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Abstract: The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a
protective mesh and provides structural support around the entirety of the cell. The integrity of this
structure is of utmost importance for cell viability and so naturally is the first target for attack by
the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of
defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4)
linkage between repeating glycan units, causing lysis and the death of the invading bacterium.
The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive
binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be
an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae
and is currently being investigated as a novel target for anti-virulence therapies. This article reviews
interactions made between peptidoglycan and the host immune system, specifically with respect to
lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to
increased pathogenicity.
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1. Introduction

Antimicrobial resistance is at the forefront of today’s medical crises. The World Health Organization
(WHO) has acknowledged the severity of this issue, and in 2014 stated that a post-antibiotic era is
a ‘very real possibility for the 21st century’ [1]. Both WHO and the Centers for Disease Control and
Prevention (CDC) have published priority pathogen lists emphasizing key bacterial pathogens which
are highlighted as being urgent or serious threats and for which there is a serious need for the research
and development of novel antibiotics. Bacterial pathogens which were identified in both reports
include drug-resistant strains of Staphylococcus aureus, Streptococcus pneumoniae, Neisseria gonorrhoeae,
and Campylobacter species [2,3] (Table 1). With declining efficiencies of our current arsenal of clinically
used antibiotics, it is imperative that new therapies are identified, or illnesses which were once curable
may not continue to be so easily managed. As a whole, studies in the current resistance era focused
on identifying novel antimicrobials have been met with limited success; it has been predicted that
a new age of antibiotic discovery, the narrow-spectrum era, is on the horizon, but to reach this era,
discovery strategies must be drastically altered to potentiate higher success [4]. New therapeutic
strategies including combination drug therapy to exploit synergistic reactions or targeting bacterial
systems which can work synergistically with the host immune system as a part of novel antivirulence
strategies may prove advantageous. For this to occur, however, a greater understanding of how these
pathogens evade immune detection, how unique virulence systems are employed, and how these alter
host–microbe interactions must be acquired.
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Table 1. Bacterial species highlighted in the World Health Organization (WHO) and Center
for Disease Control and Prevention (CDC) priority pathogen reports1 that produce O-acetylated
peptidoglycan (PG)2.

Gram-positive Gram-negative

Clostridium difficile Enterobacteriaceae3

Enterococcus (faecium) Neisseria gonorrhoeae
Staphylococcus aureus (incl. MRSA/VRSA) Acinetobacter

Mycobacterium tuberculosis Helicobacter pylori
Streptococcus pneumoniae Campylobacter spp.
Group A/B Streptococcus Shigella spp.

1 Listed in descending order of risk factor according to the reports. 2 Known (red) or predicted (black) to produce
O-acetylated PG based on genomic analysis [5]. 3 Identified in select species within the order, but not E. coli.

The peptidoglycan (PG) sacculus represents a key structural component which is found uniquely
within bacterial cell walls. PG forms an intricate mesh which encompasses the entirety of the bacterial
cell and is responsible for maintaining cellular viability by resisting internal turgor pressure. The
crucial role PG fulfills makes it a natural target for both antibiotics and the host immune system upon
infection. Regarding the latter, lysozyme targets this macromolecular structure as a first line of defense
against invading pathogens (recently reviewed in [6]). Many pathogens have developed a mechanism
to render lysozyme ineffective, thus increasing their pathogenicity as well as the severity of infection.
One such example is the O-acetylation of muramoyl residues within the PG sacculus, representing a
substrate-level modification which directly inhibits lysozyme binding [7,8].

This review presents our current understanding of the role PG O-acetylation plays in pathogens
to evade the host immune response and of which downstream complications often occur due to this
important virulence factor. This information is discussed in the context of the development of new
therapeutics and the potential use of PG O-acetylation systems as targets for novel anti-virulence
strategies to combat pathogenic bacteria.

2. Peptidoglycan Composition

In both Gram-negative and Gram-positive bacteria, the PG sacculus represents a rigid stress baring
layer located external to the cytoplasmic membrane. PG is composed of a conserved repeating
disaccharide unit of β-(1→4) linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid
(MurNAc), with the exception of the terminal residue in Gram-negative bacteria and some Gram-positive
bacteria, which is instead a non-reducing 1,6-anhydroMurNAc, containing an intramolecular ring
between C-1 and C-6 (Figure 1). Glycan strand length has been found to be highly variable and does
not appear to correlate with PG thickness; Gram-negative PG does not necessarily contain shorter
glycan strand lengths than Gram-positive PG [9]. Average chain lengths exceeding 100 disaccharide
units have been reported in species of Bacillus, while chain lengths of less than 10 disaccharide units
have been found in strains of Helicobacter pylori [10,11]. It has also been found that average chain
length can vary with strain and culture conditions, adding to the heterogenicity found within this large
macromolecule [12].

The C-3 lactyl moiety of MurNAc residues are substituted with a peptide stem consisting of
alternating l and d amino acids, a proportion of which is incorporated into covalent cross-linkages
between MurNAc residues on neighboring strands (Figure 1). The nature of this crosslinking as well
as the composition of the stem peptide defines the chemotype of the respective bacteria. Despite over
50 chemotypes being originally discovered, regions of the stem peptide are found to be conserved
among most bacterial PG [13]. The first amino acid exists as a covalent modification on the C-3
lactyl moiety of MurNAc and is canonically l-Ala. This is followed usually by a d-Glu, although an
amidated form, iso-d-Gln, has also been identified in a subset of bacteria [14]. The third amino acid
position is the diamino acid, which is involved in the formation of covalent cross-linkages between
neighboring peptide stems and is also the most variable between species. In Gram-negative bacteria,
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meso-diaminopimelic acid (mDAP) is often found in this position, while l-Lys is common amongst
Gram-positive bacteria. Consecutive d-Ala residues constitute the final fourth and fifth positions,
although in mature PG, the cleavage of both or solely the terminal d-Ala is often observed as a result of
endogenous carboxypeptidases [15].
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Figure 1. Structure of N. gonorrhoeae and S. aureus PG. The PG sacculus is composed of repeating units
of GlcNAc-β(1→4)-MurNAc where the C-3 lactyl moiety of MurNAc is decorated with a stem peptide
chain. The stem peptide varies the greatest between the two main classifications of bacteria. R1 and R2

denote the extending repeat units commencing with MurNAc or GlcNAc residues, respectively.

Greater variation exists within the cross-linkages between MurNAc residues, and this variation
can be seen in both the position and composition of the interpeptide bridge. This covalent bond
can be formed directly between two stem peptides via the amino acids at the third and fourth
positions (mDAP/l-Lys to d-Ala), or between amino acids at the second position and fourth position
(d-Glu to d-Ala), although the latter is mostly found within Corynebacteria and so is less frequently
observed [13]. Interpeptide bonds can also be formed using an interpeptide bridge consisting of a
single amino acid, as seen in Bifidobacterium with a single Gly residue, or several amino acids, as is seen
in Staphylococcal species where bridges have been found to consist of up to 7 Gly residues or, as in the
case of Staphylococcus epidermidis, Gly2-4→ l-Ser1-2→ Gly [14].

In addition to the differences in stem peptide composition, a number of modifications may
occur within the general PG structure (Figure 2). For example, the addition of a branching Gly
residue on the α-carbon of d-Glu is found in species such as Micrococcus [16], or as very recently
observed, on the l-ornithine of Borrelia burgdorferi stem peptides (ornithine replaces mDAP in this
bacterium) [17]. More commonly found, however, are modifications to the glycans, which include
N-deacetylation, N-glycosylation and O-acetylation (recently reviewed in [5,18]). Both N-deacetylation
and O-acetylation are known to affect key interactions between invading bacteria and the host immune
system. The latter is the focus of this review and will be discussed in detail in subsequent sections.



Antibiotics 2019, 8, 94 4 of 15
Antibiotics 2019, 8, x 4 of 15 

 

Figure 2. Lytic action and inhibition of murolytic enzymes. Lysozymes as well as endogenous lytic 

transglycosylases cleave the (1→4) glycosidic linkage between MurNAc and GlcNAc. Lysozyme 

catalyzes a hydrolytic mechanism releasing two reaction products, one of which terminates in a 

reducing MurNAc moiety. LTs cleave via a non-hydrolytic mechanism, releasing an equivalent 

reaction product terminating with a 1,6-anhMurNAc residue. Both classes of enzymes are inhibited 

by MurNAc O-acetylation while the hydrolytic action of lysozymes is also inhibited by the N-

deacetylation of GlcNAc.  

3. Peptidoglycan and Host Immune Interactions 

The necessary level of integrity that must be upheld within the PG sacculus to maintain a viable 

cell leaves a natural “Achilles heel” within invading pathogens. Host immune systems across the 

animal kingdom have evolved to take advantage of this as the PG sacculus is often one of the first 

targets during an immune attack. Lysozyme, a cationic muramidase, is often referred to as the first 

line of defense of the innate immune system. It is one of the most abundant cationic antimicrobial 

peptides within the body as it is found in high concentrations, up to 1 mg/ml within secretions such 

as saliva, tears, urine, at mucosal surfaces and within the airway, as well as in the blood, liver and 

phagocytes [19,20]. Although the cationic properties of lysozyme have been found to possess 

antimicrobial activity, as it is able to insert and form pores within negatively charged bacterial 

membranes [21], the main bacteriolytic effect is exerted by its ability to act as a PG hydrolase [22]. 

This activity is effective against both Gram-positive and Gram-negative bacteria, despite the latter 

containing an additional barrier in the form of the outer membrane as the activity of lactoferrin and 

defensins of the immune system, in addition to the cationic properties of lysozyme, aid in 

permeabilizing the outer membrane and exposing the PG sacculus [23,24]. Other PG–immune system 

interactions include the use of PG subunits released from the existing sacculus by either the activity 

of lysozyme or the natural turnover of PG to act as signals of a bacterial infection, leading to increased 

immune activation. There is a considerable amount of information regarding the interactions of PG 

and its metabolites with the immune system, and the reader is directed to several recent 

comprehensive reviews on the subject [5,25,26]. The following summarizes those interactions that 

directly involve lysozyme. 

PG is synthesized by almost all species of bacteria, but as a heteropolymer of both carbohydrates 

and peptides, a related glycan is not produced by eukaryotic organisms making it an efficient signal 

of pathogenic bacterial infections. Lysozyme liberates PG subunits, allowing them to freely circulate 

within the host, a signal which can be received even before lysozyme has achieved bacterial lysis [27]. 

Pattern recognition receptors downstream of lysozyme degradation recognize this signal and initiate 

the production of pro-inflammatory cytokines, as was seen in the case of S. aureus infection, where 

toll-like receptor 2 (TLR2) was found to be a necessary extracellular receptor (Figure 3) [28]. CD14, a 

M urN Ac
GlcN Ac

O -AcM urN Ac

GlcN Ac

M urN Ac GlcN Ac GlcN Ac1,6-anhM urN Ac

M urolytic Enzym es M urolytic Enzym es

Lysozym es Lytic Transglycosylases

+ +

Murolytic Enzymes Murolytic Enzymes

MurNAc

MurNAc 1,6-anhMurNAc

GlcNAc GlcN

GlcNAc GlcNAc

O-AcMurNAc

Lysozymes Lytic Transglycosylases

2

Figure 2. Lytic action and inhibition of murolytic enzymes. Lysozymes as well as endogenous lytic
transglycosylases cleave the β(1→4) glycosidic linkage between MurNAc and GlcNAc. Lysozyme
catalyzes a hydrolytic mechanism releasing two reaction products, one of which terminates in a
reducing MurNAc moiety. LTs cleave via a non-hydrolytic mechanism, releasing an equivalent
reaction product terminating with a 1,6-anhMurNAc residue. Both classes of enzymes are inhibited by
MurNAc O-acetylation while the hydrolytic action of lysozymes is also inhibited by the N-deacetylation
of GlcNAc.

3. Peptidoglycan and Host Immune Interactions

The necessary level of integrity that must be upheld within the PG sacculus to maintain a viable cell
leaves a natural “Achilles heel” within invading pathogens. Host immune systems across the animal
kingdom have evolved to take advantage of this as the PG sacculus is often one of the first targets during
an immune attack. Lysozyme, a cationic muramidase, is often referred to as the first line of defense
of the innate immune system. It is one of the most abundant cationic antimicrobial peptides within
the body as it is found in high concentrations, up to 1 mg/mL within secretions such as saliva, tears,
urine, at mucosal surfaces and within the airway, as well as in the blood, liver and phagocytes [19,20].
Although the cationic properties of lysozyme have been found to possess antimicrobial activity, as
it is able to insert and form pores within negatively charged bacterial membranes [21], the main
bacteriolytic effect is exerted by its ability to act as a PG hydrolase [22]. This activity is effective against
both Gram-positive and Gram-negative bacteria, despite the latter containing an additional barrier in
the form of the outer membrane as the activity of lactoferrin and defensins of the immune system, in
addition to the cationic properties of lysozyme, aid in permeabilizing the outer membrane and exposing
the PG sacculus [23,24]. Other PG–immune system interactions include the use of PG subunits released
from the existing sacculus by either the activity of lysozyme or the natural turnover of PG to act as
signals of a bacterial infection, leading to increased immune activation. There is a considerable amount
of information regarding the interactions of PG and its metabolites with the immune system, and the
reader is directed to several recent comprehensive reviews on the subject [5,25,26]. The following
summarizes those interactions that directly involve lysozyme.

PG is synthesized by almost all species of bacteria, but as a heteropolymer of both carbohydrates
and peptides, a related glycan is not produced by eukaryotic organisms making it an efficient signal
of pathogenic bacterial infections. Lysozyme liberates PG subunits, allowing them to freely circulate
within the host, a signal which can be received even before lysozyme has achieved bacterial lysis [27].
Pattern recognition receptors downstream of lysozyme degradation recognize this signal and initiate
the production of pro-inflammatory cytokines, as was seen in the case of S. aureus infection, where
toll-like receptor 2 (TLR2) was found to be a necessary extracellular receptor (Figure 3) [28]. CD14,
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a glycosylphosphatidylinositol (GPI) protein found on the surface of macrophages, has also been
shown to interact with PG fragments and enhance TLR2 activity in the case of both S. aureus and
Bacillus subtilis. This interaction activates nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-KB), a ubiquitous family of transcription factors, and initiates its translocation to the nucleus [29].
NF-KB is also activated through a signal cascade in phagocytes via the recognition by the intracellular
receptors nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD1 and NOD2).
Gram-negative, and some Gram-positive, PG fragments containing γ-d-Glu-mDAP activate NOD1,
while it has been demonstrated that for NOD2, the minimal fragment needed for recognition is a
MurNAc residue, suggesting that it could function as a universal PG receptor [30,31]. It should be
noted, however, that although lysozyme-released fragments adequately stimulate TLR2 and NOD2,
released monomers containing 1,6-anhMurNAc products have been shown to have much weaker
activation abilities [32]. Nonetheless, in all cases, NF-KB activation increases the immune response
by increasing the expression of proinflammatory cytokines, such as tumor necrosis factor (TNF)α,
interleukin (IL)-1β and IL-6, completing the cycle by which PG degradation via lysozyme lytic activity
indirectly strengthens the immune response [5].
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Figure 3. General immune inflammatory response following the lytic action of lysozyme. Upon
bacterial invasion lysozyme (PDB ID: 5NJQ, dark green) acts to cleave the PG sacculus and release
monomers consisting of GlcNAc-MurNAc (peptide). These monomers then act as a signaling molecule
binding to extracellular pattern recognition receptors on the surface of immune cells, e.g., toll-like
receptor 2 (TLR2) (PDB ID: 1FYW, 3A7C, blue), and initiate a response which is aided by CD14 (PDB ID:
1WWL, teal). PG signaling monomers can also bind intracellular nucleotide-binding oligomerization
domain-containing (NOD) proteins (model of human NOD1 generated using PHYRE2 [33] using PDB
ID 6B5B as a template, yellow) which also generates a signal to initiate an inflammatory response.
Cytoplasmic NF-kB is inhibited by IkB (PDB IDs: 1NFI, 1VFI, light green and purple, respectively).
The activation of NF-kB is initiated by the release the IkB (due to the phosphorylation of the later)
and its translocation of to the nucleus where it functions as a transcription factor for the production
of inflammatory cytokines (red), such as TNFα, IL-1β and IL-6 (PDB IDs: 1TNF, 1I1B, and 1IL6,
respectively), which are then secreted from the cell to increase the inflammatory response.

4. Interaction of Lysozyme with PG

The structure of hen egg-white lysozyme (HEWL) was the first enzyme to be modelled by
X-ray crystallography [34], and a great amount of detail has since been determined with respect to
its catalytic mechanism of action. As a muramidase, HEWL cleaves the β(1→4) glycosidic linkage
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between MurNAc and GlcNAc residues within PG. These residues are positioned at subsites −1 and
+1, respectively, of the extended active site of this enzyme, which is located in a deep groove between
two major protein domains. A total of six subsites (−4 to +2, named A to F) accommodate three
disaccharide repeat units and make extensive contacts with each [35,36]. These interactions include
hydrogen bonds between main-chain CO and NH groups comprising subsites A, C, and E and both the
NH and the carbonyl oxygens of the acetamido groups of three GlcNAc residues. PG binding is also
stabilized by a series of hydrophobic interactions and hydrogen bonds formed between the main chain
of residues present in subsites B, D, and F and the C-6 OH of MurNAc. This network of interactions is
fundamental for productive binding and their disruption by the de-N-acetylation of GlcNAc and/or
the O-acetylation of MurNAc residues inhibits lysozyme activity. Many pathogenic species of bacteria
that are able to evade this lytic activity of lysozyme do so using the latter resistance mechanism, viz.
the acetylation of the C-6 OH of MurNAc (Figure 2), a feature first recognized over 60 years ago [37].

5. O-Acetylation of Peptidoglycan

The acetylation of the C-6 hydroxyl of MurNAc, here referred to as O-acetylation, is a
common modification found across many bacterial species, particularly within pathogens; notable
exceptions include Escherichia coli, some Pseudomonads (including P. aeruginosa), and Bacillus anthracis
(Table 1) [38–40]. The extent of the modification in producing cells varies with species, strain, and even
culture conditions. These differences have been used to demonstrate the dependence of lysozyme
resistance on the degree of PG O-acetylation. As the C-6 hydroxyl groups of the N-acetylmuramoyl
residues bound in subsites B, D and F of lysozyme make contact with amino acid residues forming the
binding cleft, each interaction would be sterically hindered by the presence of O-acetyl groups and thus
weaken binding affinity. A kinetic analysis of the hydrolysis of PG samples isolated from 14 different
Proteus mirabilis strains with increasing O-acetyl content by both HEWL and human lysozyme content
demonstrated that the overall change in the standard Gibbs free energy of activation (∆(∆G)) of the
enzymes increased with increasing O-acetylation [41]. Similarly, a direct correlation was observed
between the degree of O-acetylation of gonococcal PG and the extent of its solubilization by these two
lysozymes [42–45]. With these findings, PG O-acetylation has been recognized as a key virulence factor
for infection [7]. Such was clearly demonstrated for Gram-positive bacteria in a study by Bera et al. [46]
who analyzed a collection staphylococcal species for both lysozyme resistance and O-acetylation. Two
clear groups emerged from this analysis, as it was seen that species known to be pathogenic were
clustered into one group, which were both lysozyme sensitive as well as produced O-Ac-MurNAc, and
non-pathogenic species were clustered into a second group defined by lysozyme sensitivity and a lack
of O-acetylation.

Despite the clear role that O-acetylation plays in pathogenicity, the development of knowledge
in the field has occurred at a modest pace. In the 1970s and 1980s, O-acetylation was identified
as a maturation event following PG biosynthesis. Through the use of pulse-chase experiments,
O-acetylation in several species identified a temporal relationship between O-acetylation and the
incorporation of the lipid-linked PG precursor Lipid II into the existing sacculus. Investigators found
that O-acetylation only occurred after the initial burst of transpeptidation activity and did not appear
to precede the synthesis of the mature sacculus [47,48]. This complemented additional studies which
demonstrated that O-acetyl content increased after transpeptidation and that the use of penicillin G to
inhibit transpeptidation activity resulted in a decrease in levels of O-acetyl PG [49–52].

The genes encoding the Gram-negative O-acetylation system were not identified until 2005 [53]
with the release of the N. gonorrhoeae genome. The sequence of P. aeruginosa AlgI, a membrane bound
O-acyltransferase (MBOAT) involved in the O-acetylation of alginate [54], was used to identify the
sequence of a potential O-acetyltransferase within the N. gonorrhoeae genome. An AlgI paralog was
found within a three-gene operon, named OAP (O-acetyl PG), the gene products of which were
proposed to be involved in the O-acetylation of PG given the absence of alginate polysaccharide
synthesis in N. gonorrhoeae [53]. The hypothetical protein encoded by the first gene of this cluster-like
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AlgI was identified as an MBOAT and named PG O-acetyltransferase A (PatA). Its participation in the
O-acetylation of PG was demonstrated by a series of in vivo complementation experiments with N.
gonorrhoeae [55]. Found directly downstream from patA, a gene encoding a protein identified as being a
member of the SGNH/GDSL hydrolase family of esterases was predicted to be an O-acetyl-PG esterase
and named Ape2 [53]. Ape2 was later characterized biochemically and found, in fact, to be a second
peptidoglycan O-acetyltransferase and thus renamed PatB [56]. The third and final gene product in the
OAP operon, Ape1, also a member of the SGNH/GDSL hydrolase family, was confirmed to function as
an authentic O-acetyl-PG esterase (Figure 4A) [57].

Antibiotics 2019, 8, x 7 of 15 

the O-acetylation of PG was demonstrated by a series of in vivo complementation experiments with 

N. gonorrhoeae [55]. Found directly downstream from patA, a gene encoding a protein identified as 

being a member of the SGNH/GDSL hydrolase family of esterases was predicted to be an O-acetyl-

PG esterase and named Ape2 [53]. Ape2 was later characterized biochemically and found, in fact, to 

be a second peptidoglycan O-acetyltransferase and thus renamed PatB [56]. The third and final gene 

product in the OAP operon, Ape1, also a member of the SGNH/GDSL hydrolase family, was 

confirmed to function as an authentic O-acetyl-PG esterase (Figure 4A) [57].  

As a putative integral membrane protein, PatA is hypothesized to act as a shuttle to transport 

acetyl groups from a cytoplasmic source, likely acetyl-CoA, across the inner membrane for their 

presentation to PatB which is localized to the periplasm [56]. Being the dedicated O-acetyl PG 

transferase, PatB would then use this acetyl group to directly modify the C-6-hydroxyl of MurNAc 

residues already existing within the PG sacculus (Figure 4B) [56]. The nature of the transfer of acetyl 

groups between PatA and PatB remains unknown. It is possible that acetylated PatA serves as the 

direct acetyl donor for PatB through a protein–protein interaction. Alternatively, and perhaps more 

likely, an acetylated intermediate is formed involving a small carrier molecule available at the 

periplasmic face of the cytoplasmic membrane. 

 

Figure 4. Gene organization and proposed models for PG O-acetylation. (A) Organization of genes 

encoding enzymes involved in the O-acetylation and de-O-acetylation of PG, and the domain 

organization of respective protein products. (B) Current models of O-acetylation systems for Gram-

positive and Gram-negative bacteria. In both cases, a membrane spanning O-acetyltransferase 

(OatAN/PatA) acquires an acetyl group from an unidentified cytoplasmic source for its translocation 

to the external leaflet of the cytoplasmic membrane. The acetyl group is received by the dedicated PG 

O-acetyltransferase (OatAC/PatB) which modifies the C-6 OH of MurNAc. In Gram-negative bacteria, 

an esterase, Ape, is produced to remove the modification allowing for remodeling of the sacculus. 

Figure adapted from [5]. 

Figure 4. Gene organization and proposed models for PG O-acetylation. (A) Organization of
genes encoding enzymes involved in the O-acetylation and de-O-acetylation of PG, and the domain
organization of respective protein products. (B) Current models of O-acetylation systems for
Gram-positive and Gram-negative bacteria. In both cases, a membrane spanning O-acetyltransferase
(OatAN/PatA) acquires an acetyl group from an unidentified cytoplasmic source for its translocation to
the external leaflet of the cytoplasmic membrane. The acetyl group is received by the dedicated PG
O-acetyltransferase (OatAC/PatB) which modifies the C-6 OH of MurNAc. In Gram-negative bacteria,
an esterase, Ape, is produced to remove the modification allowing for remodeling of the sacculus.
Figure adapted from [5].

As a putative integral membrane protein, PatA is hypothesized to act as a shuttle to transport acetyl
groups from a cytoplasmic source, likely acetyl-CoA, across the inner membrane for their presentation
to PatB which is localized to the periplasm [56]. Being the dedicated O-acetyl PG transferase, PatB
would then use this acetyl group to directly modify the C-6-hydroxyl of MurNAc residues already
existing within the PG sacculus (Figure 4B) [56]. The nature of the transfer of acetyl groups between
PatA and PatB remains unknown. It is possible that acetylated PatA serves as the direct acetyl donor
for PatB through a protein–protein interaction. Alternatively, and perhaps more likely, an acetylated
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intermediate is formed involving a small carrier molecule available at the periplasmic face of the
cytoplasmic membrane.

Also in 2005, the gene oatA (named for O-acetyltransferase A) was found to be responsible for the
O-acetylation of PG in S. aureus, and in S. pneumoniae the following year [58,59]. OatA is a bimodular
protein consisting of a putative N-terminal, integral membrane domain (OatAN) linked to a C-terminal
extracellular domain (OatAC) [60]. The two domains of OatA are predicted to fulfill similar functions
as the two-component Gram-negative system. Thus, despite being a member of the Acyltransferase-3
family and not an MBOAT like PatA, OatAN would serve to shuttle acetyl moieties from a cytoplasmic
donor, which is also predicted to be Ac-CoA, across the membrane. Once on the extracellular surface,
this acetyl group would be presented to the catalytic transferase OatAC domain, which is also a member
of the SGNH/GDSL hydrolase like PatB, for the acetylation of PG [60]. To date, PatB from N. gonorrhoeae
and OatAC from both S. aureus and S. pneumoniae have been biochemically characterized and the
structure–function relationships of these enzymes have been assessed [61–64]. For a detailed summary
of the reaction mechanisms and structural characterizations identified to date, the reader is referred
to a recent review on the mechanism of O-acetylation in both Gram-negative and Gram-positive
bacteria [5].

6. Physiological and Pathobiological Significance of PG O-Acetylation

6.1. Physiological Role

Aside from contributing to pathogenicity and infection, PG O-acetylation plays a significant
physiological role within the producing cell, at least with Gram-negative bacteria. This notion is
supported by the fact that no strain of a species that normally O-acetylates its PG has been found
to be devoid of the modification, even if it has to compensate for its loss of PatA/PatB activity. For
example, N. gonorrhoeae RD5 contains a 26-base pair deletion mutation within its patA gene which
results in a truncated, non-functional, PatA [54]. Nonetheless, its PG O-acetylation levels are between
10 and 15% with respect to MurNAc content, whereas wild-type strains ordinarily contain 40–60%
O-acetylation [42–45]. The reason for maintaining a basal amount of O-acetylation is the intracellular
regulatory role it plays in PG biosynthesis and maturation.

The metabolism of PG in Gram-negative bacteria requires the activity of PG lytic enzymes,
autolysins, to provide new sites for biosynthesis and create pores for the insertion of wall-spanning
protein complexes, such as flagella and secretion systems (reviewed in [15]). The major glycolytic
enzymes produced by Gram-negative bacteria for this purpose are the lytic transglycosylases (LTs) [65].
As with lysozyme, LTs cleave the β(1→4) glycosidic linkage between MurNAc and GlcNAc. However,
they catalyze this lysis via a non-hydrolytic reaction mechanism which results in the formation of a
1,6-anhMurNAc product [66] as opposed to the reducing MurNAc released by lysozyme (Figure 2).
As their intramolecular reaction product requires a free C-6 hydroxyl group on the MurNAc residue
forming the scissile bond to be cleaved, its O-acetylation totally precludes LT activity. Thus, PG
O-acetylation provides a control mechanism of LT activity at the substrate level [65,67,68]. Indeed,
with its reduced level of PG O-acetylation, N. gonorrhoeae RD5 is a highly autolytic strain and it has the
highest PG turnover rates of all N. gonorrhoeae strains analyzed to date [45,55]. It follows that RD5 is
also highly sensitive to the activity of lysozyme when the enzyme is able to access its PG substrate [55].

As noted above, bacteria producing PatA and PatB for PG O-acetylation also produce Ape, an
essential esterase that functions in the periplasm to remove the blocking O-acetyl group and thereby
permit LT activity when required for PG metabolism [57]. Nothing is known about how Ape is
regulated, but it would not be surprising to find that it associates with the LTs that comprise the
multi-protein complexes known as the divisosome and/or elongasome [69,70]. These complexes include,
in addition to LTs, specific penicillin-binding proteins, the transglycosylases and transpeptidases
responsible for PG biosynthesis [71] related to cell division and cylindrical wall growth, respectively.
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Ape may also associate with other LTs that are used to provide pores for the assembly of cell-wall
spanning structures.

Rather than LTs, the major glycolytic autolysins of Gram-positive bacteria are
β-N-acetylglucosamindases, hydrolases that cleave between GlcNAc and MurNAc residues of PG [14].
These enzymes are not inhibited by the O-acetylation of MurNAc and so these bacteria do not require
an Ape homolog for general PG metabolism. Thus, the O-acetylation of PG in these bacteria would
appear to be mainly a defensive measure against host lysozyme attack. Intriguingly, whereas the
modification does not seem to play a regulatory role in PG metabolism, the non-catalytic presence of
the PG O-acetyltransferase OatA may play a key role in the spatio-temporal control of cell septation, at
least with Lactobacillus plantarum [72].

6.2. Pathobiology of PG O-Acetylation

The pathobiological consequences caused by the resistance of O-acetylated PG to lysozyme
hydrolysis beyond cell killing have long been known. Studies in the 1980s demonstrated that
large-molecular-weight fragments of PG persist in the circulatory systems of hosts to induce a variety of
effects, including complement activation, pyrogenicity, somnogenicity, and arthritogenicity (reviewed
in [73]). The direct relationship between the induction of these effects by PG and its O-acetylation was
clearly demonstrated in a series of animal model studies involving strains of N. gonorrhoeae and S.
aureus that varied in their levels of this modification (reviewed in [74]). Subsequent studies by the
Rosenthal group demonstrated the suppression of food consumption and body weight gain in rats
following intraperitoneal injections of O-acetylated gonorrheal PG [75,76]. More recently, the role that
PG O-acetylation plays in the development of septic arthritis by S. aureus was clearly demonstrated [77].
In this latter study, wild-type S. aureus SA113 and a ∆oatA mutant were used separately to inoculate
mice, and the two bacterial strains were assessed for their ability to persist in the host, as well as the
level of disease progression they induced. Confirming an earlier study [78], the non-O-acetylated PG
was found to induce a milder form of the disease compared to mice inoculated with the wild-type
strain as they had significantly lower levels of both joint destruction and a decreased bacterial load [77].

Further studies involving ∆oatA strains of S. aureus have shown that O-acetylated PG helps the
pathogen evade immune detection and activation of the inflammasome [79]. Wild-type cells, but
not those of a ∆oatA strain, were observed to inhibit the production of cytokine IL-1β, while their
O-acetylated PG concomitantly rendered them resistant to killing by lysozyme within macrophages,
thus increasing their potential for survival and pathogenicity. Furthermore, the O-acetylated PG from
wild-type S. aureus appears to decrease the efficiency of helper T-cell priming, thereby permitting
reinfection by this pathogen [80]. Similar studies demonstrating both escape from the immune response
and survival within macrophages resulting from the O-acetylation of PG have been made with other
Gram-positive (Streptococcus iniae [81], Listeria monocytogenes [82]) and Gram-negative human pathogens
(Helicobacter pylori [83], and Neisseria meningitidis [84]). It is interesting to note that the presence of
O-acetylation does not appear to have a direct effect on the recognition of PG by NOD2. This suggests
that any weakening of NOD2 activation is a result of the inhibition of the lysozyme lytic activity that is
required to generate the small-molecular-weight NOD2 ligands [27].

7. Discussion: Targeting O-Acetylation as a Novel Anti-Virulence Target

With the continuing emergence of antibiotic resistant strains, the identification of novel
antimicrobial targets and the development of new antibiotics is more critical than ever before.
However, this is a task which must be met with new, cutting-edge strategies should we want to truly
work towards identifying long-lasting solutions and not simply prolong what seems to be an inevitable
post-antibiotic era. Many of our most historically successful antibiotics—for example, β-lactams
(penicillins, cephalosporins) and glycopeptides (vancomycin)—target PG biosynthesis and maturation
events, causing the lysis of the bacteria [85]. Although the bactericidal nature of these antibiotics is
what makes them so efficient in clearing bacterial infections, it is also their weakness. Lysis of the cell



Antibiotics 2019, 8, 94 10 of 15

is a fatal conclusion and is not desirable for any organism. Therefore, it should be no surprise that this
selective pressure to remain viable has led bacteria to evolve and combat these antimicrobials with
their own unique resistance mechanisms. We have entered an arms race whereby the rate at which
bacteria can evolve is outpacing our ability to identify new resistance mechanisms as they emerge and
combat them. As a result, there has been an increase in the number of cases of bacterial infections from
multidrug resistant strains worldwide, creating the “antibiotic crisis” [86].

More recent efforts to combat bacterial infections have focused on identifying novel anti-virulence
strategies. These strategies aim to weaken the bacterium’s pathogenicity without weakening the
overall fitness of the bacterium, to the point that the antibiotic is seen as a large enough threat to
warrant a resistance strategy. This is done by targeting virulence factors; for example, adhesion to
inhibit host colonization, or O-acetylation (reviewed in [86,87]). The potential of PG O-acetylation as
an attractive and viable anti-virulence target is underscored by results of a number of animal studies
involving mutant strains of pathogens with reduced PG O-acetylation levels. A direct correlation was
observed between reduced pathogenicity and enhanced susceptibility of PG to lysozyme with mutants
of S. aureus [46,58], S. pneumoniae [81], S. iniae [88], Streptococcus suis [89], Enterococcus faecalis [90,91],
L. monocytogenes [82,92], H. pylori [83], and N. meningitidis [84].

Targeting PG O-acetylation for antibiotic development has a number of attractive features.
In addition to rendering the invading bacterium more susceptible to lysozyme, treated infections would
be cleared with greater efficiency by the enzyme, thereby minimizing, if not eliminating, downstream
medical complications such as arthrogenicity. Also, the highly conserved glycan component of the PG
may prove to be a longer sustaining target. Most antibiotics that target PG metabolism function to inhibit
reactions involving the stem peptide which, compared to the glycan backbone, are highly variable and
can be modified with little cost to the host bacterium. That O-acetylation does not appear to have a
housekeeping function in the metabolism of PG in Gram-positive pathogens minimizes any selective
pressure for its retention and increased resistance. Indeed, engineered ∆oatA strains appear to grow at
rates comparable to wild-type strains when cultured in the absence of lysozyme [58,59,73,78–80,88,89].
The issue with Gram-negative bacteria is different given the physiological role O-acetylation plays in
controlling the LTs. It is clear that there is a requirement to retain a minimal level of PG O-acetylation
for cells to survive. This is evident from the existence of N. gonorrhoeae RD5, where cells appear to
compensate for their lack of a functional PatA to provide a basal level of O-acetylation. Presumably,
another acetyltransolocase is recruited for this purpose. This being said, an inhibitor of PG O-acetylation
would likely target all enzymes involved to not only make cells more susceptible to lysozyme but also
interfere with PG metabolism through the deregulation of LT activity. This combined effect may prove
too broad to overcome single mutations, thereby reducing rates of resistance. Another attractive feature
of targeting PG O-acetylation is that the human microbiota is composed primarily of non-O-acetylating
bacteria. Consequently, therapeutic regimes would not greatly affect the normal function of these
bacteria, and the possible derivation of any resistance mechanisms from them would be minimized, if
not precluded.

8. Conclusions

In order to stand our ground in the fight against antibiotic resistance, novel strategies must be
developed. Targeting PG O-acetylation as an anti-virulence strategy represents a new avenue which is
now being explored and has the potential to be a longer lasting solution. Recently, we demonstrated
the possibility that inhibitors of PatB and OatA with antibacterial activity can be isolated [87] and thus
provided a preliminary proof of principle that is worthy of further investigation.
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