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Abstract: Stenotrophomonas maltophilia is an opportunistic pathogen that produces respiratory infec-
tions in immunosuppressed and cystic fibrosis patients. The therapeutic options to treat S. maltophilia
infections are limited since it exhibits resistance to a wide variety of antibiotics such as β-lactams,
aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, or carbapenems. The
antibiotic combination trimethoprim/sulfamethoxazole (SXT) is the treatment of choice to combat
infections caused by S. maltophilia, while ceftazidime, ciprofloxacin, or tobramycin are used in most
SXT-resistant infections. In the current study, experimental evolution and whole-genome sequencing
(WGS) were used to examine the evolutionary trajectories of S. maltophilia towards resistance against
tobramycin, ciprofloxacin, and SXT. The genetic changes underlying antibiotic resistance, as well as
the evolutionary trajectories toward that resistance, were determined. Our results determine that
genomic changes in the efflux pump regulatory genes smeT and soxR are essential to confer resistance
to ciprofloxacin, and the mutation in the rplA gene is significant in the resistance to tobramycin.
We identified mutations in folP and the efflux pump regulator smeRV as the basis of SXT resistance.
Detailed and reliable knowledge of ciprofloxacin, tobramycin, and SXT resistance is essential for safe
and effective use in clinical settings. Herein, we were able to prove once again the extraordinary
ability that S. maltophilia has to acquire resistance and the importance of looking for alternatives to
combat this resistance.

Keywords: Stenotrophomonas maltophilia; antibiotic resistance; adaptative laboratory evolution

1. Introduction

Stenotrophomonas maltophilia is a cosmopolitan, ubiquitous, intrinsically multidrug-
resistant Gram-negative bacterium with an environmental origin [1] that has been isolated
in clinical [2–6] and non-clinical settings [7–10]. Its prevalence as a nosocomial pathogen
increases every day, being mainly associated with respiratory infections in immunosup-
pressed and cystic fibrosis patients [7]. The increasing rate of antibiotic resistance has
limited the therapeutic options and strategies to treat Gram-negative pathogens [11] such
as S. maltophilia. This microorganism is considered a prototype of antibiotic-resistant
bacteria. It exhibits an intrinsic low susceptibility to a wide variety of antibiotics such as β-
lactams, aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, and
carbapenems [12]. For this reason, the World Health Organization (WHO) lists S. maltophilia
as one of the main pathogens with interest in public health in hospitals worldwide [13]. Cur-
rently, the antibiotics’ combination trimethoprim/sulfamethoxazole (SXT) is the treatment
of choice, with ceftazidime, ciprofloxacin, and tobramycin being the agents used in the ma-
jority of SXT-resistant infections [14–16]. With the number of antibiotics of choice restricted,
predicting the mechanisms by which this bacterium may acquire resistance becomes im-
portant in preventing and treating infections [17,18]. S. maltophilia exhibits numerous
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mechanisms of antibiotic resistance that contribute to its multidrug-resistant phenotype,
including the low permeability of its membrane as well as the presence in its genome of
β-lactamases, enzymes that modify aminoglycosides, SmQnr (an enzyme that protects
DNA gyrase from quinolones), and multidrug resistance (MDR) efflux pumps [19]. The
primary cause of antibiotic resistance in this bacterial species is these efflux systems [20,21].

In the present work, we explore the evolution of resistance to ciprofloxacin (which
inhibits bacterial topoisomerases, fundamental for DNA replication [22]), tobramycin (a
ribosome-targeting antimicrobial), and SXT (an inhibitor of folic acid synthesis) in S. mal-
tophilia. Ciprofloxacin is the most potent fluoroquinolone against Gram-negative bacilli [23].
The main mechanisms conferring resistance to this antibiotic are alterations in its target
enzymes, the DNA topoisomerases GyrA and ParC [24], as well as the overproduction of
MDR efflux pumps in most bacterial species [25]. Nevertheless, S. maltophilia is the only
microorganism in which resistance to quinolones is not the consequence of mutations in
the genes encoding these bacterial topoisomerases but of mutations that lead to the overex-
pression of efflux pumps [26]. Tobramycin is an aminoglycoside that induces miscoding
during protein synthesis and the disruption of the bacterial membrane [27–29]. Resistance
to tobramycin can result from different mechanisms involving mutations (like those leading
to the overproduction of MDR efflux pumps), methylations, or enzymatic modifications of
the antibiotic [30,31]. SXT is a fixed-dose combination antibiotic including sulfamethoxa-
zole (a sulfonamide that inhibits folate synthesis) and trimethoprim (a direct competitor
of the enzyme dihydrofolate reductase that produces a bactericidal effect) [32]. Bacterial
resistance to SXT has been mainly attributed to the acquisition of resistance genes such as
dhfr, folP, sul1, and sul2; the latter two are present in the core of ubiquitously distributed
integrons. However, target mutations and mutations leading to the overproduction of
MDR efflux pumps [33] also confer SXT resistance.

A previous analysis of single-step selected mutants in S. maltophilia detected that
resistance to either ciprofloxacin or SXT was due to the overproduction of both the SmeDEF
and the SmeVWX efflux pumps [33,34]. Nevertheless, this one-step selection only identifies
mutations that can independently confer resistance to the antibiotic of selection. It does not
provide information about the evolutionary dynamics, including the mutations (frequently
low-level resistance mutations) that can jointly render resistance and those that can be
relevant in clinics. For this purpose, experimental evolution and whole-genome sequencing
(WGS) were used to examine the evolutionary trajectories of S. maltophilia toward resistance
against these three antibiotics to determine the genetic changes underlying antibiotic
resistance, as well as the evolutionary trajectories toward that resistance.

2. Results
2.1. Experimental Evolution in the Presence of Ciprofloxacin, Tobramycin, and
Trimethoprim/Sulfamethoxazole Leads to High Levels of Resistance in S. maltophilia

To ascertain if distinct populations exhibit similar potential evolutionary trajectories,
four biological replicates were subjected to selective pressure exerted by ciprofloxacin
(CIP-A, CIP-B, CIP-C, and CIP-D), tobramycin (TOB-A, TOB-B, TOB-C, and TOB-D), and
SXT (SXT-A, SXT-B32, SXT-B64, SXT-C, and SXT-D), and four were maintained without any
selective pressure (A, B, C and D). All of them were serially passaged for 21 days, increasing
the antibiotic concentration to track the progression of resistance during the selection
period. The initial concentration of each antibiotic used in these experimental evolutions
was the baseline minimal inhibitory concentration (MIC): 0.75 µg/mL of ciprofloxacin,
4 µg/mL of tobramycin, and 0.5 µg/mL of SXT. When bacteria are exposed to escalating
antibiotic concentrations, one phenotypic trajectory can be anticipated: a gradual selection
of mutants displaying progressively higher resistance levels. All the evolved populations,
in the presence of the selective pressure exerted by each antibiotic, reached high levels of
resistance (Table 1). All the populations that evolved in the absence of the drug had final
MICs of 0.75 µg/mL to ciprofloxacin, 4 µg/mL to tobramycin, and 0.5 µg/mL to SXT.
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Table 1. MICs (µg/mL) of the seventeen populations evolved in the presence of the selective pressure
exerted by each antibiotic. The populations reached high levels of resistance in comparison with the
populations that evolved in the absence of the drugs.

Population Day 0 Day 3 Day 6 Day 9 Day 12 Day 15 Day 18 Day 21

Ciprofloxacin

CIP-A 0.75 6 8 >32 >32 >32 >32 >32

CIP-B 0.75 8 8 >32 >32 >32 >32 >32

CIP-C 0.75 8 8 >32 >32 >32 >32 >32

CIP-D 0.75 8 8 >32 >32 >32 >32 >32

Tobramycin

TOB-A 4 16 >256 >256 >256 >256 >256 >256

TOB-B 4 16 >256 >256 >256 >256 >256 >256

TOB-C 4 >256 >256 >256 >256 >256 >256 >256

TOB-D 4 48 >256 >256 >256 >256 >256 >256

Sulfamethoxazole-
trimethoprim (SXT)

SXT-A 0.5 0.5 0.75 1.5 1.5 1.5 1.5 1.5

SXT-C 0.5 0.5 0.75 1.5 1.5 1.5 1.5 1.5

SXT-D 0.5 0.5 0.75 1.5 1.5 1.5 1.5 1.5

SXT-B32 0.5 0.5 0.75 1.5 >32 >32 >32 >32

SXT-B64 0.25 0.5 0.75 1.5 >32 >32 >32 >32

2.2. Mutations Selected in the Presence of Ciprofloxacin, Tobramycin, and Trimethoprim/
Sulfamethoxazole in S. maltophilia D457

To better understand the genetic events linked to the emergence of resistance in the
evolved populations, the genome of each final population was sequenced. In addition
to antibiotic resistance mutations, mutations increasing the fitness of the population for
growing in the medium can also be selected. Therefore, only those mutations in the popula-
tions evolving under antibiotic selective pressure, but not in the control populations, were
considered. Twenty-seven mutations were identified (Table 2 and Figure 1). Notably, three
mutations were identified in different populations that evolved in the three antibiotics used.
Firstly, insertions in the gene rnE that encodes the ribonuclease E. RnE plays a central role
in RNA processing and metabolism [35], and it has been previously linked to high-level
ciprofloxacin resistance in Pseudomonas aeruginosa and Pseudomonas fluorescens [36]. Sec-
ondly, three base pair insertions were found in the gene SMD_4114. This gene is proposed
to encode an S9 family peptidase DAP2. Since endopeptidases have been predicted to
function as space makers that trigger peptidoglycan enlargement due to the insertion of
a new glycan strand and can be genetically associated with PBPs (penicillin-binding pro-
teins), this mutation could be related to cross-resistance to beta-lactams (see below), such
as ceftazidime [37]. Thirdly, single-nucleotide polymorphisms (SNP) or short deletions
were detected in the gene SMD_3479, a YiiG family protein with unknown function and
predicted to be a lipoprotein [38]. Another SNP was shared between ciprofloxacin and
SXT-evolved populations in the gene pip3, a prolyl aminopeptidase. This protein is involved
in the surveillance mechanism inducing the DNA-repair pathways [39].
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Table 2. WGS-identified mutations in the ciprofloxacin, tobramycin, and SXT-evolved lineages.

L Gene Product Localization Type Nucleotide Change Amino Acid
Change

Frequency
(%) Domain

Ciprofloxacin A rnE Rne/Rng family ribonuclease 3139248 Ins A−→ACCGAGCTGGGTG N486Fs 98 Ribonuclease E

B soxR Redox-sensitive transcriptional
activator 1129982 SNP C−→T R45W 100 Helix-Turn-Helix

DNA binding

smeT Efflux transporter SmeDEF
transcriptional repressor 4099641 SNP T−→A L166Q 100 PRK10668 DNA

binding
rnE Rne/Rng family ribonuclease 3139248 Ins A−→ACCGAGCTGGGTG N486Fs 99 Ribonuclease E
SMD_4114 S9 family peptidase 4619837 Ins A−→AGTG H773Fs 99 DAP2 peptidase

C pip3 Prolyl aminopeptidase 830195 SNP C−→A A46N 57

soxR Redox-sensitive transcriptional
activator 1129982 SNP C−→T R45W 90 Helix-Turn-Helix

DNA binding
SMD_3479 YiiG family protein 3881832 Del GGGA−→G P195Fs 99 DUF3829

D pip3 Prolyl aminopeptidase 830195 SNP C−→A A46N 47

SMD_2503 ESPR-type extended signal
peptide-containing protein 2791884 SNP A−→C G893G 96

SMD_2704 Hypothetical protein 3006994 Del CAAACA−→C Q276Fs 99
rnE Rne/Rng family ribonuclease 3139248 Ins A−→ACCGAGCTGGGTG N486Fs 80 Ribonuclease E

Tobramycin A glpG Rhomboid family
intramembrane serine protease 412958 SNP T−→C T17A 100

Membrane-
associated serine
protease

rplA 50S ribosomal protein L1 884707 SNP T−→G F22C 100 Ribosomal L1 bact

SMD_1169 GNAT family
N-acetyltransferase 1297246 SNP A−→G Q28P 95 C0G3818

acetyltransferase
SMD_3194 ATP-binding protein 3550846 SNP C−→G R1017P 9
rnE Rne/Rng family ribonuclease 3139248 Ins A−→ACCGAGCTGGGTG N486Fs 90 Ribonuclease E

SMD_3405 DUF2339 domain-containing
protein 3798031 Ins C−→CTCTGGCGGCCGG A47Fs 99 DUF2339

SMD_3479 YiiG family protein 3881834 Del GAAT−→G T194Fs 100 DUF3829

rsmB 16S rRNA (cytosine(967)-C(5))-
methyltransferase 4243528 Ins G−→GC R191Fs 90 PRK10901
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Table 2. Cont.

L Gene Product Localization Type Nucleotide Change Amino Acid
Change

Frequency
(%) Domain

Tobramycin B rplA 50S ribosomal protein L1 885157 SNP A−→G H172R 93 Ribosomal L1 bact
motB Flagellar motor protein 1081733 SNP A−→T L197Q 95

parE DNA topoisomerase IV
subunit B 1823237 SNP G−→T R291Q 94 PRK05559

SMD_2317
ABC transporter
six-transmembrane
domain-containing protein

2575602 SNP G−→A R287Q 92

SMD_2955 PepSY-associated TM helix
domain-containing protein 3271344 SNP A−→C A466A 91

smeD
Multidrug efflux RND
transporter periplasmic
adaptor subunit

4098218 SNP G−→A Q235K 92 PRK15030

spoT

Bifunctional (p)ppGpp
synthetase/guanosine-3’,5’-
bis(diphosphate)
3’-pyrophosphohydrolase

3846537 Ins A−→ACAGGCGGCG T712Fs 99 SpoT superfamily

C rplA 50S ribosomal protein L1 884715 SNP G−→A A25T 73 Ribosomal L1 bact
SMD_4114 S9 family peptidase 4619837 Ins A−→AGTC H773Fs 99 DAP2 peptidase

D spoT

Bifunctional (p)ppGpp
synthetase/guanosine-3’,5’-
bis(diphosphate)
3’-pyrophosphohydrolase

3847032 SNP C−→T G547S 100 SpoT superfamily

SXT A pip3 Prolyl aminopeptidase 830195 SNP C−→A A46N 70
rnE Rne/Rng family ribonuclease 3139248 Ins A−→ACCGAGCTGGGTG N486Fs 99 Ribonuclease E

B32 pip3 Prolyl aminopeptidase 830195 SNP C−→A A46N 55

smeRv LysR family transcriptional
regulator 1936539 SNP C−→T G266D 100 C-terminal domain of

LysR
SMD_3479 YiiG family protein 3881831 SNP G−→T P195H 100 DUF3829

B64 pip3 Prolyl aminopeptidase 830195 SNP C−→A A46N 53
SMD_1644 DUF47 family protein 1818431 SNP T−→G L205W 100 YkaA

smeRv LysR family transcriptional
regulator 1936735 SNP T−→A N201K 100 C-terminal domain of

LysR
SMD_2325 Hypothetical protein 2584531 SNP T−→C N50E 100
SMD_3621 Pteridine reductase 4056328 SNP T−→G V179G 96 PRK09135
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Table 2. Cont.

L Gene Product Localization Type Nucleotide Change Amino Acid
Change

Frequency
(%) Domain

SXT C pstS Phosphate ABC transporter
substrate-binding protein 1551867 SNP C−→T W215R 92 Periplasmic Binding

Protein Type 2
SMD_4114 S9 family peptidase 4619837 Ins A−→AGTG H773Fs 99 DAP2 peptidase

D folP Dihydropteroate synthase 1841316 SNP G−→C G151A 87 DHPS

cblD CfaE/CblD family pilus tip
adhesin 3834921 Del ATGTACTT−→A Q206Fs 99

L: lineage; SNP: single-nucleotide polymorphism; Ins: insertion; Del: deletion; fs: frame shift; Frequency (%): percentage of reads that contain the variation within a heterogeneous
population; ND: non-determined (IGV Genomics Software v2.9.0 does not determine the frequency of insertion/deletions).
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Figure 1. Distributions of mutations in the evolved lineages: twenty-seven mutations were identified.
Among them, three were found in populations that evolved in the three antibiotics used. One
extra mutation was shared between ciprofloxacin (CIP) and SXT and the other were specific for the
antibiotic used for selection. Four were found in ciprofloxacin-evolved populations, twelve in the
tobramycin (TOB) populations, and seven in the SXT. The white boxes indicate the population in
which that mutation was found. The table below indicates the type of mutation according to the
antibiotic in which the populations evolved. SNP: single-nucleotide variant, Ins: insertions, Del:
deletions. Green A, B, C, and D correspond to the CIP-evolved populations in the antibiotics CIP;
Blue A, B, C, and D correspond to the TOB-evolved population; and A, B32, B64, C, and D to the
SXT-evolved populations.

Moving to ciprofloxacin-evolved populations, four mutations were exclusively identi-
fied in the populations that evolved in the presence of this drug. Genomic changes in the
genes soxR (a redox-sensitive transcriptional activator that contributes to the multidrug
resistant phenotypes of clinical strains) [40], SMD_2503, and SMD_2704 (both of unknown
function), and smeT were found. SmeT is a regulator of smeDEF expression. Mutations in
this regulator deal to the overproduction of the SmeDEF efflux pump, and hence to MDR
in this bacterial species [19].

Twelve genetic changes were found exclusively in the tobramycin-evolved populations.
SNPs in the gene that encodes the L1 50S ribosomal protein, rplA, were detected, which
is consistent with the tobramycin mechanism of action. Again, mutations related to the
SmeDEF efflux pump were found; in this case, an SNP in the gene encoding SmeD, the
periplasmic adaptor subunit of the multidrug efflux transporter SmeDEF. Furthermore, we
identified mutations in genes not previously related to aminoglycosides resistance: glpG,
which encodes an intramembrane serine protease of the rhomboid family; rsmB, an RNA
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regulator that interacts with rsmA, and which overexpression increases the production of N-
acyl-homoserine lactone, pyocyanin, and elastase [41]; motB, which encodes a protein that
integrates into the cell membrane and is part of the flagellar motor protein complex [42];
parE, encoding the DNA topoisomerase IV subunit B and whose mutation renders to
quinolone resistance in E. coli [43], S. typhi [44] or R. anatipestifer [45]; spoT, a synthetase-
hydrolase that regulates the concentration of (p)ppGpp [46]; SMD_3194, an ATP-binding
protein of unknown function; SMD_3405, a putative membrane protein of unknown
function; SMD_1169, an acetyltransferase; SMD_2317, an ABC transporter; and SMD_2955,
an PepSY-associated TM helix domain-containing protein that has been suggested to
function as a controller of peptidase activity within the immediate environmental and, in
addition, protect the cell from lysis.

Finally, seven mutations were found in the SXT-evolved populations. Importantly, this
includes an SNP in the gene smeRv, a transcriptional regulator whose mutation leads to
the overproduction of the SmeVWX efflux pump, whose contribution to the acquisition
of resistance to SXT in single-step selected mutans was previously described in S. mal-
tophilia [47]. Additionally, an SNP in the gene folP, that encodes a dihydropteroate synthase,
the target enzyme of the sulfonamides, was detected. This enzyme confers sulfonamide
resistance by preventing the inhibition of folate synthesis by sulfonamide antibiotics, such
as SXT [48]. Another SNP in the gene SMD_3621, a pteridine reductase related to the
synthesis of folates in bacteria, was also found [49]. Moreover, mutational changes in pstS
(the substrate-binding component of the ABC-type transporter complex pstSACB, involved
in phosphate import [50]), cblD (a pilus assembly protein that is required for surface ex-
pression of cable pili but is not related to antibiotic resistance [51]), and SMD_1644 and
SMD_2325 (two hypothetical proteins with unknown function and for which participation
in antibiotic resistance has not been reported yet) were identified.

Among the mutations, there were 20 SNPs, 4 insertions, and 3 deletions. Notably,
almost all mutant alleles selected in the presence of antibiotics had coverages of >90%,
(Table 2). The identified mutations show the versatility of the resistance mechanisms of
S. maltophilia. We identified mutations in genes encoding RND efflux pumps, oxidative
stress response proteins, outer membrane regulators, resistance regulators, and virulence
determinants. Below, we discuss their functions according to our results.

2.3. Adaptative Trajectories, Cross-Resistance, and Collateral Sensitivity of Evolved Populations

To assess whether the development of antibiotic resistance was specific to the antibi-
otic used for selection or impacted the susceptibility to other antibiotics, the resistance
levels to other antibiotics were measured. Nine families of antibiotics (beta-lactams, fluoro-
quinolones, tetracyclines, macrolides, aminoglycosides, polymyxins, phenols, monobactam,
and phosphonic) were tested. Almost all evolved populations demonstrated increased
resistance or susceptibility to other antibiotics from various structural families, indicat-
ing that some resistance mutations are not specific to ciprofloxacin, tobramycin, and SXT
(Figure 2).

The evolved populations in ciprofloxacin (CIP-A, CIP-B, CIP-C, and CIP-D) showed
cross-resistance to tetracycline, nalidixic acid, and ofloxacin and collateral susceptibility to
SXT and tobramycin. The four tobramycin-evolved populations (TOB-A, TOB-B, TOB-C,
and TOB-D) displayed cross-resistance to tetracycline and collateral sensibility to chlo-
ramphenicol, erythromycin, and ciprofloxacin. Additionally, two tobramycin-evolved
populations (TOB-B, TOB-D) were hypersusceptible to SXT.

Concerning evolved populations in SXT, three populations (SXT-A, SXT-C, and SXT-D)
were unable to acquire high levels of resistance to SXT but presented cross-resistance to
tigecycline, tetracycline, aztreonam, nalidixic acid, or colistin. Furthermore, the two popula-
tions acquiring high levels of SXT resistance (SXT-B32 and SXT-B64) showed cross-resistance
to ciprofloxacin, ofloxacin, aztreonam, nalidixic acid, tetracycline, and chloramphenicol.
These results are consistent with the mutation in smeRV identified in these two populations
that would lead to an overproduction of the SmeVWX efflux pump, which contributes
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to the acquisition of resistance to the aforementioned antibiotics [33]. SXT-B32 and SXT-
B64 also demonstrated collateral susceptibility to tobramycin, streptomycin, ceftazidime,
fosfomycin, polymyxin B, and colistin.
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Figure 2. Collateral susceptibility of the evolved S. maltophilia populations to antibiotics from
different families. MICs fold changes in the 17 fosfomycin-evolved populations, with respect to
the populations that evolved in the absence of antibiotics. Values of at least double or half the
control populations’ MIC were considered significant. CIP, ciprofloxacin; TOB, tobramycin; SXT,
trimethoprim/sulfamethoxazole; TIGE, tigecycline; STR, streptomycin; TETRA, tetracycline; OFX,
ofloxacin; AZT, aztreonam; NAL, nalidixic acid; CEFTA, ceftazidime; CHL, chloramphenicol; FOS,
fosfomycin; ERI, erythromycin; COL, colistin; POL, polymyxin B. A, B, C, and D correspond to the
CIP and TOB-evolved populations in the first two panels. A, B32, B64, C, and D to the SXT-evolved
populations in the third panel.

3. Discussion

In this work, we identified that all the evolved populations reached high levels of
resistance in the presence of the selective pressure exerted by each antibiotic, in comparison
with the populations that evolved in the absence of the drugs. Since the purpose of this
work was to identify stable mutations that can be fixed, only the final evolved populations
were sequenced. We are aware that sequencing intermediate evolved populations will also
provide information on the dynamics of the evolution of antibiotic resistance; however, this
study is beyond the focus of the current work. Twenty-seven mutations were identified.
Among them, twenty correspond to SNPs, three to deletions, and four to insertions. The
mutations affect elements of the outer membrane, oxidative stress response, previously
known resistance determinants, and virulence. We also studied the cross-resistance and
collateral sensitivity of these evolved populations.

Among the mutations found during the course of these evolutions, insertions in the
gene rnE (Ribonuclease E) were identified in populations selected in the presence of the
three antibiotics. This gene plays a central role in RNA processing and metabolism [35],
and it is emerging as a potential antibacterial target in Acinetobacter baumanni [52]. rnE is
required for the maturation of the 5S and 16S rRNAs and the majority of tRNAs, including
the mRNA processing and cleaving of the 5’ leader of the ompA mRNA [53]. We have
found that the S. maltophilia genome encodes a porin orthologous to the Escherichia coli
OpmA and the P. aeruginosa OprF (SMD_2502) [54]. Clinical isolates of P. aeruginosa that
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are antibiotic-resistant to imipenem and polymyxin B and deficient in the major outer
membrane protein OprF have been isolated in a previous work [36]. This result suggests
that the lack of processing of the OpmA mRNA would lead to a decrease of this porin in
the outer membrane, increasing antibiotic resistance to multiple antibiotics. This might
suggest that OmpA/OprF could be a major outer membrane antibiotic transporter in S.
maltophilia as it is in P. aeruginosa [36], since its blockage is enough to confer high-level
ciprofloxacin resistance. This resistance could lead to erythromycin susceptibility too,
leading to increased binding of this antibiotic to its target site in the 50S ribosomal subunit,
since RnE is required for the maturation of rRNAs.

Ciprofloxacin-evolved population CIP-D presented an SNP in a gene encoding a pro-
tein that shows 95% identity with YadA, an adhesin precursor from P. aeruginosa. This
collagen-binding outer membrane protein forms a fibrillar matrix on the bacterial cell
surface that promotes initial attachment and invasion of eukaryotic cells. Although it
also protects the bacteria by being responsible for agglutination, serum resistance, com-
plement inactivation, and phagocytosis resistance, this change has not been related to
antibiotic resistance.

Populations CIP-B and CIP-C shared an SNP in soxR. This redox-sensitive transcrip-
tional activator induces the expression of the RND efflux pump-encoding operon mexGHI-
opmD in P. aeruginosa [55]. Moreover, the constitutive soxS expression caused by single
point mutations in the soxR gene has been shown to contribute to the MDR phenotypes of
clinical strains, and it is sufficient to confer multiple-antibiotic resistance in a fresh genetic
background. The increased soxS expression in E. coli leads to the downregulation of the
expression of the gene encoding the outer membrane porin OmpF [56,57], to a decrease in
cell permeability, and to an increased expression of the genes encoding the AcrAB efflux
pump [58]. All in all, soxRS-mediated antibiotic resistance is a result of the combination
of an increased efflux pump activity and decreased cell permeability [40]. Hence, our
results indicate that SoxR is important for ciprofloxacin resistance in S. maltophilia, as has
been previously described for other organisms like A. baumannii [59], E. coli [40], and K.
pneumoniae [60].

A SNP in the smeDEF regulator, smeT, was found in a ciprofloxacin-evolved population
(CIP-B). Since SmeDEF is a main determinant of MDR in S. maltophilia, the observed cross-
resistance to tigecycline, chloramphenicol, erythromycin, SXT, or tetracycline is consistent
with the fact that these antibiotics are substrates of SmeDEF [61]. Further, the same
substitution, L166Q, has been previously associated with antibiotic resistance in clinical
isolates of S. maltophilia, supporting the reliability of our results [61].

All in all, these results suggest that decreased permeability and the overproduction of
MDR efflux pumps are the main mechanisms driving ciprofloxacin resistance, as well as
the broad cross-resistance caused by this selection.

Regarding tobramycin-evolved populations, populations TOB-A, TOB-B, and TOB-C
presented different SNPs in the gene rplA, encoding the 50S ribosomal protein L1, which
has been previously related to the aminoglycosides’ resistance in S. maltophilia [62].

The populations TOB-B and TOB-D showed molecular changes in spoT. SpoT regulates
the nutritional starvation stringent response [63–65]. Although this synthetase-hydrolase
of the alarmone ppGpp has not been previously related to antibiotic resistance, it has been
proposed that the stringent response can modulate antibiotic resistance and tolerance [66].
It is important to notice that the population TOB-D only presents the spoT mutation and
that the coverage of the mutation was 100%. The fact that no further mutations are found in
the evolved population strongly suggests that this mutation is responsible for the acquired
tobramycin resistance in this population, although more work would be needed to fully
support this statement.

In the population TOB-A, an SNP was found in a gene related to metabolism: glpG. This
gene encodes a rhomboid family intramembrane serine protease required to produce an
extracellular signaling molecule that regulates cellular functions, including peptidoglycan
acetylation, methionine transport, and cysteine biosynthesis. Previously, a glpG mutant of E.
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coli exhibited a slight increase in resistance to β-lactams [67]. Interestingly, the tobramycin-
evolved population TOB-A presents greater cross-resistance levels to ceftazidime than the
other populations that evolved on tobramycin.

Another important change in this TOB-A population is an insertion in the gene encod-
ing the ribosomal RNA small subunit methyltransferase B (RsmB), a regulatory RNA of the
global repressor RsmA in P. aeruginosa [41]. RsmA regulates the Type III Secretion System
(T3SS) in P. aeruginosa. This system has been proposed to play a role in the expression of
MDR efflux pumps in P. aeruginosa. A reduction in T3SS expression in this bacterial species
is associated with the overproduction of MexCD-OprJ and MexEF-OprN [68]. Hence, com-
pared to the P. aeruginosa wild-type strain, the rsmA mutant presents increased resistance to
amikacin, nalidixic acid, trimethoprim, gentamicin, and ceftazidime. The confirmed role
of RsmA in antibiotic resistance implies that RsmA could be a possible global regulator
involved in regulating the cross-talk between antibiotic resistance and the virulence associ-
ated with T3SS [69]. Thus, this mutation could lead to an unregulated RsmA that produces
increased antibiotic resistance.

Furthermore, we identified an SNP in smeD in the population TOB-B. To date, only
mutations in the SmeDEF regulator protein (SmeT) have been described to be related to an
MDR phenotype. However, it is also known that mutations involving the subunits of efflux
pumps in this bacterial species (changes in the SmeH structural element of the SmeGH
efflux pump) are involved in the acquisition of resistance [70], suggesting that this mutation
could be related to an enhanced efflux of antibiotics such as ofloxacin or tetracycline.

Moving to SXT-evolved populations, we achieved a final concentration of 3MIC in
three populations (A, C, and D) and final concentrations of 32MIC (SXT-B32) and 64MIC
(SXT-B64) in two other populations. These technical issues might indicate that the acquired
resistance to this antibiotic is complex and dependent on a leading mutation. The two
highly resistant populations shared a mutation in the smeRv regulator. This mutation would
lead to an overproduction of the SmeVWX efflux pump, which contributes to the acquisition
of resistance to SXT, ciprofloxacin, ofloxacin, nalidixic acid, levofloxacin, tetracycline, and
chloramphenicol [33], antibiotics to which these two populations are cross-resistant.

Population SXT-C presented a mutation in the gene pstS, the substrate-binding com-
ponent of the ABC-type transporter complex PstSACB involved in phosphate import [50].
The Pst system encoded by the pst operon (pstSCAB-phoU) forms a phosphate transporter
across the cytoplasmic membrane. Mutations in this operon have been shown to influence
antibiotic susceptibility to polymyxin in E. coli. This effect is due to changes in the expres-
sion of RND, MFS, and ABC transporters influenced by pstC disruption [71]. In addition,
mutations in this gene significantly decrease bacterial adherence, invasion, motility, and
biofilm-forming ability in A. baumannii [72].

Population SXT-D presented a mutation in the gene folP that encodes a dihydropteroate
synthase, the target enzyme of sulfonamide. As mentioned, this enzyme prevents the
inhibition of folate biosynthesis by sulfonamide antibiotics, such as the one included in
SXT, thus conferring sulfonamide resistance. Previous studies related folP point mutations
with SXT resistance in Streptococcus mutans [48].

In order to raise high-level SXT resistance, the population SXT-B64 presented a muta-
tion in two hypothetical proteins with unknown function, SMD_1644 and SMD_2325, and
in a pteridine reductase. It has been previously studied that overproduction of the pteri-
dine reductase 1 (Ptr1) by gene amplification confers methotrexate resistance in Leishmania
promastigotes [73]. However, the reasons why mutations in this gene are selected by SXT in
S. maltophilia remain to be clarified.

Finally, in some of the populations involved in ciprofloxacin (CIP-C and CIP-D) and
SXT (SXT-A, SXT-B32, and SXT-B64) resistance, mutations in the gene pip3, encoding a
prolyl aminopeptidase, were detected. Pip3 is a regulator of a major facilitator antiporter
involved in pristinamycin resistance in Streptomyces coelicolor [39]. Whether or not it plays a
similar role in S. maltophilia antibiotic resistance, regulating the expression of a drug efflux
pump, remains to be established.
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In conclusion, resistance to all these antibiotics is related to permeability changes
and overexpression of the genes encoding MDR efflux pumps. This result would indicate
the need to introduce new antibiotics or new combinatory therapies, together with the
development of efflux pump inhibitors, to treat S. maltophilia [19] since high-level resistance
is rapidly acquired. Significantly, all the populations that evolved in ciprofloxacin showed
collateral susceptibility to tobramycin, and all populations that evolved in tobramycin
were susceptible to ciprofloxacin. Reciprocal collateral sensitivity is not a frequent situa-
tion [74]. When found, it favors the use of combinations of the antibiotics involved. Our
findings support that the sequential combinatory use of ciprofloxacin and tobramycin
might improve the treatment outcome of S. maltophilia infections. Nevertheless, we are
aware that the translation of these results into clinical practice requires the analysis of
the robustness of the observed evolution pathways in clinical isolates presenting different
genomic backgrounds [74], a study that is beyond the purposes of the current work.

4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions

The wild-type clinical isolate S. maltophilia D457 was used as the parental strain for the
evolution experiments [75]. All the experiments were performed at 37 ◦C in Mueller–Hinton
broth with shaking at 250 rpm in glass tubes.

4.2. Experimental Evolution

Experimental evolution was performed with the wild-type strain D457 [75] growing
in the presence of increasing concentrations of ciprofloxacin, tobramycin, and SXT. Sixteen
independent bacterial populations (four controls without antibiotics, four populations
challenged with ciprofloxacin, four populations challenged with tobramycin, and four
populations challenged with SXT). Cultures were grown in parallel in Mueller-Hilton
broth at 37 ◦C and 250 rpm in independent glass tubes. Cultures were initially grown
at the maximum concentration of the antibiotics that allowed growth in Mueller–Hinton
broth. Serial passages were performed by inoculating 1 µL of bacterial cell cultures in
fresh medium containing the same antibiotic concentration every 24 h for 2 days. The
initial concentrations used were 0.5 µg/mL ciprofloxacin, 0.5 µg/mL tobramycin, and
0.25 or 0.5 µg/mL SXT. Every three days, the concentration of the drugs was doubled.
Ciprofloxacin and tobramycin concentrations increased over the evolution from the initial
MIC up to 32MIC. As stated, MIC is defined as the lowest concentration of an antibiotic
that inhibits the growth of a specific bacterial strain [76]. From SXT, 5 populations were
started in 0.5 µg/mL SXT (3 grew until a final concentration of 3MIC and 1 until 32MIC).
An extra population started at 0.25 µg/mL was grown until a final concentration of 64MIC.
Every three days, samples from each culture were taken and preserved at −80 ◦C for future
investigation. The procedure was repeated for 21 consecutive days.

4.3. DNA Extraction and Whole-Genome Sequencing

At the end of the evolution assays, the total genomic DNAs from the evolved popu-
lations were extracted. The genomic DNA extraction was performed with the Chemagic
DNA H96 bacterial kit (CMG-799 Chemagic) using the Chemagic 360/MSMI instrument
(PerkinElmer, Waltham, MA, USA). The DNA quality assay was performed with an Agilent
2200 TapeStation system from the Translational Genomics Unit (Ramón y Cajal Institute in
Madrid, Spain). Library construction and WGS were performed by the Oxford Genomics
Centre (Oxford, United Kingdom). Pair End Libraries (2 × 150 bp) were sequenced using
an Illumina NovaSeq6000 system (San Diego, CA, USA). The coverage was greater than
150× for all the samples.

4.4. Identification of Mutations

The variant calling and VCF (Variant Call Format) file were created with Bactmap
v1.0. [77] against the reference genome of the strain S. maltophilia D457 (GenBank accession
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number NC_017671.1). BCFtools v1.19. [78] were used for filtering and binding individual
CVFs. Variants were then filtered against the D457 laboratory wild-type strain.

4.5. Antimicrobial Susceptibility Assays

MICs for the antibiotics ciprofloxacin, tobramycin, SXT, tigecycline, streptomycin,
tetracycline, ofloxacin, aztreonam, nalidixic acid, ceftazidime, chloramphenicol, fosfomycin,
and erythromycin were determined on Mueller–Hinton agar plates. MIC of colistin and
polymyxin B were determined on Mueller–Hinton II agar plates. MIC test strips (Liofilchem,
Roseto degli Abruzzi, Italia) were used in all the cases, and the plates were incubated for
20 h at 37 ◦C.
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