

Article **Profluorescent Fluoroquinolone-Nitroxides for Investigating Antibiotic–Bacterial Interactions**

Anthony D. Verderosa ^{1,2}, Rabeb Dhouib ², Kathryn E. Fairfull-Smith ^{1,*} and Makrina Totsika ^{2,*}

Supplementary Material

Table of Contents

Methods
Results
Table S1. Measured MIC values for TEMPO, TMIO, and TEIO against Gram-positive P. aeruginosa and E. coli, and Gram-negative S. aureus, and E. faecalis
Figure S1. Fluorescent and brightfield overlay micrographs images of bacterial cells treated
with FN 14 or FM 17
¹ H NMR spectra and ¹³ C NMR spectra
Figure S2. 1H NMR (CDCl3, 600 MHz) spectrum of Nitro-TEIOMe
Figure S3. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of Nitro-TEIOMe
Figure S4. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 7 5
Figure S5. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 75
Figure S6. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 86
Figure S7. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 8
Figure S8. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 11 7
Figure S9. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 11
Figure S10. 1H NMR (CDCl3, 600 MHz) spectrum of 9 8
Figure S11. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 9
Figure S12. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 12
Figure S13. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 12 9
Figure S14. 1H NMR (CDCl3, 600 MHz) spectrum of 10 10
Figure S15. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 10 10
Figure S16. 1H NMR (CDCl3, 600 MHz) spectrum of 13 11
Figure S17. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 13 11
Figure S18. 1H NMR (CDCl ₃ , 600 MHz) spectrum of 14 12
Figure S19. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 14 12
Artiliatics 2010 & 10. doi:10.2200/antiliatics2010010

	Figure S20. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 17	. 13
	Figure S21. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 17	. 13
	Figure S22. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 15	. 14
	Figure S23. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 15	. 14
	Figure S24. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 18	. 15
	Figure S25. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 18	. 15
	Figure S26. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 16	. 16
	Figure S27. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 16	. 16
	Figure S28. ¹ H NMR (CDCl ₃ , 600 MHz) spectrum of 19	. 17
	Figure S29. ¹³ C NMR (CDCl ₃ , 150 MHz) spectrum of 19	. 17
LCN	MS chromatograms and HRMS spectra	. 18
	Figure S30. LCMS chromatogram and HRMS spectrum of Nitro-TEIOMe	. 18
	Figure S31. LCMS chromatogram and HRMS spectrum of 7	. 18
	Figure S32. LCMS chromatogram and HRMS spectrum of 8	. 19
	Figure S33. LCMS chromatogram and HRMS spectrum of 9	. 19
	Figure S34. LCMS chromatogram and HRMS spectrum of 10	. 20
	Figure S35. LCMS chromatogram and HRMS spectrum of 11	. 20
	Figure S36. LCMS chromatogram and HRMS spectrum of 12	. 21
	Figure S37. LCMS chromatogram and HRMS spectrum of 13	. 21
	Figure S38. LCMS chromatogram and HRMS spectrum of 14	. 22
	Figure S39. LCMS chromatogram and HRMS spectrum of 15	. 22
	Figure S40. LCMS chromatogram and HRMS spectrum of 16	. 23
	Figure S41. LCMS chromatogram and HRMS spectrum of 17	. 23
	Figure S42. LCMS chromatogram and HRMS spectrum of 18	. 24
	Figure S43. LCMS chromatogram and HRMS spectrum of 19	. 24

Methods

MIC susceptibility assay (in 96-well plate) for unfunctionalized nitroxides:

Nitroxides 2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO), 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO), and 1,1,3,3-tetraethylisoindolin-2-yloxyl (TEIO) were also subjected to MIC susceptibility assays utilising the same methodology detailed above. TEMPO, TMIO, and TEIO were tested between the concentration range of 1200 to 2 μ M. MIC values (Table S1) were obtained from at least 3 biological replicates, each with at least 3 technical replicates.

Results

MIC susceptibility assay for unfunctionalized nitroxides:

<i>E. coli</i> , and Gram-positive <i>S. aureus</i> , and <i>E. faecalis</i> . ^{laj.}							
Compound	P. aeruginosa ATCC 27853 MIC (μM)	<i>E. coli</i> ATCC 25922 MIC (μM)	S. aureus ATCC 29213 MIC (μM)	E. faecalis ATCC 14933 MIC (μM)			
ТЕМРО	> 1200 ^[b]	> 1200 ^[b]	> 1200[b]	> 1200 ^[b]			
TMIO	> 1200 ^[b]	> 1200 ^[b]	> 1200[b]	> 1200 ^[b]			
TEIO	> 1200[b]	> 1200[b]	> 1200[b]	> 1200[b]			

Table 1. Measured MIC values for TEMPO, TMIO, and TEIO against Gram-negative *P. aeruginosa* and *E. coli*, and Gram-positive *S. aureus*, and *E. faecalis*.^{[a].}

[a] All MICs were determined via broth microdilution method in accordance with CLSI standard; [b] Highest concentration tested.

Fluorescence microscopy images:

Figure S1. Fluorescent and brightfield overlay micrographs images of bacterial cells treated with FN 14 or FM 17. (A) FN 14 (150 μ M) and *P. aeruginosa;* (B) FN 14 (150 μ M) and *E. coli;* (C) FN 17 (150 μ M) and *P. aeruginosa;* (D) FN 17 (150 μ M) and *E. coli.* Scale bars are 5 μ M in length.

¹H NMR and ¹³C NMR Spectra

Figure S3. ¹³C NMR (CDCl₃, 150 MHz) spectrum of Nitro-TEIOMe.

180

- 500 - 0 - - -500

0

10

Figure S7. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 8.

Figure S9. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 11.

Figure S12. ¹H NMR (CDCl₃, 600 MHz) spectrum of 12.

Antibiotics 2019, 8, 19

- 1000

- 500

0

Figure S16. ¹H NMR (CDCl₃, 600 MHz) spectrum of 13.

Figure S17. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 13.

Figure S21. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 17.

Figure S23. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 15.

Figure S26. ¹H NMR (CDCl₃, 600 MHz) spectrum of 16.

Figure S27. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 16.

Figure S28. ¹H NMR (CDCl₃, 600 MHz) spectrum of 19.

LCMS Chromatograms and HRMS Spectra

Figure S30. LCMS chromatogram and HRMS spectrum of Nitro-TEIOMe.

Figure S31. LCMS chromatogram and HRMS spectrum of 7.

Figure S32. LCMS chromatogram and HRMS spectrum of 8.

Figure S33. LCMS chromatogram and HRMS spectrum of 9.

Figure S34. LCMS chromatogram and HRMS spectrum of 10.

Figure S35. LCMS chromatogram and HRMS spectrum of 11.

Figure S36. LCMS chromatogram and HRMS spectrum of 12.

Figure 37. LCMS chromatogram and HRMS spectrum of 13.

Figure S38. LCMS chromatogram and HRMS spectrum of 14.

Figure S39. LCMS chromatogram and HRMS spectrum of 15.

Figure S40. LCMS chromatogram and HRMS spectrum of 16.

Figure S41. LCMS chromatogram and HRMS spectrum of 17.

Figure S42. LCMS chromatogram and HRMS spectrum of 18.

Figure S43. LCMS chromatogram and HRMS spectrum of 19.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).