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Abstract: This meta-analysis assessed the efficacy and safety of novel tetracyclines for treating
acute bacterial infections. Data from PubMed, Web of Science, EBSCO, Cochrane databases, Ovid
Medline, and Embase databases were accessed until 11 July 2019. Only randomized controlled trials
(RCTs) comparing the efficacy of novel tetracyclines with that of other antibiotics for treating acute
bacterial infections were included. Primary outcomes included the clinical response, microbiological
response, and risk of adverse events (AEs). A total of eight RCTs were included, involving 2283 and
2197 patients who received novel tetracyclines and comparators, respectively. Overall, no significant
difference was observed in the clinical response rate at test of cure between the experimental and
control groups (for modified intent-to-treat [MITT] population, risk ratio [RR]: 1.02, 95% confidence
interval [CI]: 0.99–1.05; for clinically evaluable [CE] population, RR: 1.02, 95% CI: 1.00–1.04; and for
microbiological evaluable [ME] population, RR: 1.01, 95% CI: 0.99–1.04). No significant difference in
the microbiological response at the end of treatment was observed between the experimental and
control groups (for ME population, RR: 1.01, 95% CI: 0.99–1.03; for microbiological MITT population,
RR: 1.01, 95% CI: 0.96–1.07). No difference was observed concerning the risk of treatment-emergent
adverse events (TEAEs), serious adverse events, and discontinuation of treatment due to TEAEs and
all-cause mortality between the two groups. In conclusion, clinical efficacy and safety profile for
novel tetracyclines in the treatment of acute bacterial infections were found to be similar to those for
other available antibiotics.
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1. Introduction

Antibiotics are crucial for treating acute bacterial infections, and the prompt use of appropriate
antibiotics can save the life of a patient with sepsis [1]. However, the emergence and dissemination of
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antibiotic resistance among commonly encountered bacteria in many types of infections, including
pneumonia and intra-abdominal, urinary tract, and skin/skin structure infections, have drastically
reduced the efficacy of most antimicrobial drugs [2–7]. Therefore, searching new antimicrobials to
combat the threat of antibiotic-resistant bacteria is urgent.

Recently, two novel tetracyclines, omadacycline, (Nuzyra®, Paratek Pharmaceuticals, Boston,
MA, USA) and eravacycline (Xerava®, Tetraphase Pharmaceuticals, Watertown, MA, USA), have
been developed and approved by the Food and Drug Administration in 2018 [8]. Additionally,
they are broad-spectrum antibiotics such as conventional tetracyclines that act against gram-positive,
gram-negative, anaerobic, and atypical pathogens. Furthermore, they exhibit potent in vitro activity
against multidrug-resistant organisms [9,10]. The clinical efficacy of omadacycline and eravacycline for
treating acute bacterial infections is being evaluated in several randomized controlled trials (RCTs) since
their development [11–18]. However, no consensus on the efficacy and safety of novel tetracyclines
has been reached due to the lack of a systematic analysis and an updated meta-analysis. Therefore,
we conducted this meta-analysis to provide a real-time evidence on the efficacy and safety of
omadacycline and eravacycline for treating acute bacterial infections.

2. Methods

2.1. Study Search and Selection

All RCTs were identified through a systematic literature review of PubMed, Web of Science,
EBSCO, Cochrane databases, Ovid Medline, and Embase until July 2019 by using the following search
terms: “eravacycline”, “Xerava™”, “TP-434”, “omadacycline”, “Nuzyra”, “PTK-0796”, and “infection”.
The inclusion criteria included (1) randomized controlled studies and (2) sturdy directly compared the
clinical efficacy and safety of novel tetracyclines with those of other antimicrobial agents for treating
adult patients with acute bacterial infections. Exclusion criteria included: (1) case reports, and abstracts
presented at scientific conferences; (2) those including individuals younger than 18 years of age;
(3) studies that only reported in vitro activity, animal studies, or pharmacokinetic–pharmacodynamic
assessments; (4) case series without a control group; (5) trials that lacked randomized-control design.
Two authors (S.P.C. and S.H.L.) searched and examined publications independently. A third author
(C.C.L.) resolved any disagreement in time. The following data were extracted: year of publication,
study design, type of infections, antimicrobial regimens, clinical and microbiological outcomes, and
adverse effects. This systematic review and meta-analysis were conducted according to the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) statement.

2.2. Outcome Measurement

The primary outcomes of this meta-analysis included clinical response assessed at the test of cure
(TOC) and end of treatment (EOT) visits, which was calculated as the portion of the patients with
clinical response among analyzed populations. Clinical response was defined as the signs/symptoms
of infection being sufficiently resolved and no further antibacterial therapy was required. Patients were
categorized based on the occurrence of primary outcomes as follows: modified intent-to-treat (MITT),
clinically evaluable (CE), and microbiologically evaluable (ME) populations. The intention-to-treat
(ITT) population included all randomized patients, and the MITT population included all ITT patients
who received any amount of the study drug. The CE population included all MITT patients who met
the minimal disease definition of acute bacterial infections and had their clinical response assessed at
the TOC visit. The ME population included all CE patients who had the baseline pathogen identified
and microbiological response assessed. The microbiological MITT (mMITT) population included
all MITT patients who met the minimal disease definition of clinical infection and had the baseline
pathogen identified. The safety population included all patients who received any study therapy.
Treatment-emergent adverse events (TEAEs) were defined as adverse events (AEs) that started during
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or after the first dose of the study drug administration or increased in severity or were associated with
the study drug during the study.

2.3. Data Analysis

The Cochrane risk of bias assessment tool [19] was used to assess the quality of enrolled RCTs and
the associated risk of bias. Review Manager, version 5.3, with the random-effects model was used
for statistical analyses. The heterogeneity degree was assessed using the Q statistic generated from
the χ2 test, and the heterogeneity proportion was assessed using the I2 measure. Heterogeneity was
considered significant at p < 0.10 or I2 > 50%. Pooled risk ratios (RRs) and 95% confidence intervals
(CIs) were calculated for outcome analyses.

3. Results

3.1. Study Selection

Search results yielded a total of 627 studies from the following online databases: PubMed (n = 124),
Web of Science (127), EBSCO (n = 43), Cochrane Library (n = 53), Ovid Medline (n = 128) and Embase
(n = 163) (Appendix A). Overall, 392 duplicate studies were excluded. Additionally, 220 studies were
found to be irrelevant after screening the title and abstract (based on the article type and language)
and 15 studies after screening the full text. Eventually, eight RCTs [11–18] were selected for the
meta-analysis (Figure 1).
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Figure 1. Algorithm for the screening and identification of studies.

3.2. Study Characteristics

All eight included RCTs [11–18] were multicenter studies (Table 1). Each four studies used
omadacycline [12,13,17,18] and eravacycline [11,14–16] as the study drug. Each three studies focused on
acute bacterial skin and skin structure infections (ABSSSIs) [12,13,18] and complicated intra-abdominal
infections (cIAIs) [14–16]. One study focused on complicated urinary tract infection (cUTI) [11], and
the remaining study focused on community-acquired bacterial pneumonia (CABP) [17]. Overall, the
experimental group comprised 2283 patients (omadacycline, n = 1195; eravacycline, n = 1088), and the
control group comprised 2197 patients. Almost all risks of bias in each study were low (Figure 2).
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Table 1. Characteristics of included studies.

Study, Published
Year

Study Design Study Site Study Period Type of Infection No of Patients Dose Regimen

Study Comparator Study Comparator

Omadacycline

Noel et al., 2012

Randomized,
controlled,
evaluator-blinded
study

11 sites in US 2007–2008
Complicated skin and
skin structure
infection

118 116 100 mg qd Linezolid 600 mg
q12h ± aztreonam

O’Riordan et al.,
2019 (OASIS-1)

Double blind,
randomized
controlled trial

55 sites in US, Peru,
South Africa and
Europe

2015–2016
Acute bacterial skin
and skin-structure
infection

323 322
100 mg q12h x 2
doses than 100
mg qd

Linezolid 600 mg
q12h

Stets et al., 2019
Double blind,
randomized
controlled trial

86 sites in Europe,
North America, South
America, the Middle
East, Africa, and Asia

2015–2017
Community-acquired
pneumonia in PSI risk
II, III or IV

386 388
100 mg q12h x 2
doses than 100
mg qd

Moxifloxacin 400 mg

O’Riordan et al.,
2019 (OASIS-2)

Double0blind,
randomized
controlled trial

33 sites in US May 2017–June 2017
Acute bacterial skin
and skin-structure
infection

368 367
450 mg (oral) qd
x 2 doses then
300 mg qd

Linezolid 600 mg
(oral) q12h

Eravacycline

Solomkin et al., 2014 Randomized,
double-blind trial 19 sites in 6 countries 2011–2012

Complicated
intra-abdominal
infection

56 (1.5 mg/kg),
57 (1.0 mg/kg) 30 1.5 mg/kg or 1.0

mg/kg q24h Ertapenem 1 g q24h

Solomkin et al., 2017 Randomized,
double-blind trial 66 sites in 11 countries 2013–2014

Complicated
intra-abdominal
infection

270 271 1.0 mg/kg q12h Ertapenem 1 g q24h

Solomkin et al., 2018 Randomized,
double-blind trial 65 sites in 11 countries 2016–2017

Complicated
intra-abdominal
infection

250 250 1.0 mg/kg q12h Meropenem 1 g q8h

NCT01978938

Randomized,
double-blind,
double-dummy,
prospective study

99 sites in 18 countries 2014–2015 Complicated urinary
tract infection 455 453 1.5 mg/kg q24h Levofloxacin 750 mg

q24h

PSI, Pneumonia severity index.
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3.3. Clinical Efficacy

Overall, no significant difference was observed in the clinical response rate at TOC between the
experimental and control groups (for MITT population, RR: 1.02, 95% CI: 0.99–1.05, I2 = 18%; for CE
population, RR: 1.02, 95% CI: 1.00–1.04, I2 = 0%; and for ME population, RR: 1.01, 95% CI: 0.99–1.04,
I2 = 17%; Figure 3). In the mMITT population, similarity in the terms of the clinical response rate
was observed between the experimental and control groups (RR: 1.00, 95% CI: 0.96–1.04, I2 = 22%).
In addition, the clinical response rate at EOT remained similar between the experimental and control
groups (for MITT population, RR: 1.02, 95% CI: 0.99–1.05, I2 = 18% and for CE population, RR: 1.02,
95% CI: 0.99–1.02, I2 = 0%). Sensitivity analysis performed after deleting individual studies each time
to determine the effect of a single dataset on the pooled RR revealed similar findings. In the subgroup
analysis, the clinical response rate of omadacycline was non-inferior to that of comparators (for MITT
population, RR: 1.04, 95% CI: 1.00–1.08, I2 = 3%; for CE population, RR: 1.03, 95% CI: 1.01–1.05, I2 = 0%;
and for ME population, RR: 1.03, 95% CI: 1.01–1.06, I2 = 0%), and the clinical efficacy of eravacycline
was similar to that of comparators (for MITT population, RR: 0.99, 95% CI: 0.96–1.03, I2 = 0%; for CE
population, RR: 1.00, 95% CI: 0.97–1.03, I2 = 0%; and for ME population, RR: 0.99, 95% CI: 0.96–1.02,
I2 = 0%).
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Figure 3. Forest plot of clinical response rate at the test of cure visit among modified intent-to-treat
(MITT) population, clinically evaluable (CE) population, and microbiological evaluable (ME) population.

Novel tetracyclines exhibited similar clinical efficacy to that of comparators for treating infections
of both gram-positive (RR: 1.01, 95% CI: 0.97–1.05, I2 = 0%) and gram-negative (RR: 0.99, 95% CI:
0.94–1.05, I2 = 0%) aerobes. There was no exception for Staphylococcus aureus (RR: 1.03, 95% CI: 0.98–1.08,
I2 = 0%) as well as MRSA (RR: 1.04, 95% CI: 0.98–1.11, I2 = 0%).
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3.4. Microbiological Response

In the pooled analysis, no significant difference was observed in the microbiological response at
EOT between the experimental and control groups (for ME population, RR: 1.01, 95% CI: 0.99–1.03,
I2 = 0% and for mMITT population, RR: 1.01, 95% CI: 0.96–1.07, I2 = 51%; Figure 4). In addition, the
microbiological response of novel tetracyclines at TOC was non-inferior to that of comparators (for
ME population, RR: 1.03, 95% CI: 1.01–1.06, I2 = 0% and for mMITT population, RR: 1.04, 95% CI:
1.00–1.09, I2 = 0%). Furthermore, both omadacycline and eravacycline exhibited a microbiological
response similar to that of comparators in subgroup analyses.
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3.5. Risk of AEs

For common AEs, novel tetracyclines were associated with higher risks of nausea and vomiting
than comparators (nausea, RR: 2.38, 95% CI: 1.16–4.89, I2 = 87% and vomiting, RR: 2.13, 95% CI:
1.18–3.83, I2 = 67%). Further subgroup analysis revealed that eravacycline was associated with higher
risks of nausea and vomiting than the comparator (nausea, RR: 5.08, 95% CI: 1.96–13.11, I2 = 55%
and vomiting, RR: 2.33, 95% CI: 1.02–5.32, I2 = 52%) but not omadacycline (nausea, RR: 1.40, 95% CI:
0.56–3.47, I2 = 91% and vomiting, RR: 1.95, 95% CI: 0.77–4.96, I2 = 80%).

Overall, novel tetracyclines were associated with a similar risk of AEs as comparators (TEAE,
RR: 1.37, 95% CI: 0.99–1.88, I2 = 93%; serious AEs, RR: 1.03, 95% CI: 0.76–1.39, I2 = 0%; and treatment
discontinuation due to TEAE, RR: 083, 95% CI: 0.55–1.27; Figure 5). All-cause mortality did not differ
between the experimental and control groups (RR: 1.21, 95% CI: 0.59–2.50, I2 = 0%).
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4. Discussion

Data from eight RCTs with 4480 patients were collated to compare the efficacy and safety of
novel tetracyclines and other antibiotic regimens for treating acute bacterial infections, including cIAIs,
ABSSSIs, CABP, and cUTIs. In the present study, we demonstrated that these novel tetracyclines could
achieve a similar clinical response as other comparators, which is supported by the following evidence.
First, the clinical response rate for novel tetracyclines, namely omadacycline and eravacycline, was
similar to other comparative antibiotics. This similarity between novel tetracyclines and comparators
was observed in various population analyses, MITT, CE, ME, and mMITT populations, and at
different timings of assessment, TOC and EOT. Second, in subgroup analyses, both omadacycline and
eravacycline exhibited non-inferior clinical efficacy than comparators. This finding is consistent with
those of previous studies [20,21]. In the pooled analysis of OASIS-1 and OASIS-2, Abrahamian et al. [20]
demonstrated that omadacycline was non-inferior to linezolid in early clinical response (86.2% vs.
83.9%; difference 2.3, 95% CI: 1.5–6.2) for treating ABSSSIs, and clinical responses were similar across
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different infection types—cellulitis or erysipelas and major abscess. Lan et al. [21] revealed that
eravacycline had a clinical cure rate (88.7%, 559/630) similar to that of comparators (88.7% vs. 90.1%, RR:
0.99, 95% CI: 0.95–1.03) for treating cIAIs. Unlike these two reports [20,21], the present study included
more RCTs and infection types, cUTI and CABP, to augment the knowledge regarding the usefulness
of eravacycline and omadacycline. Third, the clinical efficacies of novel tetracyclines were similar to
those of comparators across infections caused by different pathogens, even MRSA. A previous pooled
analysis [20] of OASIS-1 and OASIS-2 revealed that omadacycline had similar efficacy to that of linezolid
for treating infections caused by gram-positive anaerobes, including S. aureus, MRSA, Streptococcus
pyogenes, and S. anginosus, gram-negative aerobes, and gram-negative anaerobes. In summary, all these
findings indicate that novel tetracyclines, eravacycline, and omadacycline, can be as effective as other
antibiotics for treating acute bacterial infections.

In addition to the clinical response, this meta-analysis demonstrated that the microbiological
response rate for novel tetracyclines was comparable to that of comparators. This similarity in terms
of the microbiological response between the experimental and control groups did not change with
the timing of the outcome measure and study populations. These findings regarding the favorable
microbiological response of novel tetracyclines have been supported by many in vitro studies [22–29].
Several global surveillance investigations [22–25] have revealed that omadacycline exhibited potent
in vitro activity against gram-positive and gram-negative pathogens as well as was active against
antibiotic-resistant organisms, such as MRSA, penicillin-resistant S. pneumoniae, and extended-spectrum
β-lactamase (ESBL)-producing Escherichia coli. The potency of eravacycline was at least equivalent
or 2- to 4-fold greater than that of tigecycline against Enterobacteriaceae, including ESBL-producing,
carbapenem non-susceptible strains, and gram-positive cocci isolates [26–29]. Therefore, these findings
regarding the microbiological response in this meta-analysis and previous in vitro studies can support
the use of novel tetracyclines for acute bacterial infections.

Finally, the risk of AEs for novel tetracyclines was assessed. Nausea was the most common AE
for novel tetracycline users, and novel tetracyclines were associated with a higher risk of nausea
and vomiting compared with comparators. Further subgroup analysis revealed that high risks of
nausea or vomiting were noted for eravacycline but not for omadacycline. However, compared
with other antibiotics, novel tetracyclines had a similar risk of AEs in TEAEs, serious AEs, treatment
discontinuation due to TEAEs, and all-cause mortality. All these findings indicated that gastrointestinal
intolerance was the most common side effect of novel tetracyclines, especially eravacycline. However,
novel tetracyclines were found to be as tolerable as other antibiotics.

This meta-analysis has some limitations. First, although we aimed to investigate the use of novel
tetracyclines for treating all types of acute bacterial infections, we found only one study for cUTI as
well as for CABP. Additional studies investigating the use of novel tetracyclines for various infection
types are warranted. Second, we could not assess the association between in vitro activity and clinical
response for each specific pathogen due to the unavailability of data. However, this deficit could be
partially compensated by the results of several in vitro studies [22–29] that demonstrated the potent
in vitro activity of novel tetracyclines.

5. Conclusions

In conclusion, clinical and microbiological responses for novel tetracyclines in the treatment of
acute bacterial infections were similar to those for other available antibiotics. In the present analysis,
eravacycline was associated with higher risks of gastrointestinal AEs, nausea, and vomiting, but
overall, novel tetracyclines had a safety profile similar to that of other antibiotics. However, further
research is warranted to investigate the role of novel tetracyclines in the treatment of antibiotic-resistant
bacteria-associated infections.
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Appendix A

Table A1. Search Strategy.

PubMed search strategy—last searched on 11 July 2019 Results

1

Search (((((Eravacycline[Title/Abstract]) OR
Xerava[Title/Abstract]) OR TP-434[Title/Abstract]) OR

Omadacycline[Title/Abstract]) OR Nuzyra[Title/Abstract]) OR
PTK-0796[Title/Abstract]

172

2 Search Infection*[Title/Abstract] 1,343,862

3

Search (Infection*[Title/Abstract]) AND
((((((Eravacycline[Title/Abstract]) OR Xerava[Title/Abstract])
OR TP-434[Title/Abstract]) OR Omadacycline[Title/Abstract])

OR Nuzyra[Title/Abstract]) OR PTK-0796[Title/Abstract])

124

Web of Science search strategy—last searched on 11 July 2019 Results

1
Topic: (Omadacycline) OR Topic: (Nuzyra) OR Topic:

(PTK-0796) OR Topic: (Eravacycline) OR Topic: (Xerava) OR
Topic: (TP-434)

172

2 Topic: (Infection*) 1,382,483

3 #1 AND #2 127

EBSCO search strategy—last searched on 11 July 2019 Results

1 AB Eravacycline OR AB Xerava OR AB TP-434 OR AB
Omadacycline OR AB Nuzyra OR AB PTK-0796 68

2 AB Infection * 489,510

3 S1 AND S2 43

Cochrane Library search strategy—last searched on 11 July 2019 Results

1 (Omadacycline):ti,ab,kw OR (PTK-0796):ti,ab,kw OR
(Nuzyra):ti,ab,kw 33

2 (Eravacycline):ti,ab,kw OR (Xerava):ti,ab,kw OR
(TP-434):ti,ab,kw 14

3 (Infection*):ti,ab,kw 108,094

4 (#1 OR #2) AND #3 42

Ovid Medline search strategy—last searched on 11 July 2019 Results

1 (Omadacycline or Nuzyra or PTK-0796 or Eravacycline or
Xerava or TP-434).ab 174

2 Infection *.ab 1,468,481

3 1 and 2 128

Embase search strategy—last searched on 11 July 2019 Results

1
omadacycline:ti,ab,kw OR nuzyra:ti,ab,kw OR ‘ptk

0796’:ti,ab,kw OR eravacycline:ti,ab,kw OR xerava:ti,ab,kw
OR ‘tp 434’:ti,ab,kw

217

2 infection*:ti,ab,kw 1,726,005

3 #1 AND #2 163
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