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Abstract: Aminoglycoside antibiotics are widely used to treat infectious diseases. Among them,
streptomycin and kanamycin (and derivatives) are of importance to battle multidrug-resistant
(MDR) Mycobacterium tuberculosis. Both drugs bind the small ribosomal subunit (30S) and inhibit
protein synthesis. Genetic, structural, and biochemical studies indicate that local and long-range
conformational rearrangements of the 30S subunit account for this inhibition. Here, we use
intramolecular FRET between the C- and N-terminus domains of the flexible IF3 to monitor
real-time perturbations of their binding sites on the 30S platform. Steady and pre-steady state
binding experiments show that both aminoglycosides bring IF3 domains apart, promoting an
elongated state of the factor. Binding of Initiation Factor IF1 triggers closure of IF3 bound to the 30S
complex, while both aminoglycosides revert the IF1-dependent conformation. Our results uncover
dynamic perturbations across the 30S subunit, from the A-site to the platform, and suggest that both
aminoglycosides could interfere with prokaryotic translation initiation by modulating the interaction
between IF3 domains with the 30S platform.
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1. Introduction

Bacterial pathogens account for 38% of human infections [1] and, because of their potential to
develop antibiotic resistance, represent a severe threat to human health. The problem is of particular
importance in underdeveloped countries, where the incidence of multidrug-resistant (MDR) and
extensively drug-resistant (XDR) mycobacteria and bacteria is rapidly increasing (World Health
Organization, WHO). Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a devastating disease
with higher incidence in underdeveloped countries than in their developed counterparts ([2] and
references therein). Antibiotics are the only option to treat TB efficiently. Streptomycin along with
kanamycin and its derivative Amikacin are used as second-line drugs for the treatment of MDR
tuberculosis [3,4].

Kanamycin and Streptomycin bind the decoding site (A-site) of the minor ribosomal subunit
(30S) and inhibit protein synthesis mainly by causing misreading of the mRNA [5] or translocation
inhibition (Kanamycin) [6,7]. The streptomycin-resistant strains contain hyper-accurate ribosomes [8].
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During decoding the 30S subunit samples various conformations (Figure 1a) and the accuracy
of the process can be affected by favoring a particular 30S state [9]; it can be surmised that
streptomycin increases the misreading insofar as it promotes a ribosomal conformation that decreases
the decoding accuracy.

Due to streptomycin’s effects, it was proposed that this drug could trigger an “error catastrophe”
during protein elongation [10]. However, this model is in conflict with bot, the observation that
ribosomes isolated from streptomycin-treated cells do not differ in speed and accuracy from those
isolated from untreated E. coli cells [11], and that streptomycin causes 70S monomer accumulation and
polysome depletion in vivo [12].
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Figure 1. 30S subunit, dynamic domains, and inter-subunit bridges. (a) Representation of the 30S
subunit as seen from the 50S-interacting side. The main dynamic domains of the small subunit are
indicated. Arrows represent the known and potential movements involved in mistranslation of the
mRNA. The purple hexagon indicates the decoding center and binding site of IF1, streptomycin
and kanamycin. The dotted oval indicates the overall binding surface of IF3 on the 30S platform;
(b) Crystal structure of the IF1-30S subunit complex (Purple surface, PDB: 1HR0) [13]. Streptomycin
(orange) and kanamycin (blue) were aligned from PDB: 4DR3 and PDB: 2ESI, respectively [14,15].
Cyan ribbons highlight residues involved in inter-subunit bridges of the 30S platform that overlap with
IF3 binding sites.

Streptomycin, kanamycin and initiation factor IF1 bind nearby within the decoding center of
the 30S subunit and promote diverse local and long range conformational perturbations [13–17].
IF3 binds to the 30S platform, making contacts with h45, h23, and h24 of the 16S rRNA and ribosomal
proteins uS7 and uS11 [18–22]. IF3 is a basic protein constituted by two globular domains of similar
masses, N-terminal (NTD) and C-terminal (CTD), connected by a flexible linker [23,24]. The two
domains are separated by a hydrophilic, lysine-rich flexible linker. Results of NMR spectroscopy,
neutron scattering, mutagenesis, and accessibility to proteolysis indicate that IF3 NTD and CTD move
independently [25–27]. Furthermore, real-time probing experiments [19] have demonstrated that
IF3 CTD is the first to contact the 30S platform, immediately followed by the IF3 NTD. Interestingly,
streptomycin binding was found to increase the dissociation rate of IF3 from non-canonical 30S
initiation complexes (IC) [28].

The 30S platform greatly contributes to the association of the small subunit with the
major ribosomal subunit (50S) through the formation of several inter-subunit bridges (Figure 1).
The interaction of IF3 with the 30S subunit lays across the platform and regulates the progression of
the 30S IC towards elongation of protein synthesis [19,20]. Here, we specifically labeled each domain
of IF3 with fluorescent dyes (IF3DL) to develop an intramolecular Förster resonance energy transfer
(FRET) system capable of sensing rapid conformational changes of the factor and/or its binding
sites at the 30S platform. In combination with pre-steady state kinetics, the FRET signal of IF3DL

responds to the interaction of streptomycin, kanamycin, and IF1 with the A-site of the 30S subunit.
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Our data, in combination with recent structural studies, suggest a novel molecular mechanism for the
aminoglycosides as capable of perturbing IF3 binding sites on the 30S platform.

2. Results

2.1. Experimental Outline

IF3 binds across the 30S platform, interacts with several intersubunit bridges, and responds to
conformational states of the small subunit (Figure 1) [17,19,20,28,29]. Therefore, IF3 could be used
as sensor of structural changes occurring in the 30S platform. The structure of IF3 NTD consists of
a globular α/β fold, constituted by a four-stranded b-sheet onto which an α-helix is packed [30].
IF3 CTD is composed by a two-layered α/β sandwich fold with a βαβαββ topology with two parallel
α-helices packed against a four-stranded β-sheet [23] (Figure 2a,c). Naturally, IF3 contains a sterically
buried single cysteine at position 65 of the NTD which reacts slowly with maleimide moieties [31,32].
We introduced a second cysteine at a solvent-exposed position of the CTD (E166C) to kinetically
enhance the fluorescent modification of the CTD over the NTD. Aiming to obtain a very sensitive
intramolecular FRET system, Atto-488 and Atto-540Q were chosen as the fluorescence donor and
non-emitting acceptor (quencher), respectively.
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Figure 2. IF3DL intramolecular FRET for dynamic measurements of the 30S platform. (a) Crystal
structure of the 30S subunit, depicting a possible orientation of IF3 across the platform, CTD (turquoise),
and NTD (steel blue); (b) absorption and emission spectra of Atto-488 fluorescent dye (yellow) and
Atto-540Q quencher (purple). The overlap area between donor emission fluorescence (Atto-488) and
acceptor absorption of quencher (Atto-540Q) is indicated in orange. R0 distance for the FRET couple
is 64 Å according to the producer (Atto-tec, Siegen, Germany); (c) Potential arrangements of IF3
domains with respect to each other. Colors are as in (a); cysteine residues for donor (C65, yellow) and
acceptor (E166C, purple) dyes are shown as spheres. The bottom table indicates the possible readouts of
fluorescence and FRET for the corresponding states of IF3DL; (d) Scheme of stopped-flow experimental
set-up and the typical signal read out upon mixing 30S–IF3DL with a 30S binder (orange trace). In order
to assign the signal as FRET, the same experiment is performed in the absence of the acceptor, in this
case IF3NAtto488, IF3 labeled at the natural cysteine in the NTD (green trace).



Antibiotics 2016, 5, 38 4 of 14

The R0 between the dyes is Å 64, providing a wide range of distances to be monitored by
changes of FRET efficiencies (Figure 2b). Under native buffer conditions IF3E166C reacted efficiently
with Atto-540Q maleimide (Figure S1c). In order to enhance the poor reactivity of C65 at the NTD,
IF3E166C–Atto540Q was subsequently modified with Atto-488 maleimide under denaturing conditions.
Finally, the resulting doubly labeled protein (IF3DL) contained a non-emitting acceptor (quencher)
at the CTD and a fluorescent dye at the NTD (Figure S1c) (see Materials and Methods for details).
Therefore, the vicinity of the dyes (domains) would result in donor fluorescence quenching, while the
opposite would increase the observed fluorescence. A high FRET state corresponds to low fluorescence
read-outs, indicating the vicinity of IF3 domains with respect to each other (Figure 2c).

2.2. Probing the Sensing Limits of IF3DL

IF3 and IF1 cooperatively increase their affinity for the 30S subunit [21,33]. Along the pathway
of translation initiation, both factors rapidly join the 30S subunit concomitantly with IF2. The whole
process of 30S pre-Initiation Complex (pre-IC) formation takes around 100 ms and precedes
fMet-tRNAfMet (initiator tRNA) recruitment [33,34]. This multi-component process can follow multiple
pathways, as shown by single molecule measurements [35]. The cooperation between IF1 and IF3 is
suggested to maintain the fidelity of translation initiation; however, its molecular dynamics remain
elusive [28,36].

Here, we measure the binding kinetics of IF3DL to the 30S subunit and the influence of IF1 in
the resulting 30S–IF3DL complex (Figure 2d). NMR measurements of full-length IF3 indicated that its
domains can freely move in solution, adopting almost random orientations [25]. However, molecular
modeling and site-directed mutagenesis proposed that IF3 can transiently establish inter-domain
contacts [27]. In any case, the transition from unbound to bound to the 30S subunit would result in IF3
adopting an elongated conformation on the 30S platform [19,20,37] (Figure 3a).

Indeed, fluorescence equilibrium measurements of IF3DL titrations at increasing concentrations
of 30S subunits (0.2–2.5 µM) resulted in proportional increased emission fluorescence (Figure 3b),
indicating that IF3 transits towards an extended open state in the 30S platform. Fitting of the
measurements with a quadratic function for binding kinetics yielded a dissociation constant KD
for the 30S–IF3 complex in the low nanomolar range, consistent with previous pre-steady state
measurements [33]. Binding of IFs to the 30S subunit and their subsequent conformational
rearrangements are rapid, taking place in few seconds. Therefore, to measure the pre-steady state
binding of IF3DL to the 30S subunit we rapidly mixed 30S subunits with IF3DL in a stopped-flow
apparatus (KintekCorp, Snow Shoe, PA, USA) and measured fluorescence emission after passing
a 515 nm long-pass optical filter.

Upon mixing of IF3DL with 30S subunits, the fluorescence increased with time with a biphasic
behavior (Figure 3c). In contrast, a control where the factor was mixed with buffer or lacked the
acceptor at the CTD did not show a change of fluorescence (Figure S3). Non-linear regression fitting of
the recorded measurements with an equation containing two exponential terms yielded two apparent
rate constants, kapp1 and kapp2, and two associated fluorescence amplitudes, F1 and F2 (Equation (2)).
Analysis is consistent with an initial bimolecular encounter between IF3DL and the 30S subunit,
kapp1 = 16 ± 1 s−1, followed by a conformational rearrangement of the factor, kapp2 = 2 ± 0.05 s−1.
These measurements are in agreement with previous rapid kinetic studies, although different
fluorescent reporters, 30S subunits, and IFs purification methods were used [33,38].

Then we investigated whether IF3DL pre-bound to the 30S subunit could monitor IF1 interactions
with the ribosome. Equilibrium titrations of IF3DL–30S with increasing concentrations of IF1 resulted in
a decrease of emitted fluorescence, indicating that IF3 domains reach closer distances, consistent with
previous single-molecule studies [37] (Figure 3d). Fitting of the measurements for one-site binding
yielded a KD of about 100 nM, consistent with measurements by pre-steady state methods [33].

Equilibrium measurements of the interaction of IF1 with the 30S–IF3DL complex indicated
a decrease in distance between the domains of IF3. We then explored whether the kinetics of the
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interaction would reflect a bimolecular encounter of IF1 with the complex or a later conformational
rearrangement. Preformed 30S–IF3DL complexes were rapidly mixed with a 10-fold molar excess
of IF1 in a stopped-flow apparatus and fluorescence was measured with time as described above.
Upon mixing, the fluorescence of IF3DL decreased exponentially and was best described by a single
exponential term equation (Equation (4)) (Figure 3e). Fitting of the measurements yielded an apparent
rate constant kapp = 0.26 ± 0.01 s−1. Previous studies reported an association constant for the
bimolecular encounter of IF1 with the 30S–IF3 complex of 20 µM−1·s−1 [33], thus we expected an
apparent rate for IF1 of ≈20 s−1 (IF1 = 1 µM). Then, IF3DL reports an IF1-dependent FRET change
that is ≥75-fold slower than the initial binding, suggesting that IF3DL is monitoring a successive step,
i.e., a conformational rearrangement of IF3 on the platform resulting in the accommodation of one of
IF3 domains.
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Figure 3. Steady and pre-steady binding of IF3DL and IF1 to the 30S subunit. (a) Experimental scheme
depicting the binding reactions of IF3 and IF1; (b) IF3DL titration with increasing concentrations of
30S subunits. IF3DL (0.5 µM) was incubated with the indicated concentrations of 30S subunits for
10 min. 5 replicates of 2 µL were measured in a NanoDrop 3000 fluorimeter (Thermo Fisher Scientific,
Waltham, MA, USA). Error bars indicate standard deviations (SD). Continuous line shows fitting
with a quadratic equation for binding (see Materials and Methods); (c) Time courses of IF3DL binding
to 30S subunits and a buffer control to assign the specific amplitude change. 30S subunits (0.1 µM)
were mixed with equimolar IF3DL in a stopped-flow apparatus. Ten to 12 individual traces were
recorded and averaged. Smooth lines indicate fits by non-linear regression with two exponential
terms; (d) 30S–IF3DL (0.5 µM) titration with IF1 at the indicated concentrations. Five replicates of 2 µL
were measured as above. Error bars indicate standard deviations (SD); (e) Time courses of 30S–IF3DL

binding to IF1 and a buffer control to assign the specific amplitude change. See Figure S3 for no
acceptor controls. 30S–IF3DL complexes (0.1 µM) were mixed with a 10-fold molar excess of IF1 (1 µM)
in a stopped-flow apparatus. Twelve individual traces were recorded and averaged. Smooth lines
indicate fits by non-linear regression with a single exponential term.
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IF3DL allows monitoring equilibrium and real-time kinetics of factor binding, dissociation,
as well as conformational changes induced by IF1. The intramolecular FRET sensibility and versatility
of IF3DL provide solid bases to test 30S subunit binders, with a special emphasis for those targeting the
A-site. Among them, streptomycin and kanamycin stood out because of their medical importance as
second-line drugs to treat MDR TB.

2.3. Counter Effects between IF1 and Streptomycin/Kanamycin

The conformational cooperation between IF1 and IF3 observed above has been suggested to
maintain the fidelity of translation initiation [28,36]. On the other hand, streptomycin was shown to
disrupt the cooperation between the factors, and possibly overall fidelity, by increasing the velocity
of formation of 70S IC programmed with non-canonical mRNAs [28]. Here, we use 30S–IF3DL

complexes to monitor real-time conformational perturbations of IF3 on the platform upon the binding
of streptomycin and kanamycin to the A-site (Figure 4a).

Rapid mixing of either aminoglycoside with 30S–IF3DL complexes in a stopped-flow apparatus
results in an exponential increase of fluorescence over time, indicating that IF3 domains get further
apart (Figure 4b). The measurements were best described by a single exponential term yielding an
apparent rate (kapp) and an associated fluorescent amplitude (F) (Equation (4)). Analysis by non-linear
regression fitting returned apparent rates for streptomycin and kanamycin kapp

Str = 4.6 ± 0.1 s−1 and
kapp

Kan = 1.4 ± 0.1 s−1 (Figure 4d).
Streptomycin and kanamycin have opposite effects on the 30S platform if compared to IF1 as

observed by IF3DL. While IF1 closes up IF3 domains, the aminoglycosides bring them apart. Each A-site
binder is also characterized by different extents of FRET change with IF1 promoting an opposite and
greater (≈3-fold) perturbation if compared to the aminoglycosides. Consequently, we probed whether
the interaction of streptomycin and kanamycin with the 30S subunit could revert IF1-dependent closing
up of IF3DL (Figure 4c).
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Figure 4. Pre-steady state kinetics of streptomycin and kanamycin binding to 30S–IF3DL complexes.
(a) Scheme depicting the experimental approach to monitoring conformational effects as a function
of streptomycin (orange) and kanamycin (blue); (b) time courses of 30S–IF3DL (0.1 µM) interacting
with each aminoglycoside; colors are as in (a). The trace for buffer control indicates no dissociation of
IF3DL during rapid mixing in the stopped-flow apparatus. See Figure S3 for controls in the absence
of fluorescence acceptor; (c) Time courses of streptomycin and kanamycin binding to 30S–IF3DL–IF1
(0.1 µM). Smooth lines indicate fits by non-linear regression (Equation (4)); (d) Influence of IF1 over the
kinetics of IF3DL conformational changes caused by streptomycin and kanamycin.
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Rapid mixing of 30S–IF3DL–IF1 complexes with either streptomycin or kanamycin in a
stopped-flow apparatus resulted in an exponential increase of fluorescence (Figure 4c). Comparisons of
the drugs binding to 30S–IF3DL complexes (without IF1) showed an increased amplitude of fluorescence
change and slower apparent rates (Figure 4d). Nonlinear fitting of the time dependencies with a single
exponential function (Equation (4)) indicated a 20-fold and 7-fold decrease of the kapp for streptomycin
and kanamycin in the presence of IF1, respectively (Figure 4d). On the contrary, the amplitudes of
FRET changes were increased in the presence of IF1. Thus, kanamycin and streptomycin seem to
compete with IF1, imposing an IF3 layout on the platform similar to that in 30S complexes lacking
IF1 (Figure 5). In addition, reversion of the IF1-dependent conformation shows similar apparent rates
for both aminoglycosides (kapp

Str = 0.2 ± 0.01 s−1 and kapp
Kan = 0.22 ± 0.01 s−1), suggesting they are

rate-limited by a similar reaction.
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Figure 5. Scheme of IF3 movements during early stages of translation initiation and response to
antibiotics streptomycin and kanamycin. IF3 binding to the 30S subunit results in opening of the
factor and adopting an overall elongated state. The interaction of IF1 (purple) results in repositioning
of IF3, probably shifting the CTD (magenta) towards the P-site and possibly interacting with IF1.
Streptomycin (orange) and kanamycin (blue) would perturb the equilibrium between binding sites
of IF3, promoting a displacement of the factor. Red arrows indicate possible movements of IF3.
Gray shadows indicate IF3 states prior to the interaction of the binder with the 30S subunit.

The intrinsic flexibility and dynamics of IF3 seem to sample different conformational states of
the 30S subunit, at the 30S platform where the factor binds. With opposing directions, IF1 together
with streptomycin and kanamycin alter the relative disposition of IF3 domains, revealing molecular
mechanisms of antibiotic action at an unexpected site but with potential functional implications.
Perturbing IF3 binding sites by streptomycin, even in the presence of IF1, provides a rationale to
previous reports where the absence of IF1 or the addition of streptomycin increased the rates of
non-canonical translation initiation [28].

3. Discussion

Both, streptomycin and kanamycin, disturb the positioning of IF3 at the 30S platform, possibly
affecting translation initiation (Figure 4) in addition to later steps of translation. It is generally
accepted that streptomycin and kanamycin inhibit cell growth by increasing mRNA misreading during
elongation of protein synthesis (reviewed in [39]). This notion is derived from polyU directed poly-Phe
synthesis experiments where the drugs induced mis-incorporation of other amino acids into the
peptide chain [40]. In support, streptomycin caused phenotypic suppression of nonsense mutations
in vivo [41]. More recent biochemical, structural, and single-molecule studies strengthen the notion
of streptomycin and kanamycin (and other aminoglycosides) affecting decoding, elongation, and
translocation [39,42,43]. On the initiation side, streptomycin increased the velocity of 70S IC formation
if programmed with non-canonical mRNAs, suggesting that the aminoglycoside could cause loss of
translation initiation fidelity [28]. The effect was associated with an increase of IF3 dissociation rate
through a conformational switch at the 30S subunit. Streptomycin would weaken the binding sites
of IF3 at the platform, therefore increasing premature 50S joining. Thus, streptomycin would result
in in vivo formation of unproductive 70S complexes. This postulation is supported by experiments
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from the late 1960s which indeed showed streptomycin to cause an accumulation of 70S monomers
concomitantly to a reduction of polysomes, consistent with streptomycin preferentially inhibiting early
steps of translation [12,44].

We observe that IF1 binding decreases the donor fluorescence of IF3DL (increased FRET),
interpreted as a closing up of IF3 domains (Figure 3). IF1 was shown to bind away (>50 Å) from either
domain of IF3, suggesting that the closing up of IF3 is rather indirect, through an allosteric effect
of IF1 across the 30S subunit [21]. However, recent structural studies show that each domain of IF3
can occupy at least two positions on the 30S subunit as a function of ligands bound to the initiation
complex [18]. The CTD seem to contact IF1 in complexes lacking initiator tRNA. In full 30S ICs the
CTD positions under the tRNA, moving away from its initial position. Also the NTD of IF3 was shown
to interact nearby uS11, at the tip of the platform, or to initiator tRNA in full complexes. In a lesser
extent, single molecule approaches observed similar dynamics of IF3. Specifically, the effect of IF1 on
IF3 layout was shown to transit away from an extended conformation towards a more closed state [37].

Functionally, rapid kinetic and biochemical assays showed a close relationship between IF3 and the
mRNA in an IF1-dependent manner. IF3 can promote mRNA shift and can indirectly discriminate unfit
mRNAs, i.e., non-canonical codons [28,45–47]. The crosstalk between IF3 and IF1 is also supported by
several isolated mutations, which increased translation initiation from non-canonical codons, clustered
in the 790 loop (interacting with IF3) and h44 (at residues known to be distorted by IF1).A cooperation
between IF1 and IF3 enhances the fidelity of translation initiation [36].

Consistently, IF1 increases IF3 affinity for the 30S subunit in a cooperative manner [33].
Omission of IF1 resulted in an increased premature 70S IC formation, a similar effect obtained in the
presence of streptomycin [28]. Thus, streptomycin and IF1 would favor opposite states of IF3 on the
30S subunit. The closer distances between IF3 domains observed in this study would represent a
30S subunit with the most 50S anti-association property. On the other hand, a more open state of the
factor would facilitate the arrival of the major subunit. Streptomycin and kanamycin promote the
opening of the factor (this study, Figure 4) and streptomycin increases the speed of IF3 dissociation
and subunit association [28].

Streptomycin would perturb initiation of protein synthesis by reverting a high-fidelity IF3 layout
on the 30S subunit that is induced by IF1. Consequently, the overall initiation fidelity threshold
is lowered by the aminoglycoside, allowing premature joining of the major subunit. Our results
expand the range of reactions that aminoglycosides may affect and provide insights into the dynamic
molecular network that they exploit. Streptomycin stabilizes the pairing of A1413-G1487 as it hinders
G1487 from kethoxal modification [48] (Figure S4). Additionally, streptomycin is proposed to cause
conformational changes in the h45 tetraloop. This loop was shown to adopt two different states,
called “engaged and disengaged”, with respect to h44 (nucleotide C1496), with streptomycin favoring
the disengaged state [14]. In this state the h45 tetraloop moves away from the h44, with G1517 swinging
counter-clockwise about 5 Å away (Table S1 and Figure S4). Streptomycin interacts with G1491,
not affecting A1492 and A1493. On the contrary, IF1 flips out both residues (1492–1493), promotes
the engaged state between h44 and h45 (C1496-G1517), and unpairs A1413 and U1414 from G1487
and G1486, respectively [13] (Figure S4). Altogether, streptomycin promotes opposite to IF1 structural
changes across three directions, towards the tip of h44, downstream h44, and towards the platform,
through the h44/h45 interaction (Table S2 and Figure S4).

Thus, IF1 and streptomycin seem to exploit the same structural network, yet in opposite directions
(Figure 5). Our results indicate that IF1 and streptomycin/kanamycin also display opposite effects
for the inter-domain distance of IF3, with the antibiotics increasing the distance while IF1 decreases it.
These counter effects may find a rationale in the structural network described above, where different
residues of the 30S subunit may be exposed for preferential binding of IF3. As observed by cryoEM,
IF3 domains can bind to different sites on the 30S platform [18]. Our results may indicate that IF1,
streptomycin, and kanamycin perturb the equilibrium of the CTD between its two binding sites.
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A direct interaction of IF1 with the CTD of IF3 may contribute to enhance the close state of IF3
observed here.

Structural and kinetic analysis show that the engaged/disengaged state of the 30S subunit is also
affected by the novel antibiotic GE81112, resulting in a blockade of the 30S IC progression by preventing
initiation codon decoding [49]. Whether GE81112 perturbs the IF3 layout of the 30S subunit remains
elusive; however, our model would suggest that the drug promotes a close distance conformation
between domains. Conformational changes that are sensed by IF3 in the platform area may also affect
the association of the 30S with the 50S through differential exposure of intersubunit bridges (Figure 1b).
Besides B2b, which is collocating with the IF3 binding site, B7a–b may be regulated as in different
rotate states of the ribosome. Altogether, the dynamic platform could provide a rationale for the tight
regulation of the anti-association function of IF3 as modulating the accessibility of each domain for
their binding sites.

Finally, the biophysical system depicted in this work can be used as a novel platform to identify
and characterize compounds targeting initiation of translation [50]. Indeed, screening systems to
identify compounds that preferentially inhibit the initiation phase have proved successful [51–53].
In addition, our IF3DL-30S reporter assay can provide novel aspects of the inhibiting mechanism of
known 30S-binding drugs. Similar approaches have allowed detailed descriptions for other inhibitors
of the ribosome [54,55].

4. Materials and Methods

4.1. Escherichia coli Strains, Expression Vectors, Cell Growth, and Protein Expression Induction

Competent E. coli BL21DE3 cells were CaCl2 transformed (Mix & Go, Zymo Research, Irvine,
CA, USA) with either expression vector pET24c Inf A, pET24c Inf C wt, or pET24c Inf C E166C,
coding for IF1, IF3 wt, or IF3E166C, respectively. pET24c vectors containing wt and mutant genes were
commercially acquired (GenScript, Piscataway, NJ, USA). Typically, 2 L of Luria–Bertoni (LB) medium
were used to grow BL21DE3 pET24c Inf A or pET24c Inf C to an OD600nm of 0.5. Protein expression was
induced by adding 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG, Thermo Fisher Scientific).
Cells were allowed to express IF1 or IF3 for 3 h prior to harvesting by centrifugation at 5000× g at 4 ◦C.
Cells were lysed in Lysis Buffer (50 mM Hepes pH: 7, 100 mM NH4Cl, 10 mM MgCl2, 10% Glycerol,
6 mM 2-mercaptoetanol) supplemented with 0.1 mg/mL of Lysozyme (Merck, Darmstadt, Germany).
After five cycles of freezing and thawing, 1 U/mL DNAse I was added to reduce the viscosity in 20 min
of incubation at 4 ◦C. Membranes and supernatant were separated by centrifugation at 15,000× g for
30 min.

4.2. IF1, IF3, and 30S Subunits Purification

Both initiation factors were purified by Cation exchange chromatography on HiTrap SP HP
(Amersham, Uppsala, Sweden). Supernatants were manually loaded to the column (1 mL column
volume) and subsequently subjected to a linear NH4Cl gradient (0.05–1 M) in a Jasco HPLC
system (Jasco, Tokyo, Japan). The gradient was prepared in BufferA (50 mM Hepes pH 7.1,
10% Glycerol, 6 mM 2-Mercaptoethanol). IF3 and IF1 were eluted at 700 mM and 400 mM of NH4Cl,
respectively, in (Figures S1a and S2a). The best separation conditions were 1 mL/min flow rate and
20 Column Volumes (CV) long gradient, collecting fractions of 1 mL each. Protein elution was
followed by absorbance at 290 nm and SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE, 15%)
(Figures S1 and S2). While IF3 was eluted with an elevated degree of purity, IF1 fractions contained
high molecular weight contaminates (Figure S2b). Full elimination of the contaminants was obtained
by subjecting the combined IF1 fractions to Amicon® Ultra 30K Da centrifugal filters (Merck) followed
by concentration on a HiTrap SP HP (Amersham), single step eluted with 1 M NH4CL BufferA

(Figure S2c).
30S subunits purification methods are described in detail in [38].
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4.3. Double Labeling of IF3 with Atto-Tec Dyes

IF3E166C was subjected to extensive dialysis in labeling buffer (50 mM Hepes pH: 7.1, 100 mM
NH4Cl, 10% glycerol, 0.5 mM TCEP) in a D-Tube™ Dialyzer Maxi (Merck) to remove traces of
2-mercaptoethanol as the reducing agent strongly inhibits the coupling of maleimide-linked dyes to
cysteines. First, the C-terminal was labeled at the recombinant cysteine (166) as it is exposed and
efficiently reacts with maleimide derivatives [38]. A 10-fold excess of Atto-540Q maleimide (Atto-Tec)
over IF3E166C was incubated in labeling buffer for 20 min. The reaction was stopped by the addition of
6 mM 2-mercaptoethanol. The modified IF3CTD

540Q was purified from unreacted dyes on a HiTrap SP
HP column. After 10 CV washes with BufferA containing 100 mM NH4Cl, a single step elution was
applied using 3 mL of 1 M NH4Cl in BufferA. Typically, full protein recovery is achieved in 0.5 mL and
elution of the labeled protein is readily visible. IF3 CTD

540Q was subsequently dialyzed as mentioned
above in a labeling buffer containing 2 M UREA.

Denaturation of IF3 results in the exposure of the otherwise buried cysteine at position 65 of the
NTD. The denatured protein was incubated with a 10-fold molar excess of Atto-488 maleimide for
1 h at RT, mild shacking was applied. IF3CTD

540Q
–NTD

488 (IF3DL) was purified from the unreacted
dye as described above using HiTrap SP HP column (Merck). Eluted proteins were dialyzed against
storage buffer (Hepes pH: 7.1, 100 mM NH4Cl, 10% Glycerol, 6 mM 2-mercaptoethanol) and small
aliquots were stored at −80 ◦C. Purity and efficiency of labeling was assayed by 15% SDS-PAGE,
where fluorescence was observed under a UV trans-illuminator and total protein by blue Coomassie
staining (Figure S1c).

4.4. Equilibrium Binding Measurements

All reactions were performed in HAKM10 buffer (50 mM HEPES 70mM, NH4Cl, 30 mM KCl,
10 mM MgCl2, 6 mM 2-Mercaptoethanol). 30S titrations of IF3DL (0.5 µM) were incubated with varying
concentrations of 30S subunits (0.16, 0.3125, 0.625, 1.25, 2.5 µM). Reactions were incubated for 10 min at
37 ◦C. Fluorescence was measured in a NanoDrop 3000 fluorimeter (Thermo) using blue LED excitation
and emission at maximum for Atto-488 (518 nm) at room temperature. Typically, five independent
measurements were performed for each reaction to calculate mean and standard deviation values.
Binding of IF1 to 30S–IF3DL complexes was performed as above after pre-incubating IF3DL with
30S subunits for 10 min at 37 ◦C. IF1 influence was measured at varying concentration of the factor (0.1,
0.2, 0.5, 1, 2 µM). 30S subunits were MgCl2 (20 mM) activated for 30 min at 42 ◦C prior to being used.

4.5. Stopped-Flow Measurements and Analysis

Fluorescence stopped-flow measurements were performed using a SF-300X stopped-flow
apparatus (KintekCorp) by rapidly mixing equal volumes (30 µL each) of reacting solutions (Figure 2a).
Excitation wavelength for Atto-488 was 470 nm and emission was measured after a long-pass optical
filter with a 515 nm cut-off. One thousand points were acquired in 20–30 s of each measurement. Ten to
15 replicates were recorded for each reaction and subsequently averaged. All stopped flow reactions
were performed in TAKM10 buffer (50 mM Tris (pH: 7.5), 70 mM NH4Cl, 30 mM KCl, 10 mM MgCl2,
6 mM 2-Mercaptoethanol) at 25 ◦C; 30S and IFs concentrations are given in the figure legends.

4.6. Data Analysis

Non-linear regressions by Prism 6.0 (Graphpad Software, La Jolla, CA, USA) were performed
using the following equations:

[C] =
([A] + [B] + KD)−

√
([A] + [B] + KD)

2 − 4[A][B]

2
, (1)
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with A = 30S; B = IF3DL; C = 30S–IF3DL and KD is the dissociation constant.

F = F0 + F1ekapp1 × t + F2ekapp2 × t (2)

[C] =
[A][B]

KD + [B]
; (3)

A = 30S–IF3DL; B = IF1; C = 30S–IF3DL–IF1.

F = F0 + F1ekapp1 × t (4)

4.7. Structural Models

Molecular models were derived from the structures of 30S–bound IF1 of Thermus thermophiles
(PDB 1HR0; [13]), streptomycin bound to the 30S (PDB 4DR3; [14]), kanamycin bound to the site-A
section of h44 (PDB 2ESI; [15]) and the apo-30S subunit (PDB 4DR1; [14]) (Table S3). The structural
models showing the binding site of IF1, streptomycin and kanamycin where generated by aligning
the structures through the backbone atoms of the 16S rRNA (Full sequence for 30S/IF1 and
30S/streptomycin and partial sequence for the A-site with kanamycin) using Chimera and Swiss
PDB viewer [56,57]. Molecular graphics and analyses were performed with the UCSF Chimera
package. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at
the University of California, San Francisco (supported by NIGMS P41-GM103311). Through this work
the new nomenclature for ribosomal proteins has been used [58].

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/5/4/38/s1,
Table S1: Distances from h44 to h45 of residues in the engaged state, disengaged state, and IF1-bound structures,
Table S2: Summary of structural counter effects between streptomycin and IF1 on the 30S subunit, Table S3:
Structures used for modeling. Figure S1: Purification and fluorescence labeling of IF3E166C, Figure S2: Purification
of IF1, Figure S3: FRET controls for IF3DL sensing of A-site binders, Figure S4: Possible structural changes induced
by streptomycin and IF1 on the 30S subunit.
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Abbreviations

The following abbreviations are used in this manuscript:

MDR Multidrug-resistant
XDR Extensively drug-resistant
TB Tuberculosis
IF3 Initiation factor 3
IF1 Initiation factor 1
CDC Centers for Disease Control and Prevention
30S Minor ribosomal subunit
IC Initiation complexes
SD Shine–Dalgarno sequence
NTD N-terminal domain
CTD C-terminal domain
FRET Fluorescence Resonance Energy Transfer
IF3DL Double-labeled IF3
Pre-IC Pre-initiation complex
Initiatior tRNA fMet-tRNAfMet
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KD Dissociation constant
kapp Apparent rate constant
SEM Standard error of the mean
F fluorescent amplitude
LB Luria–Bertoni medium
IPTG Isopropyl β-D-1-thiogalactopyranoside
SDS-PAGE Sodium-dodecyl-sulfate-Polyacrylamide Gel Electrophoresis
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
TCEP tris(2-carboxyethyl)phosphine
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