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Abstract: Streptomyces is a diverse group of gram-positive microorganisms characterised by a complex
developmental cycle. Streptomycetes produce a number of antibiotics and other bioactive compounds
used in the clinic. Most screening campaigns looking for new bioactive molecules from actinomycetes
have been performed empirically, e.g., without considering whether the bacteria are growing under
the best developmental conditions for secondary metabolite production. These screening campaigns
were extremely productive and discovered a number of new bioactive compounds during the
so-called “golden age of antibiotics” (until the 1980s). However, at present, there is a worrying
bottleneck in drug discovery, and new experimental approaches are needed to improve the screening
of natural actinomycetes. Streptomycetes are still the most important natural source of antibiotics
and other bioactive compounds. They harbour many cryptic secondary metabolite pathways not
expressed under classical laboratory cultures. Here, we review the new strategies that are being
explored to overcome current challenges in drug discovery. In particular, we focus on those aimed at
improving the differentiation of the antibiotic-producing mycelium stage in the laboratory.

Keywords: streptomyces; screening; antibiotics; secondary metabolism; differentiation; elicitors;
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1. Introduction

The Streptomyces genus includes an important group of biotechnological bacteria. They produce
two-thirds of the antibiotics of medical and agricultural interest, several antitumor agents, antifungals,
and a great number of eukaryotic cell differentiation effectors, such as apoptosis inducers and
inhibitors [1]. Drug discovery from streptomycetes fell considerably after initial screenings where
the most common compounds were discovered. Antibiotic resistance is increasing dramatically,
and new antibiotics are urgently required in the clinic. Alternative methods, such as the exploration of
chemical libraries and combinatorial chemistry, have provided limited yields. Screening from nature
has resumed through methods such as exploring new environments, looking for elicitors, accessing
the metagenome, etc.

One of the most important characteristics of Streptomyces is its complex life cycle, which is closely
related to secondary metabolite production [2] (outlined in Figure 1). In solid sporulating cultures,
development starts with spore germination and the rapid development of compartmentalised hyphae
into the medium (early substrate mycelium or MI) [3]. After that, programmed cell death (PCD)
occurs (red cellular segments in Figure 1) which triggers the differentiation of the multinucleated (MII)
antibiotic-producing hyphae (late substrate mycelium, early MII) [3,4]. Then, the mycelium starts to
grow into the air forming the aerial mycelium (late MII). At the end of the cycle, there is a second
round of PCD, and most of the remaining viable hyphae undergo a process of compartmentalisation
that culminates in the formation of unigenomic spores [5].
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cycle, there is a second round of PCD, and most of the remaining viable hyphae undergo a process 
of compartmentalisation that culminates in the formation of unigenomic spores [5]. 

Most streptomycetes do not sporulate in liquid cultures. Therefore, it was previously assumed 
that under these conditions, there was no differentiation. However, industrial antibiotic production 
is mostly performed in liquid cultures (flasks and bioreactors). Currently, it is known that in liquid 
cultures, differentiation is comparable to that observed in solid cultures (Figure 1). In liquid cultures, 
there is a first mycelium stage (MI), PCD and the differentiation of a secondary metabolite, producing 
mycelium (MII). However, in most Streptomyces strains, aerial mycelium formation and sporulation 
are blocked [6] (Figure 1). S. coelicolor proteomic and transcriptomic studies have shown that 
physiological differentiation in liquid and solid cultures is comparable [6,7]. MII expresses/translates 
the genes/proteins involved in secondary metabolism in both solid and liquid cultures [6,7]. 

 
Figure 1. Streptomyces growth in solid cultures (upper panels) and liquid cultures (lower panels). In 
solid cultures (petri plates), spores germinate developing a compartmentalised mycelium (early 
substrate mycelium, MI) with 1 µm average cross-membrane spacing [6]. Some of the MI cells suffer 
a first round of programmed cell death PCD (red segments). The remaining viable segments start to 
grow as a multinucleated mycelium with sporadic septa (early MII, late substrate mycelium) [6]. The 
mycelium substrate suffers a second round of PCD (red segments) and differentiates into a mycelium 
that starts to grow into the air (the medium/agar border is indicated by a brown line) (late MII, aerial 
mycelium). Part of the aerial hyphae form spore chains (black circles). In liquid cultures, there is 
germination, MI development, PCD (in the centre of the mycelial pellets) and MII differentiation (in 
the periphery of the pellets). In most species, there is no aerial mycelium formation or sporulation, 
and hyphae form pellets and clumps [2]. Secondary metabolites (outlined as yellow circles and blue 
starts) are produced by the MII hyphae.  

Surprisingly, Streptomyces differentiation as a trigger for antibiotic production remains almost 
unexplored. The absence of a developmental model to describe differentiation in liquid cultures has 
inhibited the understanding of the relationship between macroscopic morphology (pellet and clump 
formation) and differentiation. Pellet and clump formation has been classically correlated with 
secondary metabolite production, but the relationship between both processes remains obscure. Most 
authors have affirmed that pellets and clumps are fundamental for secondary metabolite production 
(e.g., retamycin in S. olindensis [8], nikkomycins in S. tendae [9], hybrid antibiotics in S. lividans [10]), 
while some authors have affirmed that pellet and clump formation reduces antibiotic production 
(e.g., nystatin in S. noursei [11], tylosin in S. fradiae [12]). More recently, our group demonstrated that 

Figure 1. Streptomyces growth in solid cultures (upper panels) and liquid cultures (lower panels).
In solid cultures (petri plates), spores germinate developing a compartmentalised mycelium (early
substrate mycelium, MI) with 1 µm average cross-membrane spacing [6]. Some of the MI cells suffer
a first round of programmed cell death PCD (red segments). The remaining viable segments start
to grow as a multinucleated mycelium with sporadic septa (early MII, late substrate mycelium) [6].
The mycelium substrate suffers a second round of PCD (red segments) and differentiates into a
mycelium that starts to grow into the air (the medium/agar border is indicated by a brown line)
(late MII, aerial mycelium). Part of the aerial hyphae form spore chains (black circles). In liquid
cultures, there is germination, MI development, PCD (in the centre of the mycelial pellets) and MII
differentiation (in the periphery of the pellets). In most species, there is no aerial mycelium formation
or sporulation, and hyphae form pellets and clumps [2]. Secondary metabolites (outlined as yellow
circles and blue starts) are produced by the MII hyphae.

Most streptomycetes do not sporulate in liquid cultures. Therefore, it was previously assumed that
under these conditions, there was no differentiation. However, industrial antibiotic production
is mostly performed in liquid cultures (flasks and bioreactors). Currently, it is known that in
liquid cultures, differentiation is comparable to that observed in solid cultures (Figure 1). In liquid
cultures, there is a first mycelium stage (MI), PCD and the differentiation of a secondary metabolite,
producing mycelium (MII). However, in most Streptomyces strains, aerial mycelium formation and
sporulation are blocked [6] (Figure 1). S. coelicolor proteomic and transcriptomic studies have shown that
physiological differentiation in liquid and solid cultures is comparable [6,7]. MII expresses/translates
the genes/proteins involved in secondary metabolism in both solid and liquid cultures [6,7].

Surprisingly, Streptomyces differentiation as a trigger for antibiotic production remains almost
unexplored. The absence of a developmental model to describe differentiation in liquid cultures
has inhibited the understanding of the relationship between macroscopic morphology (pellet and
clump formation) and differentiation. Pellet and clump formation has been classically correlated
with secondary metabolite production, but the relationship between both processes remains obscure.
Most authors have affirmed that pellets and clumps are fundamental for secondary metabolite
production (e.g., retamycin in S. olindensis [8], nikkomycins in S. tendae [9], hybrid antibiotics in
S. lividans [10]), while some authors have affirmed that pellet and clump formation reduces antibiotic
production (e.g., nystatin in S. noursei [11], tylosin in S. fradiae [12]). More recently, our group
demonstrated that one of the key events in the activation of secondary metabolite production in
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Streptomyces liquid cultures is the differentiation of MII (e.g., actinorhodin/undecylprodigiosin
production in S. coelicolor [2,13], microbial transglutaminase production in S. mobarensis [14], apigenin
and luteolin production in S. albus [15]). The differentiation of this mycelium is conditioned by PCD
of the vegetative hyphae (MI) [2], which, in liquid cultures, depends on the growth rate of the strain
and hypha aggregation (pellet/clump formation) [2,7,14–16]. However, secondary metabolism has
additional regulations (elicitors activate specific biosynthetic pathways) [17], and most Streptomyces
strains do not display all their potential secondary metabolites under standard developmental
laboratory conditions, even if they are differentiated at the MII stage [7].

Each Streptomyces strain can harbour up to 30 secondary metabolite pathways, but only a few of
these are active in usual screening processes [18]. Activating these pathways in the lab will be crucial
in the process of screening for new secondary metabolites from actinomycetes. Here, we review the
most important strategies that are being explored to activate cryptic pathways and/or those that are
being explored to enhance secondary metabolites production.

2. Screening for New Secondary Metabolites from Streptomycetes

The search for new actinomycetes in unexplored niches or from the screening of strains that
have not been previously cultivated is useful, but usually leads to the rediscovery of already known
compounds [19]. New screening strategies are necessary to overcome the current challenges of
discovering new bioactive compounds [19]. In 2013, Arryn Craney et al. [20] summarised the new
strategies that are being used to enhance secondary metabolite production and activate cryptic
pathways, dividing them into unselective and selective methods [20]. Unselective methods are
non-specific methods that are used to screen for new activities, whereas selective methods are
biosynthetic cluster-specific methods that are used to improve the production of already known
molecules [20].

Non-specific methods were largely used during “the golden age of antibiotics”, and they are still
useful. These methods include classical strategies, such as changing media components, increasing
general precursors (metabolic engineering), inducing stress responses (with heat/ethanol/salt/acid
shock, nutrient limitations) [21], and obtaining strains that overproduce secondary metabolites by
random mutagenesis [22–24]. More novel non-specific methods include ribosomal engineering
(the alteration of ribosomal proteins to activate cryptic secondary metabolites in streptomycetes) [20,25]
and the use of small molecules as elicitors of secondary metabolism [20,26] (Table 1). Differentiation
of the antibiotic producer mycelium (MII) as a non-specific method to activate antibiotic production
remains almost unexplored. There has been no previous analysis of the frequency of Streptomyces
strains that do not produce secondary metabolites because they are not differentiated at the MII stage
in the laboratory.

Biosynthetic cluster-specific methods include self-resistance engineering (upregulation of
self-resistance genes), regulatory engineering (overexpression of activators or elimination of repressors)
and genome mining to search for new biosynthetic pathways [20] (Table 2). One of the most important
biosynthetic cluster-specific methods is heterologous expression. Heterologous expression has been
used to express Streptomyces industrial enzymes, such as laccases, in microorganisms with simpler
developmental cycles than Streptomyces, such as E. coli [27]. However, the complex biosynthetic
pathways of Streptomyces rarely can be expressed in simple expression hosts, such as E. coli or Bacillus.
Thus, other streptomycetes, such as S. lividans, S. albus, S. coelicolor or S. avermitilis, are commonly
used as expression hosts [28]. The activation of cryptic metabolites through the expression of the
Streptomyces coelicolor pleiotropic regulator, AfsQ, in other streptomycetes [29] has been successfully
achieved. Combinatorial biosynthesis, chemical modification of existing molecules, has been largely
developed over the last 20 years, in particular, progress has been made in the last few years thanks to
genome mining and synthetic biology [30–32]. Differentiation of Streptomyces MII was successfully
used to enhance the production of various products [2,13–15] through its role as a trigger for antibiotic
production (described in Section 2.3).
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2.1. Streptomyces Differentiation Strategies Based on Elicitors

In the last few years, effort has been made to elucidate the mechanism by which some small
molecules (elicitors) affect differentiation and secondary metabolite production in Streptomyces
strains. Elicitors can be defined as diffusible signals that are able to induce cryptic pathways and/or
differentiation in Streptomyces cultures [17]. Some elicitors act as signals for interspecies interaction [33].
Thus, subinhibitory concentrations of certain antibiotics produced by a given Streptomyces strain
accelerate differentiation and antibiotic production in other Streptomyces strains through “pseudo”
gamma-butyrolactone receptors [33]. Another good strategy is the use of random chemical probes
(natural or synthetic) as elicitors (reviewed in [21]).

One of the most common strategies used to activate secondary metabolism and differentiation
is mimicking the ecological environment through co-cultures of different microbes [17,34].
This methodology typically uses species that have symbiotic relationships with Streptomyces in
nature [35,36] or pathogen partners that activate the production of antimicrobial compounds [37–39].
For instance, fungal elicitors (complex mix of cell walls and filtered cultures) positively affect the
production of natamycin [40], bacterial and yeast elicitors improve valinomycin production [41],
nutrients such as glucose and xylose repress the production of actinorhodin [42,43], and small
molecules, such as GlcNAc or phosphate, can trigger differentiation and antibiotic production in
S. coelicolor through the activation of actII-ORF4/redZ genes [44].

Pimentel-Elardo et al. [45] developed an activity-independent screening method based on the
use of elicitors, to prevent the rediscovery of the most active/abundant compounds. In addition,
cheminformatics techniques are used to identify the putative biological activities of identified
compounds [45]. The use of elicitors increases the production of low-abundant compounds which
were undetected in the classical activity dependent screening. The chemical elicitor “CI-ARC” has
been identified as being responsible for triggering several cryptic biosynthetic genes [45].

2.2. Differentiation Strategies Based on Macroscopic Morphology

2.2.1. The Genetic Control of Aggregation and Macroscopic Morphology in Liquid Cultures

Large-scale antibiotic production is mostly performed in liquid cultures. It is almost unanimously
accepted that the macroscopic morphology of the mycelium (pellets and clump formation) is correlated
with the production of secondary metabolites. However, it was not until recently that the genes
controlling pellet and clump formation have been characterised. The S. coelicolor mat gene cluster [46]
and the cslA, glxA, dtpA genes [47–49] are responsible for mycelial aggregation and pellet formation.
These genes could be a great tool for controlling the morphology in industrial fermentation.

The Streptomyces life cycle in liquid cultures starts with the germination of spores. Awakening
from the dormant spore state depends on the level of AMPc in the cultures [50] and involves the
small hydrophobic protein NepA, [51]. The expression of several sigma factors involved in osmotic
and oxidative stress (SigH, SigB, SigI, SigJ) undergoes remarkable changes during germination,
indicating that germination evokes stress-like cell responses [52]. Several genes encoding proteins
involved in lipid metabolism and membrane transport are overexpressed during germination [52].
The conservation of D-alanyl-D-alanine carboxypeptidase (SCO4439) contributes to the swelling phase
of germination [53]. Cell wall hydrolases participate in germination [54]. SsgA protein marks
the germinative tube emission points [55]. Recently it was described that during germination,
spores aggregate due to extracellular glycans synthesized by the MatA, MatB [46,56] and the
CslA/GlxA/DtpA proteins [56]. These aggregates determine the macroscopic morphology (pellets and
clumps) of the culture [56] which triggers PCD and the physiological differentiation of the antibiotic
producer, mycelium MII [2].

Another issue that influence secondary metabolite production is sporulation. Several streptomycetes
are able to sporulate in liquid cultures [57] and some strains, that normally do not sporulate are also
able to sporulate in bioreactors due to the stress generated in the fermenter [13]. Sporulation stops
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metabolism, including secondary metabolite production. Consequently, in industrial fermentations
and during screening for new secondary metabolites, it is important to avoid sporulation to increase
and maintain secondary metabolism for as long as possible [13].

2.2.2. Monitoring of Streptomyces Macroscopic Morphology and Differentiation in Liquid Cultures

Pellet and clump formation led to differentiation and secondary metabolism [2]. Consequently,
new methodologies to monitor macroscopic morphology have been developed. Laser diffraction
has been used to measure pellet size [58]. Flow cytometry has been used to establish pellet size
distribution of culture populations [59,60]. Recently, a useful algorithm was developed as a plug-in for
the open-source software, ImageJ, to characterize the morphology of filamentous microorganisms in
liquid cultures [61]. Mathematical models have been performed to predict the behaviour of Streptomyces
liquid cultures based on pellet/clump morphology [62,63].

Biophysical parameters (e.g., pH, viscosity, agitation, dissolved oxygen levels and surface tension,
among others) directly affect morphology and differentiation [13,64]. These parameters must be
considered when scaling up production to industrial conditions [65]. Interestingly, a recent study
downscaled liquid cultures to the 100 µL scale in microtiter plates [66], reproducing the same range
of production and morphology as large-scale bioreactors, making screening easier and facilitating
further upscaling.

2.2.3. Macroscopic Morphology Conditions, Programmed Cell Death and Second Mycelium
Differentiation in Liquid Cultures

PCD is the key event that triggers the differentiation of the antibiotic producer, mycelium (MII),
in liquid and solid cultures [2]. However, the specific signals derived from cell death are not yet known.
The production of N-acetylglucosamine from peptidoglycan dismantling accelerates development and
antibiotic production [67,68] and might be one of the signals released during PCD.

A simple methodology based on fluorometric measures of cultures stained with SYTO9 and
propidium iodide was designed to quantify PCD in liquid cultures [69]. This method allows the
efficiency of antibiotic production to be predicted based on the level of PCD [69].

Strains showing dispersed growth take a long time to suffer PCD, and sometimes, PCD does
not occur. Modify the developmental conditions to enhance PCD and MII differentiation, leads to an
improvement in secondary metabolite production. This approach was recently applied to enhance
flavonoid production in a strain of Streptomyces albus [15] and to enhance microbial transglutaminase
production from Streptomyces mobaraensis [14]. The “PCD-MII” approach complements other
approaches well; there is no secondary metabolite production without differentiation of MII, but there
are biosynthetic pathways that in addition to MII differentiation, need specific elicitors to become
active [70].

2.3. L-Forms

An interesting alternative that would avoid the problems of mycelial growth in industry, is the use
of L-forms, which are individual cells without cell walls [71]. However, until now, the antibiotic levels
reached by Streptomyces L-forms have been quite minor compared to those reached by the regular
form. Therefore, future research should explore whether L-forms could offer an industrial alternative.

2.4. Other Strategies

A big challenge in screening for new secondary metabolites is exploring non-cultivated bacteria.
The scientific community is aware of the huge quantity of microorganisms that are not cultivated under
laboratory conditions. Next Generation Sequencing revealed the big pharmacological potential of
uncultured bacteria. Innovative culturing techniques, such as the isolation chip (iChip), are being used
successfully in combination with co-cultures to grow previously uncultured bacteria [72]. The study
of unexplored niches to look for new Actinomycetes is another strategy that enables the discovery of
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new species and compounds [73–75]. The combination of these two methods is a promising strategy
to identify new compounds.

One of the newest strategies focusses on primary metabolism and vegetative growth. Very recently,
work by Schniete et al. [76] showed how genetic redundancy within actinobacterial genomes allows
functional specialization of two pyruvate kinases in Streptomyces under different life cycle stages
and environmental conditions. Genetic redundancy within actinobacteria genomes as being a key to
understanding how the plasticity of this microorganism enhances the production of clinically useful
molecules. Furthermore, Cihak et al. [77] recently described the production of secondary metabolites
during germination in Streptomyces coelicolor. The germination stage was ignored in most secondary
metabolite screening campaigns and constitutes a potential source of bioactive compounds to be
explored [77].

Table 1. Non-specific methods and some successful examples of their enforcement. “Enhance” means
an improvement in production; “cryptic” means activation of the expression of cryptic pathways.

Methods Microorganism Product Effect Ref.

Media
manipulation S. roseosporus Daptomycin Enhance [78]

Stress Response

S. venezuelae Jadomycin B Enhance [79]
S. hygroscopicus Validamycin A Enhance [21]

S. parvulus Manumycin family Cryptic [80]
S. coelicolor Ectoine, 5-hydroxyectoine Enhance [81]
S. coelicolor Methylenomycin Enhance [82]

One Strain Many
Compounds
(OSMAC)

S. parvulus 20 cryptic compounds Cryptic [80]

Random
Mutagenesis

S. clavuligerus Clavulanic acid Enhance [83]
S. hygroscopicus Rapamycin Enhance [84]

S. coelicolor Actinorhodin, Undecylprodigiosin Enhance [22]

Ribosomal
Engineering S. coelicolor Actinorhodin Enhance [85]

Engineering
Global Regulation

S. coelicolor Actinorhodin, Prodigiosin,
Calcium-Dependent Antibiotic Enhance [86]

S. griseus Streptomycin Enhance [86]
S. griseochromogenes Blasticidin S Enhance [86]

Elicitors

S. coelicolor Actinorhodin Enhance [87]
S. pristinaespiralis Desferrioxamine B/E Enhance [20]

S. peucetius Doxorubicin, Baumycin Enhance [20]
S. coelicolor Actinorhodin, Undecylprodigiosin Enhance [68]
S. lividans Prodiginine Enhance [88]
S. griseus Streptomycin Enhance [21]

S. natalensis Pimaricin Enhance [89]
29 strains Cryptic compounds Cryptic [45]

Metabolic
Engineering

S. clavuligerus FK606 Enhance [90]
S. coelicolor Actinorhodin Enhance [90]
S. rimosus Oxytetracycline Enhance [91]

Co-cultures

S. rimosus MY02 Antifungal activity Enhance [36]
S. coelicolor Actinorhodin Enhance [37]

S. fradiae 007 Phenolic polyketides Enhance [38]
Marine streptomycetes See tables in reference Cryptic [39]

Conditioning
Morphology (PCD

+ MII)

S. cattleya Tienamycin Enhance

[92]
S. cinereoruber Rodomycin Enhance

Saccharopolyspora erythraea Erithromycin Enhance
S. coelicolor Actinorhodin Enhance
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Table 2. Biosynthetic cluster specific methods and some successful examples of their enforcement.

Methods Microorganism Product Effect Ref.

Engineering Self-Resistance
S. peucetius Doxorubicin, Daunorubicin Enhance [93]

S. avermitilis Avermectin, Enhance [94]
S. coelicolor Actinorhodin Enhance [95]

Regulatory Engineering

Delete repressor AbsA2~P S. coelicolor
Actinorhodin,

Undecylprodigiosin,
Calcium-dependent antibiotic

Enhance [96]

Overexpress AverR/StrR S. avermitilis Avermectin Enhance [97]
Overexpress AverR/StrR S. griseous Streptomycin Enhance [98]
Overexpress SamR0484 S. ambofaciens Stambomicin A-D Cryptic [99]
Delete repressor cmmRII S. griseus Chromomycin Enhance [100]
Delete repressor AlpW S. ambofaciens Alpomycin Enhance [101]

Heterologous Expression

S. avermitilis Streptomycin Enhance [102]
S. coelicolor Chloramphenicol Enhance [103]
S. coelicolor Congocidine Enhance [103]
S. cyaneus CECT 3335 laccase Enhance [27]

S. lividans TK24 Mithramycin A Enhance [104]
Streptomyces sp. Neothioviridamide Cryptic [105]

Several wild-type Siamycin-I Cryptic [29]

Combinatorial Biosynthesis S. albus J1074 Novel paulomycin Cryptic [31]
See table 1 in ref. [30]

Conditioning Morphology (PCD + MII) S. albus Apigenin, Luteolin Enhance [15]
S. mobarensis Microbial transglutaminase Enhance [14]

3. Conclusions

We generally face the great challenge of fighting antibiotic resistance, which is growing much faster
than our capacity to find new antimicrobials and new strategies to face this problem. The Streptomyces
genus is still a huge source of natural bioactive compounds, but we need to form new strategies to avoid
rediscovering compounds. There is not a single methodology to trigger differentiation, activate cryptic
secondary metabolism pathways and improve the discovery of new bioactive compounds. However,
the multidisciplinary biosynthetic cluster specific and non-specific approaches discussed in this
manuscript, will be key to improving the screening for new secondary metabolites from streptomycetes.
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