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Abstract: Antimicrobial resistance (AMR) poses a profound threat to modern healthcare,
with vancomycin-resistant Enterococcus faecium (VREfm) emerging as a particularly resilient
and clinically significant pathogen. This mini-review examines the biological mechanisms
underpinning VREfm resistance, including biofilm formation, stress tolerance, and the ac-
quisition of resistance genes such as vanA and vanB. It also explores the behavioural, social,
and healthcare system factors that facilitate VREfm transmission, highlighting disparities in
burden across vulnerable populations and low-resource settings. Prevention strategies are
mapped across the disease pathway, spanning primary, secondary, and tertiary levels, with
a particular focus on the role and evolving challenges of antimicrobial stewardship pro-
grammes (ASP). We highlight emerging threats, such as rifaximin-induced cross-resistance
to daptomycin, which challenge conventional stewardship paradigms. Finally, we propose
future directions to enhance global surveillance, promote equitable stewardship interven-
tions, and accelerate the development of innovative therapies. Addressing VREfm requires
a coordinated, multidisciplinary effort to safeguard the efficacy of existing antimicrobials
and protect at-risk patient populations.

Keywords: vancomycin-resistant Enterococcus faecium; antimicrobial resistance; antimicro-
bial stewardship

1. Introduction
Antimicrobial agents are a cornerstone of modern medicine and society, enabling

the treatment of infectious diseases, providing perioperative protection, and supporting
patients with compromised immunity, such as those undergoing chemotherapy. However,
antimicrobial resistance (AMR) is a natural and inevitable phenomenon, first observed
shortly after the mass production of penicillin [1]. Although rapid antibiotic development
during the 1950s–60s initially mitigated the threat, the widespread clinical use of antimicro-
bials, combined with a sharp decline in novel antibiotic discovery, has culminated in the
current AMR crisis [2,3].

Among the pathogens of increasing concern are enterococci, a genus of Gram-positive
bacteria implicated in a rising number of bloodstream infections (BSI). Particularly trou-
bling is the emergence of Enterococcus faecium as the predominant species associated with
enterococcal bacteraemia in England [4] and the United States [5]. E. faecium infections
are more commonly associated with multidrug-resistant (MDR) phenotypes, including
resistance to vancomycin and gentamicin [6]. Vancomycin-resistant Enterococcus faecium
(VREfm) is now a significant pathogen in healthcare-associated infections, particularly in
critical care settings, where it is associated with high mortality rates [7,8].
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The persistence and spread of VREfm reflect not only biological resilience but also
human behaviours and vulnerabilities within healthcare systems. Vulnerable populations,
particularly the immunocompromised and critically ill, face disproportionate risks, exac-
erbating health inequalities. Here, we review the biological, behavioural, and systemic
determinants of VREfm emergence and spread. By mapping prevention strategies across
the disease pathway, with particular emphasis on the role of antimicrobial stewardship
programmes (ASP), we provide an up-to-date synthesis of recent evidence. We also clarify
emerging challenges, such as the discovery of novel cross-resistance mechanisms, shifting
patterns of resistance genes, and disparities in global surveillance capacity. By integrating
biological, clinical, and policy-level insights, this mini-review offers a multidisciplinary
framework to inform future research, guide stewardship interventions, and strengthen the
global response to VREfm.

2. Determinants of VREfm Infections and Resistance
2.1. Biological Factors

A key biological determinant of VREfm is its remarkable resilience and adaptability in
hostile environments. E. faecium can survive for extended periods in nutrient-poor aqueous
environments and on dry hospital surfaces, making it highly persistent in healthcare
settings [9,10]. Although it does not form spores, it can enter dormant states under stress,
evading antibiotics that target actively growing cells [11].

E. faecium is generally considered less proficient at biofilm formation than E. faecalis,
but multiple studies have shown that clinical isolates can form biofilms under specific
conditions [12]. Biofilm development in E. faecium involves a range of surface adhesins and
regulatory proteins, including the ebpABC pilus operon [13,14], AtlA autolysin [15], and the
Esp and Acm surface proteins [16,17]. Deletion of ebpABC or esp has been shown to reduce
biofilm formation and virulence in models of urinary tract infection and endocarditis [13,16].
AtlA contributes to biofilm maturation by mediating the release of extracellular DNA
(eDNA), a key structural component of the biofilm matrix [15]. The enterococcal biofilm
regulator B (EbrB) modulates expression of esp and other surface proteins, and its deletion
impairs biofilm formation and intestinal colonization [18]. Additional regulators such as
AsrR, involved in antibiotic and stress responses, may repress biofilm formation in vivo,
and deletion of asrR increases biofilm persistence in animal models [19]. Although less well
characterised than in E. faecalis, biofilm formation in E. faecium appears to be strain-specific
and influenced by environmental stress and host interactions. Notably, E. faecium isolates
that harbour biofilm-associated genes—such as esp, ebpABC, and atlA—are more likely
to exhibit resistance to multiple antibiotics, including aminoglycosides, suggesting that
biofilm-related phenotypes may contribute to both persistence and antimicrobial resistance
in clinical settings [20].

Resistance to β-lactam antibiotics in E. faecium is largely attributed to mutations in the
pbp5 gene, often found within a mobile chromosomal region, and strongly associated with
the evolution of multidrug-resistant clade A1 lineages [21]. This clade harbours numerous
resistance determinants, including genes for vancomycin resistance. Alarmingly, tolerance
to last-resort antibiotics like linezolid and daptomycin is also increasing, often emerging
rapidly during treatment [22–24].

Vancomycin remains a key therapeutic agent for managing serious infections caused
by Gram-positive organisms, including Enterococcus faecium and methicillin-resistant Staphy-
lococcus aureus (MRSA) [25]. Its antimicrobial effect depends on binding to the D-Ala-D-Ala
termini of peptidoglycan precursors, thereby disrupting bacterial cell wall synthesis. Resis-
tance in E. faecium typically arises through acquisition of the vanA or vanB gene clusters,
which alter the target of vancomycin. The vanA cluster leads to high-level resistance to
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both vancomycin and teicoplanin, whereas vanB confers resistance to vancomycin alone
and with more variable expression levels [26]. These resistance genes are often encoded on
the transposable element Tn1546, which includes regulatory components and is frequently
carried on conjugative plasmids, enhancing their potential for horizontal gene transfer [27].

The vanA operon remains the most reported van gene cluster in the United States
and many European countries [28]. However, vanB has emerged as the predominant
cluster in several regions, including Germany, Latvia, Denmark, the Netherlands, Poland,
and Australia. In contrast, data from South America, Asia, and Africa remain limited,
and further surveillance is needed to determine the dominant resistance operons in these
regions [28].

The vanA and vanB clusters comprise a two-component regulatory system, in which
the sensor kinase VanS and response regulator VanR detect the presence of vancomycin
and initiate transcription of resistance genes. This results in the enzymatic replacement of
D-Ala with D-lactate in the peptidoglycan precursor, significantly reducing vancomycin’s
binding affinity (Figure 1) [25]. Consequently, cell wall synthesis proceeds unimpeded
despite the presence of the antibiotic, enabling bacterial survival and continued propagation
of resistance.
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Figure 1. Mechanism of vancomycin resistance in Enterococcus faecium. This schematic illustrates
the induction and effect of vancomycin resistance mediated by the vanA or vanB operon. On the
left, vancomycin binds to the D-Ala–D-Ala terminus of the peptidoglycan precursor, preventing
cross-linking and inhibiting cell wall synthesis. Detection of vancomycin by the membrane-bound
sensor kinase VanS leads to autophosphorylation and phosphate transfer to the cytoplasmic response
regulator VanR, which activates transcription of the vanHAX operon. On the right, the enzymatic
products of this operon are shown: (1) VanH reduces pyruvate to D-lactate (D-Lac); (2) VanA ligates
D-Ala to D-Lac, producing the D-Ala–D-Lac dipeptide; and (3) VanX cleaves residual D-Ala–D-Ala,
ensuring exclusive incorporation of the resistant precursor. Vancomycin is unable to bind to D-Ala–
D-Lac, thus permitting normal peptidoglycan cross-linking and conferring high-level resistance.
Created with BioRender.com.

2.2. Behavioural Factors

Human behaviour plays a pivotal role in the emergence and spread of VREfm within
healthcare environments. The overuse and inappropriate prescribing of broad-spectrum
antibiotics, including vancomycin, cephalosporins, carbapenems, and fluoroquinolones,
can disrupt the normal gut microbiota, creating an environment conducive to VREfm
colonization and overgrowth [29–32]. Such dysbiosis not only facilitates colonization
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but also increases the risk of subsequent bloodstream infections, especially in vulnerable
populations. In concert with broad-spectrum antibiotic use, the increased exposure to
healthcare settings independently increases the risk of VREfm infection [31]. Although some
studies implicate vancomycin directly as a risk factor for hospital-acquired VREfm [33–36],
others find no significant association, likely due to methodological differences such as
confounding by length of hospital stay and control group selection bias [37,38].

Beyond broad-spectrum antibiotic use, poor adherence to infection control protocols—
such as inconsistent hand hygiene or inadequate environmental cleaning—facilitates cross-
transmission. Invasive medical devices further compound the risk by providing surfaces
for biofilm formation and bacterial persistence. Notably, a large proportion of E. faecium
associated with device-related infections (e.g., central line-associated bloodstream infec-
tions [CLABSI] and catheter-associated urinary tract infections [CAUTI]) are vancomycin-
resistant [32,39].

Due to widespread resistance to conventional agents with Gram-positive activity, such
as aminoglycosides and β-lactams, vancomycin-resistant E. faecium (VREfm) is typically
treated with last-line antibiotics including linezolid and daptomycin. However, resistance
to both agents is increasingly reported, posing a serious threat to clinical management.
Resistance to last-resort antibiotics such as daptomycin and linezolid may arise through
direct, genetically encoded mechanisms that contribute significantly to treatment failure
in E. faecium. Daptomycin is a cyclic lipopeptide that disrupts membrane integrity by
binding to the cell membrane in a calcium-dependent manner, leading to depolarisation,
ion leakage, and bacterial death in the absence of cell lysis [40]. However, mutations
affecting the cell envelope stress response pathways (e.g., liaFSR, yycFG) and membrane
phospholipid metabolism (e.g., cls, gdpD) can confer resistance by altering membrane
composition and charge, thereby reducing daptomycin binding and activity [40,41]. Among
these, liaFSR mutations are most observed and may be sufficient to reduce susceptibility,
although additional mutations can amplify resistance [40,41]. These changes typically
evolve under daptomycin selection pressure and may revert once antibiotic pressure is
withdrawn [42–44].

Linezolid, a purely synthetic antibiotic of class oxazolidinone, inhibits bacterial protein
synthesis by binding to the 23S rRNA of the 50S ribosomal subunit [45]. Linezolid is also
subject to multiple resistance mechanisms. Acquired resistance most commonly involves
point mutations in domain V of the 23S rRNA gene, particularly G2576T, which diminish
linezolid binding affinity [46]. In addition, horizontally acquired genes such as those in the
cfr family (encoding methyltransferases), as well as optrA, and poxtA (encoding ATP-binding
cassette proteins) interfere with linezolid’s binding to the ribosomal subunit [40,47–49].
These genes are often plasmid-borne and capable of horizontal transfer, raising concern
for broader dissemination [50,51]. Epidemiological studies show that linezolid resistance
can arise both through selection in individual patients and through clonal spread during
VRE outbreaks, particularly in high-consumption hospital settings [52]. Resistance levels
also correlate with the number of mutated 23S gene copies, which may increase under
prolonged therapy [53].

Aside from well-characterised mutational mechanisms, E. faecium can also develop
resistance through unexpected, indirect pathways—including cross-resistance between
unrelated antibiotic classes—further complicating antimicrobial stewardship efforts [54].
Rifaximin, a non-absorbable oral antibiotic commonly used as prophylaxis in hepatic
encephalopathy and other gastrointestinal conditions, has been implicated in driving
resistance to daptomycin—a structurally and mechanistically distinct last-resort antibiotic
used to treat serious VREfm infections [54,55]. Despite its localised activity in the gut and
its historical classification as low risk for resistance development, prolonged rifaximin
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exposure has been shown to select for mutations in the rpoB gene, which encodes the RNA
polymerase β-subunit. Although rpoB is not directly linked to the bacterial membrane (the
target of daptomycin), mutations activate the prdRAB operon, altering membrane charge
and reducing daptomycin binding [54]. This cross-resistance mechanism has important
clinical implications. In patients previously exposed to rifaximin, daptomycin may be
less effective, increasing the risk of treatment failure in VREfm infection. ASPs should
therefore consider reviewing rifaximin prescribing policies, especially in high-risk patient
populations such as ICU or those with recurrent hepatic encephalopathy. This mechanism
of daptomycin resistance has been documented in global VREfm isolates [54], challenging
the assumptions that underpin conventional antimicrobial stewardship and illustrating the
complexity of microbial adaptation under selective pressure.

2.3. Social, Economic, and Environmental Factors

The emergence and persistence of VREfm are shaped by interconnected social, eco-
nomic, and environmental drivers. Historically, the use of the glycopeptide avoparcin in
livestock feed across Europe exerted selective pressure for VanA-type VRE, which were
subsequently isolated from meat products and healthy individuals in the community. After
avoparcin was banned, a marked decline in VRE carriage was observed in both poultry
and the human gut microbiome, underscoring the role of agricultural antibiotic use in
community-level resistance [56].

Environmental contamination is another key factor. VREfm has been frequently de-
tected in wastewater, rivers, and even treated effluent, indicating that antibiotic residues
and resistant bacteria escape conventional treatment systems [57]. Alarmingly, hospital-
adapted VREfm clones have been identified in municipal sewage, highlighting environ-
mental reservoirs as vectors for reintroducing resistant strains into human populations [58].
These findings underscore the necessity for integrated surveillance approaches and im-
proved waste management practices under the One Health framework, which recognises
the interconnectedness of human, animal, and environmental health [59].

3. Social and Global Disparities in VREfm Infections
The burden of VREfm infections is shaped by global disparities in healthcare infras-

tructure, antibiotic stewardship practices, and surveillance capacity, as well as by local
social and economic inequalities affecting vulnerable patient groups. Together, these factors
contribute to the uneven distribution of VREfm prevalence and outcomes across the world.

In high-income countries (HICs), particularly across Europe, North America, and
Australia, widespread use of vancomycin and broad-spectrum antibiotics has driven an
increase in VREfm prevalence [60]. Surveillance data from the UK Health Security Agency
show that approximately 21% of E. faecium bloodstream isolates are now vancomycin-
resistant across the UK [4]. Similarly, in the United States, vancomycin-resistant Enterococcus
is classified as a major antimicrobial resistance (AMR) threat, responsible for 54,500 hospital-
acquired infections and 5400 deaths in 2017 [5]. The rate of VREfm bacteraemia has risen
steadily in the UK by 63.5% between 2013 and 2021 [4], and a comparable rise has been
observed in the United States, with 20,000 HAI cases and 1300 deaths attributed to VREfm
in 2013 [61].

By contrast, reported rates of VREfm in low- and middle-income countries (LMICs)
tend to be lower, although this likely reflects underreporting rather than a truly reduced bur-
den of disease. Many LMICs lack comprehensive AMR surveillance networks, particularly
in rural and secondary hospitals [62]. Moreover, widespread unregulated access to antibi-
otics, as seen in countries like India, has contributed significantly to AMR. Antibiotics are
often available over the counter without prescription, and empirical broad-spectrum antibi-
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otic use remains common, even for non-bacterial infections [62]. Although national AMR
strategies such as India’s National Action Plan are under development, implementation
remains inconsistent and fragmented [63]. Without strong antimicrobial stewardship pro-
grammes to guide rational antibiotic use, selective pressure for VREfm and other resistant
organisms continues to grow.

Within healthcare systems worldwide, certain patient groups face disproportionate
risks of VREfm colonisation and invasive infection. Vulnerable populations such as cancer
patients, transplant recipients, and critically ill ICU patients are particularly at risk. Invasive
devices such as central venous catheters, ventilators, and urinary catheters provide surfaces
for biofilm formation and bacterial persistence. In the United States, E. faecium is among
the top pathogens associated with CLABSI, with three out of four CLABSI cases caused by
vancomycin-resistant strains [64]. Similarly, UK data show that males aged over 75 years
have the highest rate of Enterococcus spp. bacteraemia among demographic groups [4].

Healthcare system inequities further exacerbate these risks. Under-resourced hos-
pitals, particularly in LMICs, often experience staffing shortages, inadequate infection
control measures, and limited access to effective alternative therapies such as linezolid and
daptomycin [63]. Socioeconomically disadvantaged patients are more likely to experience
delays in diagnosis, suboptimal treatment options, and increased exposure to environments
conducive to the spread of resistant organisms. Addressing these disparities is essential for
designing effective, equitable strategies to curb the global burden of VREfm.

4. Mapping Prevention Activities Across the Disease Pathway
Effective control of VREfm requires a multifaceted prevention strategy, targeting

different stages of the disease pathway. Prevention activities can be conceptualised within
a framework of primary, secondary, and tertiary prevention, each addressing a distinct
point from pathogen emergence to clinical impact (Figure 2).
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Figure 2. Conceptual framework linking determinants, levels of prevention, and targeted interven-
tions for VREfm control. This schematic integrates the key biological, behavioural, and systemic
determinants driving the emergence and spread of vancomycin-resistant Enterococcus faecium (VREfm).
These determinants are mapped onto three levels of prevention: primary (limiting emergence and
transmission), secondary (facilitating early detection and containment), and tertiary (reducing clinical
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impact and complications). Corresponding evidence-based interventions are aligned to each level,
including: antimicrobial stewardship programmes, strategic de-escalation of high-risk antibiotic use
in clinical and agricultural settings, enhanced surveillance in low- and middle-income countries
(LMICs), and the development of novel and combination treatment strategies. This framework
highlights the importance of integrated, multidisciplinary responses to effectively contain VREfm at
local, national, and global levels.

4.1. Primary Prevention (Preventing Emergence and Spread)

Primary prevention focuses on reducing the opportunities for VREfm to emerge and
disseminate within healthcare settings. ASPs are a cornerstone intervention, aiming to
restrict the inappropriate use of vancomycin and other broad-spectrum antibiotics that
drive resistance [28,65]. By developing and enforcing prescribing guidelines—particularly
for high-risk groups such as haematology and ICU patients—ASP can reduce unnecessary
antibiotic exposure and selective pressure [54,66].

Alongside pathogen-specific stewardship measures, robust “universal” hospital in-
fection control interventions are critical. Enhancing hand hygiene compliance among
healthcare workers has been shown to significantly reduce VREfm transmission [67,68].
The value of isolating colonised patients remains controversial, with limited evidence sup-
porting isolation as an effective measure to reduce VRE infections [69,70]. Environmental
cleaning protocols also play a vital role; frequent decontamination of hospital surfaces
and medical equipment with disinfectants effective against VRE is necessary, given the
organism’s ability to survive for extended periods on dry surfaces [71]. This highlights the
need for horizontal infection prevention measures to complement pathogen-specific ASP
interventions [28].

4.2. Secondary Prevention (Early Detection and Containment)

Secondary prevention aims to identify VREfm colonisation or infection early to con-
tain its spread. Active surveillance screening, particularly in high-risk groups such as
ICU admissions, transplant recipients, and oncology patients, has been promoted as
a cost-effective strategy to enable early detection, appropriate antimicrobial therapy,
and containment [72,73]. However, other studies have questioned the clinical value of
active surveillance.

A large cluster-randomised trial involving 74 ICUs and more than 70,000 patients
reported enhanced effectiveness of universal decolonisation without screening compared
to targeted decolonisation guided by screening [71]. Similarly, a retrospective cohort
study from a Danish hospital found no significant difference in the number of bacteraemia
cases, 30-day mortality, or deaths attributable to VREfm after discontinuing screening and
isolation protocols [74]. However, this study’s relatively short follow-up period limits
definitive conclusions. Complementary evidence shows that although VRE screening
identifies colonised patients, it provides limited guidance for treatment decisions. In
a 280-bed tertiary-care hospital in the United States, a retrospective study found that
while a positive VRE screen increased the risk of infection thirteenfold, the absolute risk
of developing infection was only 13%, whereas a negative screen had a 98% negative
predictive value [75]. Taken together, this evidence suggests that routine active surveillance
screening for VREfm colonisation may not provide substantial clinical benefit over universal
decolonisation strategies. As such, routine screening is not currently recommended in all
settings. However, further large-scale, context-specific studies are needed to refine best
practices for specific patient populations, such as ICU, transplant, and oncology patients.

Emerging strategies such as the use of prophylactic probiotics to reduce gut colonisa-
tion with VREfm are also under investigation [29]. In animal models, administration of
Lactobacillus spp. significantly decreased VRE colonisation [76–78], but trials in human pa-
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tients have been limited, often underpowered, and have shown inconsistent efficacy [79–81].
Furthermore, concerns exist that certain probiotic strains could facilitate horizontal gene
transfer of vancomycin resistance within the gut microbiome [82].

4.3. Tertiary Prevention (Minimising Complications and Impact)

Tertiary prevention seeks to minimise the clinical consequences of VREfm infections
once they have occurred. Treatment options remain limited due to the intrinsic resistance
of E. faecium to many antibiotics and the increasing prevalence of acquired resistance
mechanisms. Optimising treatment regimens, including the use of newer antimicrobial
agents such as oritavancin, dalbavancin, and tigecycline in cases where conventional
therapies fail, can improve patient outcomes [83–86].

Beyond single-agent therapies, there is increasing interest in the use of combination
regimens, especially involving daptomycin and β-lactams, as a strategy to enhance efficacy
and overcome resistance in E. faecium. Daptomycin is a last line lipopeptide antibiotic that
targets the bacterial membrane, but resistance can emerge rapidly, often due to alterations
in membrane structure and surface charge [42]. However, these adaptations may incur
fitness costs and induce, whereby certain daptomycin-resistant strains become resensitised
to glycopeptides like vancomycin due to disruptions in the vanA operon [42].

Combining daptomycin with β-lactams, including ampicillin, ceftaroline, ceftriaxone,
ertapenem, or fosfomycin, has been shown in both in vitro and clinical settings to synergis-
tically enhance bactericidal activity, even against daptomycin-non-susceptible (DNS) or
vancomycin-resistant isolates [87–89]. These effects are primarily attributed to β-lactam-
induced reductions in cell surface charge and increased membrane permeability, which
facilitate daptomycin binding and improve killing [88,89]. Other combination strategies
are under investigation. Tigecycline with high-dose daptomycin or gentamicin may be
especially effective in endocarditis or refractory bacteraemia [90–92]. Similarly, resistance
to daptomycin monotherapy may be overcome by the co-administration of linezolid and
doxycycline [93,94].

Beyond conventional antibiotics, novel strategies such as bacteriophage therapy and
phage-derived enzymes are under investigation. These therapies offer highly specific mech-
anisms to eradicate VREfm with or without adjunct antibiotic therapy [95]. In a longitudinal
case study, adjunctive phage therapy targeting E. faecium resulted in reduced intestinal
burden, improved symptom control, and delayed recurrence of bloodstream infection when
added to failing antibiotic regimens [96]. In vitro testing confirmed that the combination of
phage and antibiotic was more suppressive than either alone. However, clinical efficacy
may be limited by the emergence of anti-phage neutralising antibodies, underscoring
the need for continued monitoring and refinement of this approach [96]. Experimental
vaccines and monoclonal antibodies targeting E. faecium virulence factors are also being
explored, although significant challenges remain, particularly in immunocompromised
populations [97].

Despite the promise of these tertiary strategies, reliance on reactive treatments alone
is insufficient. The slow pace of new drug development, the risk of resistance to last-line
agents, and the complexity of hospital-acquired infections all reinforce the need for strong
upstream preventive strategies, including enhanced antimicrobial stewardship, robust
surveillance, and reinforced infection control measures.

5. The Evolving Role of Antimicrobial Stewardship Programmes (ASP) in
Preventing VREfm

ASPs remain a cornerstone of strategies to prevent VREfm infections. By targeting
the inappropriate use of vancomycin and other broad-spectrum antibiotics, ASPs reduce



Antibiotics 2025, 14, 522 9 of 17

the selective pressure that drives resistance and help preserve the effectiveness of critical
antimicrobials such as linezolid [66,98].

Broad-spectrum antibiotic use is a major behavioural driver of VREfm colonisation
and subsequent infection. Agents such as carbapenems, cephalosporins, fluoroquinolones,
and vancomycin can profoundly disrupt the gut microbiota, creating ecological niches that
facilitate VREfm overgrowth. This is particularly relevant in elderly or immunocompro-
mised patients, who may be colonised asymptomatically but remain at risk for bloodstream
infection during hospitalisation or invasive procedures [30–32]. Antimicrobial stewardship
programmes therefore play a critical role in reducing unnecessary exposure to these high-
risk antibiotics, thereby limiting both colonisation pressure and progression to invasive
disease. ASPs also contribute to risk stratification and the rational de-escalation of empirical
therapy in patients known to be colonised with VREfm, further aligning treatment with
microbiological risk and preserving narrow-spectrum options.

A leading example of a national stewardship framework is Australia’s Antimicrobial
Use and Resistance in Australia (AURA) Surveillance System, coordinated by the Aus-
tralian Commission on Safety and Quality in Health Care [99]. AURA integrates data from
laboratory surveillance (including the Australian Enterococcal Surveillance Outcome Pro-
gram [AESOP]), alert systems (CARAlert: National Alert System for Critical Antimicrobial
Resistances), and passive surveillance (APAS: Australian Passive AMR Surveillance). In
2023, AESOP recorded 1599 episodes of enterococcal bacteraemia, with E. faecium responsi-
ble for 41.1% of cases, an increase of 10.2% from 2022. The rate of vancomycin-resistant E.
faecium (VREfm) rose from 46.9% in 2022 to 50.8% in 2023, with 53.2% of isolates carrying
vanA and/or vanB genes. Clinical implications were severe: the 30-day all-cause mortality
rate for E. faecium was 26.3%, and over 23% of patients experienced a hospital stay exceed-
ing 30 days [99]. These findings underscore the growing burden of VREfm and the need
for responsive, data-informed antimicrobial stewardship.

In England, the ‘Start Smart Then Focus’ (SSTF) initiative represents another effec-
tive national ASP model. SSTF provides structured guidance for timely antibiotic review
(48–72 h after initiation) with clear documentation of clinical indication and treatment du-
ration [100,101]. Antimicrobial prescribing is then tailored to the patient based on clinical
response, microbiology results, and local resistance data. Surveys show SSTF implemen-
tation across >90% of acute trusts [102], though variability remains in audit uptake and
multidisciplinary engagement. Dedicated antimicrobial stewardship committees and spe-
cialist pharmacists play a pivotal role, particularly in secondary care. SSTF also promotes
community pharmacy involvement and emphasises professional education as part of the
UK’s AMR strategy [101]. In primary care—where the majority of antibiotics are prescribed
in the UK—the TARGET (Treat Antibiotics Responsibly, Guidance, Education, Tools) An-
tibiotics toolkit provides a comprehensive, evidence-based approach to engaging general
practitioners (GPs) in antimicrobial stewardship. Developed by the Royal College of Gen-
eral Practitioners in collaboration with the Antimicrobial Stewardship in Primary Care
(ASPIC) group, TARGET equips clinicians with practical resources to support responsible
prescribing [103]. These include educational materials for clinicians and patients, audit
tools, and consultation aids that encourage GPs to use routine appointments as opportuni-
ties to raise awareness about antimicrobial resistance (AMR). One key strategy is the use
of back-up (delayed) antibiotic prescriptions, which have been shown to reduce unneces-
sary antibiotic consumption without compromising symptom resolution. By providing
a prescription to be used only if symptoms worsen or persist, GPs can support patient
self-management, reduce re-consultations, and help prevent complications as effectively as
immediate antibiotic treatment.
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Beyond SSTF and TARGET, UK national policy has reinforced AMS through the
2013 Antimicrobial Prescribing and Stewardship (APS) Competency Framework, which
defines and supports clinician training, specifically on the responsible prescription of an-
timicrobials [104]. Complementing this, UK efforts to de-label inappropriate penicillin
allergies—found in ~10% of the population but confirmed in <1%—are being scaled up
to preserve β-lactams and reduce unnecessary use of broader-spectrum agents such as
carbapenems and fluoroquinolones [105]. At the strategic level, the UK’s 5-Year National
Action Plan for AMR (2024–2029) adopts a One Health approach to reduce unnecessary
antimicrobial use across human, animal, and environmental sectors. Since 2014, human
exposure to antimicrobials has fallen by over 8%, despite pressures from the COVID-19 pan-
demic and Group A streptococcal outbreaks. In parallel, sales of highest-priority critically
important antimicrobials in food-producing animals have declined by 81% between 2014
and 2022 [106]. These comprehensive national approaches provide a valuable contrast to the
challenges faced by many LMICs, where fragmented policies, limited diagnostic capacity,
and insufficient surveillance infrastructure hinder the development of robust stewardship
systems. Compared with containment measures alone, stewardship offers a proactive
approach that encompasses primary, secondary, and tertiary prevention, contributing to
longer-term control of AMR.

In addition to improving clinical outcomes, ASPs have been associated with cost
savings through reduced infection rates, shortened hospital stays, and more efficient
antibiotic usage. Their multidisciplinary nature—typically involving infectious disease
specialists, pharmacists, microbiologists, and infection control professionals—enhances
their effectiveness [107].

However, emerging research has challenged some traditional assumptions underpin-
ning stewardship strategies. Specifically, the unexpected emergence of cross-resistance
between rifaximin and daptomycin in VREfm highlights that antimicrobial exposure,
even to agents seemingly unrelated to a target pathogen, can select for critical resistance
traits [54]. This phenomenon, driven by surprising genetic alterations affecting the bacterial
cell membrane, underscores the complexity of resistance evolution and the limitations of
focusing solely on direct antibiotic-pathogen relationships.

Future stewardship models must broaden their scope. Rather than simply restricting
the use of antibiotics directly linked to VREfm emergence, stewardship efforts should
incorporate a deeper understanding of collateral resistance mechanisms, systematic surveil-
lance of emerging resistance patterns, and critical evaluation of all antimicrobial use—
including prophylactic regimens previously considered low-risk. Only through such
adaptive, forward-thinking strategies can ASPs continue to play a central role in containing
VREfm and preserving the efficacy of last-resort antimicrobials.

6. Limitations and Future Directions
Despite substantial progress in understanding and responding to VREfm, key chal-

lenges remain across biological, clinical, and stewardship domains. This section outlines
these limitations and proposes future directions to inform a more comprehensive response.

6.1. Biological Challenges

The genetic plasticity of E. faecium—including its ability to acquire and disseminate
resistance genes such as vanA, vanB, optrA, and poxtA—poses an ongoing threat to treatment
efficacy [26,47,48]. The rapid emergence of resistance during therapy, particularly to
daptomycin and linezolid [22–24], limits the clinical utility of these last-resort agents.
Biofilm formation remains clinically relevant in persistent infections and device-related
colonisation and is associated with increased antimicrobial tolerance [12,20]. Future work
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should address the role of biofilms in facilitating resistance acquisition, particularly in
the context of indwelling medical devices and invasive procedures. Further research is
required to develop a more complete mechanistic understanding of the bacterial genes
facilitating survival on inanimate surfaces, and thus persistence and transmission in the
hospital environment.

6.2. Clinical Management Challenges

Treatment options for VREfm remain constrained, particularly due to the ability of
clinical strains to adapt and acquire mutations and/or mobile genetic elements encoding
antibiotic resistance genes. While combination therapies (e.g., daptomycin plus β-lactams
or linezolid and doxycycline) show promise, robust clinical trial data validating their effi-
cacy are lacking, with much of the evidence being accrued from isolated case reports [87,89].
Although phage therapy and microbiome modulation strategies offer novel avenues for
treatment or decolonisation, most supporting evidence is limited to case reports, in vitro
models, or small trials [80,96]. Other members of the gut microbiota can contribute sig-
nificantly to suppressing or displacing VREfm colonisation. Harnessing these natural
competitive interactions could inform the development of affordable, scalable strategies to
prevent or reduce VREfm carriage [97,108]. Larger, controlled studies are needed to evaluate
the clinical impact, safety, and long-term efficacy of these emerging therapeutic modalities.

6.3. Stewardship Gaps, Surveillance Disparities, and Implementation Challenges

In addition to biological and clinical uncertainties, key challenges persist around an-
timicrobial stewardship implementation, particularly in resource-limited settings. Despite
the development of coordinated national programmes in countries such as the UK and Aus-
tralia [99,100], the global success of stewardship hinges on adaptable models that account
for local infrastructure, diagnostic capacity, and prescribing norms. In many LMICs, limited
access to microbiological diagnostics and specialist personnel constrains real-time prescrib-
ing oversight, while antibiotics are often dispensed without adequate regulation [63,109].
Tailored stewardship strategies that are low-cost, scalable, and compatible with minimal
laboratory support are urgently needed to bridge this implementation gap [109]. Equally,
overemphasis on restricting specific antimicrobial classes may overlook broader patterns of
collateral resistance, such as the emergence of daptomycin resistance following rifaximin
prophylaxis, highlighting the need for stewardship programmes to move beyond simple
pathogen–antibiotic pairings and account for complex resistance ecologies [54,55]. In this
context, expanding research into cost-effective interventions, namely decision support
tools, context-specific prescribing guidelines, and community-level education, should
be a priority.

At the same time, global AMR surveillance systems remain patchy and fragmented.
Much of the available epidemiological data comes from high-income countries or large
tertiary centres, limiting our understanding of VREfm prevalence, resistance patterns, and
transmission in rural, secondary, or community-based settings [62,110]. Strengthening
integrated surveillance capacity in LMICs is essential to detect emerging resistance trends
early, inform stewardship efforts, and improve equity in global AMR control [110].

In addition, future policy and research efforts should be grounded in a One Health
framework, which recognises the interdependence of human, animal, and environmental
health [59]. Integrated surveillance systems and stewardship approaches that account for
antibiotic use in agriculture, water contamination, and hospital transmission dynamics will
be essential for long-term containment of VREfm [110].

Finally, while many stewardship interventions have shown promise in controlled
environments, their long-term effectiveness and sustainability across diverse healthcare
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systems remain poorly understood. Further research is needed to evaluate real-world
outcomes of stewardship programmes, ideally through pragmatic trials and health systems
research that reflect the heterogeneity of clinical practice across settings.

7. Conclusions
The spread of VREfm is driven by a complex interplay of biological, behavioural,

and healthcare system factors. Global and local health inequalities, particularly among
immunocompromised patients and in resource-limited settings, further amplify the burden
of VREfm infections. ASPs remain a critical component of prevention strategies, addressing
the root causes of resistance by optimising antibiotic use and preserving the efficacy of
last-resort agents.

However, emerging evidence of unexpected cross-resistance mechanisms chal-
lenges conventional stewardship models and highlights the need for more adaptive,
evidence-driven strategies. Strengthening stewardship efforts must go hand-in-hand
with broader infection control interventions, environmental management, and innovative
treatment development.

Looking forward, continued research into novel prevention and treatment approaches—
including microbiome-based therapies, phage applications, and new antimicrobials—is
essential. Strengthening global surveillance networks, embedding stewardship princi-
ples into healthcare policy, and addressing disparities in healthcare access and quality
will be crucial for limiting the spread of VREfm. Ultimately, a coordinated, multidisci-
plinary, and equitable approach is needed to effectively confront this growing antimicrobial
resistance threat.
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VRE Vancomycin-resistant enterococci
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