicinogenic Escherichia coli strains that are 
capable of inhibiting E. coli O157:H7 in vitro. BMC Vet. Res. 2019, 15, 14, doi:10.1186/s12917-018-1771-y. 

26. Paquette, S.-J.; Zaheer, R.; Stanford, K.; Thomas, J.; Reuter, T. Competition among Escherichia coli Strains for 
Space and Resources. Vet. Sci. 2018, 5, 93, doi:10.3390/vetsci5040093. 

27. Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. 
Annu. Rev. Microbiol. 2010, 64, 163–184, doi:10.1146/annurev.micro.091208.073413. 

28. Granato, E.T.; Meiller-Legrand, T.A.; Foster, K.R. The evolution and ecology of bacterial warfare. Curr. Biol. 
2019, 29, R521–R537, doi:10.1016/j.cub.2019.04.024. 

29. Baquero, F.; Lanza, V.F.; Baquero, M.-R.; del Campo, R.; Bravo-Vazquez, D.A. Microcins in 
Enterobacteriaceae: Peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microb. 2019, 10, 
doi:10.3389/fmicb.2019.02261. 

30. Paquette, S-J. Control of Substrate Utilization by O-islands and S-loops in Escherichia Coli O157:H7. Master’s 
Thesis, University of Lethbridge, Lethbridge, AB, Canada 2011. 

31. Cascales, E.; Buchanan, S.K.; Duché, D; Kleanthous, C.; Lloubes, R.; Postle, K.; Riley, M.; Slatin, S.; Cavard, 
D. Colicin biology. Microbiol. Mol. Biol. Rev. 2007, 71, 158–229, doi:10.1128/mmbr.00036-06. 

32. Quigley, E.M.M. Prebiotics and probiotics in digestive health. Clin. Gastroenterol. Hepatol. 2019, 17, 333–344, 
doi:10.1016/j.cgh.2018.09.028. 

33. Mohsin, M.; Guenther, S.; Schierack, P.; Tedin, K.; Wieler, L.H. Probiotic Escherichia coli Nissle 1917 reduces 
growth, Shiga toxin expression, release and thus cytotoxicity of enterohemorrhagic Escherichia coli. Int. J. 
Med. Microbiol. 2015, 305, 20–26, doi:10.1016/j.ijmm.2014.10.003. 

34. Gillor, O.; Kirkup, B.C.; Riley, M.A. Colicins and microcins: The next generation antimicrobials. In Advances 
in Applied Microbiology; Academic Press:Waltham, MA, USA, 2004; pp. 129–146. 

35. Braun, V.; Patzer, S.I.; Hantke, K. Ton-dependent colicins and microcins: Modular design and evolution. 
Biochimie 2002, 84, 365–380, doi:10.1016/s0300-9084(02)01427-x. 

36. Budič, M.; Rijavec, M.; Petkovšek, Ž.; Žgur-Bertok, D. Escherichia coli bacteriocins: Antimicrobial efficacy 
and prevalence among isolates from patients with bacteraemia. PLoS ONE 2011, 6, e28769, 
doi:10.1371/journal.pone.0028769. 

37. Khare, A.; Tavazoie, S. Multifactorial competition and resistance in a two-species bacterial system. PLoS 
Genet. 2015, 11, e1005715, doi:10.1371/journal.pgen.1005715. 

38. Pons, A.M.; Lanneluc, I.; Cottenceau, G.; Sable, S. New developments in non-post translationally modified 
microcins. Biochimie 2002, 84, 531–537, doi:10.1016/s0300-9084(02)01416-5. 

39. Rebuffat, S. Microcins in action: Amazing defence strategies of Enterobacteria. Biochem. Soc. Trans. 2012, 40, 
1456–1462, doi:10.1042/bst20120183. 

40. Baquero, F.; Moreno, F. The microcins. FEMS Microbiol. Lett. 1984, 23, 117–124, doi:10.1111/j.1574-
6968.1984.tb01046.x. 



Antibiotics 2020, 9, 6 16 of 16 

 
 

41. Salomón, R.A.; Farías, R.N. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J. 
Bacteriol. . 1992, 174, 7428–7435, doi:10.1128/jb.174.22.7428-7435.1992. 

42. Smith, J.L.; Fratamico, P.M.; Gunther, N.W. Chapter Three-Shiga Toxin-Producing Escherichia coli. In 
Advances in Applied Microbiology; Academic Press: Waltham, MA, USA, 2014; pp. 145–197. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


