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Abstract: Antimicrobial resistance (AMR) is a growing public health problem in the One Health
dimension. Artificial intelligence (AI) is emerging in healthcare, since it is helpful to deal with
large amounts of data and as a prediction tool. This systematic review explores the use of AI in
antimicrobial stewardship programs (ASPs) and summarizes the predictive performance of machine
learning (ML) algorithms, compared with clinical decisions, in inpatients and outpatients who need
antimicrobial prescriptions. This review includes eighteen observational studies from PubMed,
Scopus, and Web of Science. The exclusion criteria comprised studies conducted only in vitro,
not addressing infectious diseases, or not referencing the use of AI models as predictors. Data
such as study type, year of publication, number of patients, study objective, ML algorithms used,
features, and predictors were extracted from the included publications. All studies concluded that ML
algorithms were useful to assist antimicrobial stewardship teams in multiple tasks such as identifying
inappropriate prescribing practices, choosing the appropriate antibiotic therapy, or predicting AMR.
The most extracted performance metric was AUC, which ranged from 0.64 to 0.992. Despite the risks
and ethical concerns that AI raises, it can play a positive and promising role in ASP.

Keywords: artificial intelligence; machine learning; antimicrobial stewardship; antimicrobial
resistance

1. Introduction

One Health is, according to the One Health High-Level Expert Panel, “an integrated,
unifying approach that aims to sustainably balance and optimise the health of people,
animals and ecosystems” [1]. This inextricable link between these actors applies to various
fields of health and, inherently, to the growth of antimicrobial resistance (AMR).

AMR is a growing public health problem due to its effect in reducing the effectiveness
of antimicrobial therapy and increasing the severity, incidence, and cost of infection [2].
AMR’s emergence, evolution, and spread stem from (i) the widespread and inadequate
antimicrobial use in animals and clinical practice, (ii) contaminated environments, (iii) and
insufficient infection control measures [3]. This increases the threat of the emergence of
super-resistant bacteria [4]. The rapid development and dissemination of the mechanisms
of resistance through antibiotic resistance genes (ARGs) to antibiotics used in the clinical
setting, adding to the slow and infrequent access to new antimicrobials in recent years,
makes AMR one of the most severe threats to global public health in the 21st century.

AMR levels are detected by antimicrobial susceptibility testing (AST). However, this
method involves culture of the microorganisms, which can take 2–5 days. This delay in
the prescription of the most effective antimicrobials leads to the prolongation of empiric
therapy, contributing to the rise of AMR, so measures must be taken to combat this,
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including improved communication and education about the topic, adequate hygiene for
infection control, surveillance practices, antimicrobial stewardship, swifter methods for
AMR identification, and the use vaccines and bacteriophages [2,3].

Antimicrobial stewardship programs (ASPs) are a set of interventions aimed at op-
timizing the use of antimicrobials and, therefore, reducing costs, improving therapeutic
outcomes, and reducing AMR [5]. ASPs were introduced in 1974 by McGowan and Fin-
land [6], are applied to human healthcare, animal health, and the environment, and involve
the optimal selection, dosage, and duration of therapy as well as the control of its use, which
can be achieved with programs that recommend the appropriate adjustments. Typically, an
ASP may involve pharmacists and infectious diseases physicians, and the tools available
for these teams include limiting formularies, restricting certain classes of antimicrobials,
cycling of antibiotics, decision support, and staff education about the optimal antimicrobial
considering the patient [5]. These interventions are primarily used in hospital settings
such as in intensive care units (ICUs), pediatrics, and neutropenic patients [7–9]. Still,
efforts should be made for their application in outpatient settings to achieve a significant
impact on the reduction of AMR [10]. The measurement of the impacts of ASPs can be
categorized into antibiotic use, process and quality measures, costs, and clinical outcome
measures, with the latter being the most relevant focus in practice [11]. There are challenges
in implementing ASPs, including a lack of motivation for change and awareness, a lack
of oversight and control of antimicrobial use in many countries, and over-the-counter
therapy [12].

Artificial intelligence (AI) began developing in the 1950s, and its first use in healthcare
was in the form of expert systems, which were based on rules provided by medical experts,
but were never applied in practice [13]. Machine learning (ML) was developed to overcome
the limitation of expert systems that need a large number of rules captured, since ML can
find new rules from the data provided, based on their quality and volume [13], benefitting
mainly from the enormous amount of health data gathered after the implementation of
electronic health records. As some real patient situations are more complex and hetero-
geneous than a single guideline or the experience of an expert, ML can be a tool used to
help decision-making in these situations, since it can analyze a great number of electronic
records in a way similar to experts’ logical deduction. ML algorithms can be supervised
or unsupervised, and some examples include support vector machines, artificial neural
networks, random forests, decision trees, and logistic regression [10,14]. Previous studies
have shown that this technology has been used in numerous healthcare fields, includ-
ing infectious diseases [13]. It has been proved to be useful in prediction [15] and early
detection [16] of sepsis, diagnosis of infection [17], prediction of treatment success [18],
prediction of antimicrobial resistance [19], and treatment selection [20], meaning that it
may be an effective tool to put into practice in antimicrobial stewardship teams, bettering
their programs.

This systematic review aims to explore the use of AI in ASPs and summarizes the
predictive performance of ML algorithms used in antimicrobial stewardship, compared
with clinical and antimicrobial stewardship teams’ decisions, in inpatients and outpatients
who need antimicrobial prescription. Studies were selected and screened from January
2010 until December 2022 in the electronic bibliographic databases of PubMed, Scopus, and
Web of Science by using a combination of terms such as artificial intelligence, antimicrobial
resistance, and stewardship. The protocol of this review was registered in the PROSPERO
database (CRD42023470594).

2. Results
2.1. Characteristics of the Included Studies

A total of 4658 citations were identified from the three databases and, after removing
the duplicates, 2839 were eligible for screening. A total of 1086 articles were assessed for
eligibility and eighteen [20–37] were included in this systematic review (Figure 1). Most
studies were excluded because they did not study the application of machine learning
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models nor their predictive performance or because they were not applied to hospital
inpatients and outpatients with infections, such as studies in vitro or regarding drug
development.
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Figure 1. PRISMA flowchart representing the systematic search of the relevant studies.

Characteristics of the eighteen included studies are available in Table 1. All the studies
were published since 2016 and in English. One of the studies is an abstract presentation
at a congress in video format [37]. One of the studies was from a low-/middle-income
country [36], with the rest being from high-income countries. The number of features
included in the machine learning algorithms ranged from 6 to 788. The patients included
were from different settings; one (5.5%) study was designed for outpatients [35], and two
were only applied to ICU patients [26,29]. The number of patients ranged from 48 (on a
validation set) to 382,943. Two [20,34] of the studies had a prospective design, with the
remaining being retrospective observational studies.

The most common ML algorithms used were logistic regression (12.1%), random
forest (12.1%), support vector machine (7.6%), and k-nearest neighbors (6.1%) (Figure 2).
The measurements used for predictive performance were not consistent between different
studies, but the area under the curve (AUC) (15.9%), sensitivity (9.1%), specificity (8.0%),
and precision (6.8%) were the most regularly used (Figure 3).
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Table 1. Characteristics of the included studies.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[20] 2016 Canada 1
February to
November

2012

Patients monitored
by APSS who

received at least one
prescription of

piperacillin–
tazobactam at the
Centre Hospitalier

Universitaire de
Sherbrooke

421 hospitalizations Not
specified Not specified

To evaluate the
ability of the
algorithm to

discover rules
for identifying
inappropriate

prescriptions of
piperacillin-
tazobactam

Supervised
learning

module of
APSS, temporal

induction of
classification

models
algorithm

PPV, sensitivity,
accuracy,
precision

The combined system achieved
an overall PPV (precision) of

identifying confirmed
inappropriate prescriptions of

74% (95% CI, 68–79), with
sensitivity (recall) of 96% (95%
CI, 92–98), and accuracy of 79%

(95% CI, 74–83).

[21] 2022 Netherlands 1 January 2017–
December 2018

Inpatients of the
UMC Utrecht

906 cultures from
810 patients UTI 36

To report on
the design and
evaluation of a

CDSS to
predict UTI
before the

urine culture
results are
available

CDSS using the
RESSEL
method;

supervised
models

implemented
in the

Scikit-learn
package: LR,

SVM, RF, XGB
and k-NN

Accuracy,
sensitivity,

specificity, PPV,
NPV, AUC,
Nneg, Npos

The predictive performance of
the best-performing

semi-supervised model (RF
enhanced with RESSEL) had an

accuracy of 76.77 (±0.97),
sensitivity of 81.28 (±1.16),

specificity of 70.75 (±1.85), and
AUC of 80.02 (±1.00).

[22] 2022 USA 5

Stanford
hospitals:

January 2009–
December 2019;

Boston
hospitals:
2007–2016

Patients who
presented to

Stanford emergency
departments,

Massachusetts
General Hospital,
and Brigham and

Women’s Hospital
in Boston

Stanford: N = 8342
infections from 6920

adult patients. Boston:
N = 15,806

uncomplicated
urinary tract

infections from 13,862
unique female

patients. Our dataset
is split by time into
training, validation,

and test sets
containing

Ntrain = 5804 patient
infections from 2009 to

2017, Nval = 1218
patient infections from
2018, and Ntest = 1320
patient infections from

2019.

Stanford:
unspecified

infection;
Boston: UTI

Boston: The
total number of
features used
in this portion
of the analysis

was 788.
Stanford: In

total, the
sparse feature

matrix
contained

43,220 columns.

To investigate
the utility of
ML-based

clinical
decision

support for
antibiotic

prescribing
stewardship.

LR, RF,
gradient

boosted tree,
lasso, ridge

AUROC,
prevalence,

average
precision,

antibiogram
coverage rate

Stanford dataset: personalized
antibiograms reallocate clinician

antibiotic selections with a
coverage rate of 85.9%, similar
to clinician performance (84.3%
p = 0.11). The best model class

for selection of
vancomycin+meropenem was

gradient boosted tree, with
average precision of 0.99 [0.99,
0.99] and AUROC of 0.73 [0.65,

0.81].
Boston dataset: personalized
antibiograms coverage rate of

90.4%, a significant
improvement over clinicians
(88.1% p < 0.0001). The best

model class for the selection of
levofloxacin was LASSO, with

an average precision of 0.96
[0.95, 0.96] and AUROC of 0.64

[0.60, 0.67].
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Table 1. Cont.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[23] 2020 Greece 1 January 2017–
December 2018

ICU patients in a
public tertiary

hospital
345

Invasive,
respiratory,
urinary, mu-
cocutaneous,
and wound
infections

23,067 (binary,
numerical, and
categorical in

total)

To compare the
performance of

eight ML
algorithms to

assess
antibiotic

susceptibility
predictions

ML toolkit:
WEKA—Data

Mining
Software in

Java
Workbench;
LIBLINEAR

LR and linear
SVM; SVMs;

SMO;
instance-based

learning
(k-NN); J48; RF;
RIPPER; MLP

TP rate, FP rate,
precision,

recall,
F-measure,

mmc, AUROC,
precision-recall

plot

The best performances were
obtained with the RIPPER

algorithm (F-measure of 0.678)
and the MLP classifier (AUROC

of 0.726).

[24] 2022 Taiwan 25 May 2013 to
May 2014

Patients with
healthcare-
associated

infections receiving
at least one

antimicrobial drug

7377

Healthcare-
associated
infection
(blood-
stream,
urinary,

pneumonia
and surgical

site
infection).

26

To develop
accurate and
efficient ML
models for
auditing

appropriate
surgical

antimicrobial
prophylaxis

Supervised ML
classifiers

(Auto-WEKA
(Bayesian

optimisation
method), MLP

(artificial
neural

network),
decision tree,

SimpleLogistic
(LogitBoost e

CART
algorithm),

bagging,
SMOTE and
AdaBoost)

TP rate, TN
rate, FP, FN,

AUC, precision,
specificity,
sensitivity,
weighted

average for the
multiclass

model,
execution time

The ML technique with the best
performance metrics was the

MLP, with a sensitivity of 0.967,
specificity of 0.992, precision of

0.967, and AUC of 0.992.

[25] 2022 Israel 1 June 2007 to
January 2019

Patients with UTI
and wound

infections from
Maccabi Healthcare

Services (MHS)
with at least one

record of a positive
wound infection

culture

140,349 UTI and 7365
wound infections.

UTI and
wound Not specified

To understand
and predict the
personal risk of

treatment-
induced gain
of resistance

ML Personal
predicted risk

Choosing the antibiotic
treatment with the minimal

ML-predicted risk of emergence
of resistance reduces the overall
risk of emergence of resistance
by 70% for UTIs and 74% for

wound infections compared to
the risk for physician-prescribed

treatments.
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Table 1. Cont.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[26] 2022 USA 1 2008 to 2019

Patients who
received

intravenous
antibiotic treatment

for a duration
between 1 and

21 days during an
ICU stay, at Beth
Israel Deaconess
Medical Centre,

Boston

18,988 (22,845 unique
stays)

Respiratory
(pneumonia)

and UTI
43

To estimate
patients’ ICU

LOS and
mortality

outcomes for
any given day

under the
alternative

scenarios of if
they were to

stop vs.
continue
antibiotic
treatment

AI-based CDSS:
recurrent

neural network
autoencoder

and a synthetic
control-based
approach. It

uses a
bidirectional

LSTM
autoencoder;
PyTorch was

used to create a
bidirectional
LSTM RNN

Patients’ ICU
LOS (days,
mean delta,
root mean

squared error),
mortality

outcomes, to
stop vs.

continue ATB
treatment

(mean days
reduction);

day(s), mean
delta (days,

p-value),
MAPE, MAE,

RMSE,
AUROC

The model reliably estimates
patient outcomes under the

contrasting scenarios of
stopping or continuing ATB

treatment: impact days where
the potential effect of the
unobserved scenario was

assessed showed that stopping
ATB therapy earlier had a

statistically significant shorter
LOS (mean reduction 2.71 days,
p-value < 0.01). No impact on

mortality was observed.

[27] 2021 Greece 1 January to
December 2018

Patients admitted to
the internal

medicine wards of a
public hospital

499 patients
(11,496 instances)

Not
specified

6 (attributes of
sex, age,

sample type,
Gram stain,

44 antimicrobial
substances,

and the
antibiotic

susceptibility
results)

To assess the
effectiveness of

AutoML-
trained models
to predict AMR

AutoML
techniques

using
Microsoft

Azure AutoML;
SMOTE;

algorithms:
StackEnsem-

ble,
VotingEnsem-

ble,
MaxAbsScaler,

LightGBM,
SparseNormal-

izer,
XGBoostClassi-

fier

AUROC,
AUCW, APSW,
F1W, and ACC

The stack ensemble technique
achieved the best results in the
original and balanced dataset,
with an AUCW metric of 0.822

and 0.850, respectively.
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Table 1. Cont.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[28] 2020 EUA 1 December 2015
to August 2017

Patients
hospitalized who

received at least one
antimicrobial from a

list of those
routinely tracked by

the ASP at
University of

California, San
Francisco Medical

Centre

9651 Bloodstream,
UTI, etc. More than 200

To predict
whether
antibiotic
therapy
required

stewardship
intervention on
any given day
compared to
the criterion
standard of

note left by the
antimicrobial
stewardship
team in the

patient’s chart

LR and
boosted tree

models

AUROC, Brier
score,

sensitivity,
specificity, PPV,

and NPV

Logistic regression and boosted
tree models had AUROCs of

0.73 (95% CI, 0.69–0.77) and 0.75
(95% CI, 0.72–0.79) (p = 0.07),

respectively.

[29] 2020 Israel 1 2001 to 2012

ICU adult patients
are patients

suspected of having
a community-

acquired bacterial
infection

10,290 patients
(12,232 ICU
encounters)

Non-
specified
bacterial
infection

Not specified

To identify ICU
patients with

low risk of
bacterial

infection as
candidates for
earlier EAT dis-

continuation

ML algorithms,
including ridge
regression, RF,
SVC, XG Boost,

K- NN, and
MLP

AUROC, NPV,
F1, precision,
recall, high
sensitivity

threshold, TN,
FP, FN, TP

Using structured longitudinal
data collected up to 24, 48, and
72 h after starting EAT, the best

models identified patients at
low risk of bacterial infections
with AUROCs up to 0.8 and

negative predictive
values > 93%. The T = 24 h RF
model was the best performing

model within this timepoint:
AUC of 0.774, F1 of 0.424, NPV

of 0.944, precision of 0.277,
recall of 0.905, high sensitivity

threshold of 0.258.

[30] 2019 USA 27
October 2015 to

September
2017

Patients from the
Duke Antimicrobial

Stewardship
Outreach Network
(DASON) (Duke

University School of
Medicine)

382,943 Not
specified

More than
100 features,

including
demographic
data, length of

stay,
comorbidity,

etc.

To identify
patient- and
facility-level
predictors of
antimicrobial

usage in
hospitalized

patients using
an ML

approach,
which can be

used to inform
a risk

adjustment
model to
facilitate

assessment of
antimicrobial

utilization

SVR and CB
models

Root-mean-
square error

values

Both the SVR and CB models
show better predictive accuracy

than the null LM and null
NB-GLM models (null

statistical models) for all SAAR
(external comparator) groups.

CB performed better than SVR,
according to the RMSE values
(5.51 vs. 7.17 for all antibiotics,

respectively).
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Table 1. Cont.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[31] 2021 USA 3
October 2015 to

September
2017

Adult and pediatric
inpatient from Duke
University Health

System

170,294 Not
specified 204

To evaluate
whether
variables

derived from
the electronic
health records

accurately
identify

inpatient
antimicrobial

use

A 2-stage RF
ML modeling

AUROC and
absolute error

Models accurately identified
antimicrobial exposure in the

testing dataset: the majority of
AUCs were above 0.8, with a

mean AUC of 0.85.

[32] 2022 USA 1 July 2017 to
December 2019

Patient with
antimicrobial orders
from University of
Maryland Medical

Centre

17,503

Sepsis/bacteremia,
bone/joint,

central
nervous

system, car-
diac/vascular,
gastrointesti-

nal
genitouri-

nary,
respiratory,
nonsurgical
prophylaxis,
skin and soft

tissue
infection,

mycobacte-
rial infection,
neutropenia,

surgical
prophylaxis

33

To understand
which patient
and treatment
characteristics
are associated
with either a

higher or lower
likelihood of

intervention in
a PAF program
and to develop

prediction
models to
identify

antimicrobial
orders that

may be safely
excluded from

the review

LR, RF

Sensitivity,
specificity,

C-statistic, the
out-of-bag
error rate

The RF model had a C-statistic
of 0.76 (95% CI, 0.75–0.77), with
a sensitivity and specificity of

78% and 58%, respectively. This
model would reduce review

caseloads by 49%.

[33] 2018 Italy 1 March 2012 to
2019

Patients with
nosocomial (UTI)
from Principe di

Piemonte Hospital
in Senigallia

1486 UTI
6 (5 predictors

+ MDR
resistance)

To design,
develop, and

evaluate, with
a real antibiotic

stewardship
dataset, a
predictive

model useful
for predicting

MDR UTI
onset after

patient
hospitalization

Catboost,
support vector
machine, and

NN

Accuracy,
AUROC,

AUC-PRC, F1
score,

sensitivity,
specificity,

MCC. FP, FN,
TP, and TN

The ML method catboost had
the best predictive results (MCC
of 0.909; sensitivity of 0.904; F1

score of 0.809; AUC-PRC of
0.853, AUROC of 0.739; ACC of

0.717).
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Table 1. Cont.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[34] 2020 Singapore 1
June 2016 to
November

2018

Patients with
uncomplicated

URTI at the
emergency

department at Tan
Tock Seng Hospital

715

Upper
respiratory

tract
infections

50 (univariate
analysis), 8

included in the
algorithm

To develop
prediction

models based
on local clinical
and laboratory
data to guide

antibiotic
prescribing for
adult patients

with
uncomplicated

upper
respiratory

tract infections

LR models,
LASSO, and

CART

AUC,
sensitivity,

specificity, PPV,
NPV

The AUC on the validation set
for the models was similar:

LASSO: 0.70 [95% CI: 0.62–0.77],
LR: 0.72 [95% CI: 0.65–0.79],
decision tree: 0.67 [95% CI:

0.59–0.74].

[35] 2020 USA 2 2007 to 2016

Patients presenting
with uncomplicated

UTI at
Massachusetts

General Hospital
and the Brigham

and Women’s
Hospital in Boston

10,053 (training
dataset); 3629 (test set) UTI 8

To predict
antibiotic

susceptibility
using

electronic
health record

data and build
a decision

algorithm for
recommending
the narrowest

possible
antibiotic to

which a
specimen is
susceptible

LR, decision
tree, and RF

models

AUROC, FN
rates

Decision trees and RF were
excluded based on their poor

validation set performance and
relative lack of interpretability.

The LR model provided
antibiotic stewardship for a

common infectious syndrome
by maximizing reductions in

broad-spectrum antibiotic use
while maintaining optimal
treatment outcomes. The
algorithm achieved a 67%

reduction in the use of
second-line antibiotics relative

to clinicians and reduced
inappropriate antibiotic therapy

by 18%, close to the rate of
clinicians.

[36] 2019 Cambodia 1 February 2013
to January 2016

Children with at
least one positive

blood culture from
Angkor Hospital for

Children

195 (training set); 48
(model validation) Bloodstream 35

To predict
Gram stains
and whether

bacterial
pathogens
could be

treated with
standard
empiric

antibiotic
regimens

RF, LR,
decision trees

constructed via
recursive

partitioning,
boosted

decision trees
using adaptive
boosting, linear

SVM,
polynomial
SVM, radial
SVM, and

k-NN

AUROC

The RF method had the best
predictive performance overall:
AUC of 0.80 (95% CI 0.66–0.94)
for predicting susceptibility to
ceftriaxone, 0.74 (0.59–0.89) for
susceptibility to ampicillin and
gentamicin, 0.85 (0.70–1.00) for

susceptibility to neither, and
0.71 (0.57–0.86) for Gram stain

result.
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Table 1. Cont.

Study Year of
Publication Country No.

Centers
Study Time

Frame Target Population No. Patients Infection
Site No. Features Objective Algorithm Performance

Measurement Main Results

[37] 2022 Italy 2 January 2012 to
December 2020

Women affected by
recurrent UTI who

had undergone
antimicrobial
treatment for

uncomplicated
lower UTI

1043 Recurrent
UTI Not specified

To define an
NN for

predicting the
clinical and mi-
crobiological

efficacy of
antimicrobial
treatment of a
large cohort of

women
affected by

recurrent UTIs
for use in
everyday

clinical practice

NN Sensitivity,
specificity, HR

The use of artificial NN in
women with recurrent cystitis
showed a sensitivity of 87.8%

and specificity of 97.3% in
predicting the clinical and

microbiological efficacy of the
prescribed antimicrobial

treatment.

Notes: APSS—antimicrobial prescription surveillance system; ICU—intensive care unit; CI—confidence interval; CDSS—clinical decision support system; UTI—urinary tract
infection; RESSEL—reliable semi-supervised ensemble learning; RF—random forest; PPV—positive predictor value; NPV—negative predictive value; AUC—area under the curve;
AUROC—area under the ROC curve; Nneg—the number of UTI-negative labeled cultures; Npos—the number of UTI-positive labelled cultures; N—number; Ntrain—number
in training set; Nval—number in validation set; Ntest—number in test set; TP—true positive; TN—true negative; FP—false positive; FN—false negative; Mmc—a correlation
coefficient; LOS—length of stay; MAPE—mean absolute; MAE—mean absolute error; RMSE—root-mean-squared error; AUCW—area under the curve-weighted; APSW—average
precision score-weighted; F1W—F1 score-weighted; ACC—accuracy; ML—machine learning; LR—logistic regression; SVM—support vector machine; XGB—eXtreme Gradient
Boosting; NN—nearest neighbors; SMO—sequential minimal optimization; MLP—multilayer perceptron; LSTM—long short-term memory; RNN—recurrent neural network;
ATB—antibiotic; AutoML—automated machine learning; SMOTE—synthetic minority oversampling technique; EAT—empiric antibiotic therapy; SVC—support vector classifier;
SVR—support vector regression; CB—cubist regression; LM—linear model; null NB-GLM model—negative binomial generalized linear model; SAAR—standardized antimicrobial
administration ratio; PAF—prospective audit with feedback; MDR—multidrug resistant; AUC-PRC—area under precision recall curve; MCC—Matthews correlation coefficient;
HR—hazard ratio. Scikit-learn package—available at https://scikit-learn.org/stable/ (accessed on 24 March 2024). WEKA—Data Mining Software—WEKA 3.6. Auto-WEKA—2.0.
Pytorch—https://pytorch.org/ (accessed on 24 March 2024). Microsoft Azure AutoML—https://learn.microsoft.com/en-us/azure/?product=popular (accessed on 24 March 2024).
SMOTE—https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/smote?view=azureml-api-2 (accessed on 24 March 2024).

https://scikit-learn.org/stable/
https://pytorch.org/
https://learn.microsoft.com/en-us/azure/?product=popular
https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/smote?view=azureml-api-2
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Figure 3. Frequency of the most used performance metrics (AUC—area under the curve;
PPV—positive predictive value; NPV—negative predictive value; TP—true positive; FP—false
positive; FN—false negative; TN—true negative).

The features included in the algorithms were divided into the following groups: demo-
graphics, adult patients, pediatric patients, clinical, laboratory/microbiological, comorbidi-
ties, type of infection, and ICU. The most used features were demographical followed by
laboratory/microbiological. Information about the features used in each study is available
in Table 2.
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Table 2. Characteristics of the features of the included studies.

Study Demographics Adult Paediatric Clinical Laboratory/Microbiological Comorbidities Type of
Infection ICU

[20] Yes Yes No Yes Yes No No Yes

[21] Yes Yes Yes Yes Yes Yes Yes No

[22] Yes Yes No Yes Yes Yes Yes No

[23] Yes Yes No No Yes No Yes Yes

[24] Yes Yes Yes Yes No No Yes Yes

[25] Yes Yes No Yes Yes Yes Yes Not specified

[26] Yes Yes Not
specified Yes Yes No No Yes (only ICU

patients)

[27] Yes Yes No No Yes No Yes No

[28] Yes Yes No Yes Yes No Yes Yes

[29] Yes Yes No Yes Yes Yes Yes Yes (only ICU
patients)

[30] Yes Yes No Yes Yes Yes Yes Not specified

[31] Yes Yes Yes Yes Yes Yes Not
specified Yes

[32] Yes Yes No Yes Yes No Yes Not specified

[33] Yes Yes Not
specified No Yes No Yes Not specified

[34] Yes Yes No Yes Yes Yes Yes No

[35] Yes Yes No Yes Yes Yes Yes Yes

[36] Yes No Yes Yes Yes No Yes Yes

[37] Yes Yes No Yes Yes Not specified Yes Not specified

Note: ICU—intensive care unit.

The most common validation method was k-fold cross-validation (fivefold and tenfold)
to avoid overfitting. Not all included studies provided information about handling missing
data or methods to avoid overfitting, and two studies did not reference the model validation
method [20,37]. Corbin C.K. et al. [22] replicated the process on an external validation
cohort in Boston.

2.2. Risk of Bias/Quality Assessment

All the studies were rated as being of “fair quality” by the NIH Quality Assessment
Tool for Observational Cohort and Cross-Sectional Studies; fourteen studies were rated
as 57.1% and four [22,26,32,35] were rated as 64.3%. The participation rate, variation in
amount or level of exposure, and loss to follow-up criteria were not applied to any of the
studies. Only one study [35] provided a sample size justification or power description. No
study reported information about blinding the assessors, and only three studies [22,26,32]
met the criterion on the statistical adjustments of potential confounding variables. The
answer to each of the fourteen criteria, as well as the quality rating, are available in Table 3.

The risk of bias (ROB) and the applicability for model prediction of the eighteen
included studies were also assessed by PROBAST (Table 4). Only two studies were ranked
as being of “low concern” in the analysis domain [22,24]; six studies were defined as
being of “unclear concern” [20,21,23,25,26,29], and ten were ranked as being of “high
concern” [27,28,30–37]. In these studies, no information was provided regarding how
missing data had been handled. Overall, only one study was rated as having a low
ROB [24]. Regarding applicability, one study ranked as being of “high concern” and as
having a high ROB due to the lack of participant information and lack of definition of the
inclusion and exclusion criteria [27].
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Table 3. Risk of bias assessment of the included studies by NIH Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies.

Criteria\
Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Quality Rating

[20] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[21] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA No Fair (57.1%)

[22] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA Yes Fair (64.3%)

[23] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA No Fair (57.1%)

[24] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[25] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[26] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA Yes Fair (64.3%)

[27] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[28] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[29] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[30] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[31] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[32] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA Yes Fair (64.3%)

[33] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[34] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[35] Yes Yes NA Yes Yes Yes Yes NA Yes Yes Yes NR NA No Fair (64.3%)

[36] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

[37] Yes Yes NA Yes NR Yes Yes NA Yes Yes Yes NR NA NR Fair (57.1%)

Notes: NA—not applicable; NR—not reported.

Table 4. Risk of bias and applicability assessment by PROBAST.

Study

Risk of Bias Applicability Overall

1.
Participants

2.
Predictors

3.
Outcome

4.
Analysis

1.
Partici-
pants

2.
Predictors

3.
Outcome

Risk of
Bias Applicability

[20] - + + ? ? ? + - ?

[21] + ? + ? + + + ? +

[22] + ? + + + + + ? +

[23] + + + ? + + + ? +

[24] + + + + + + + + +

[25] ? ? + ? ? ? + ? ?

[26] + + + ? + + + ? +

[27] - + + - - + + - -

[28] + + + - + ? + - ?

[29] + ? + ? + ? + ? ?

[30] + + + - + ? + - ?

[31] + + + - + + ? - ?

[32] + + + - + + + - +

[33] + + + - + ? + - ?

[34] + + + - + + + - +

[35] + + ? - + + ? - ?

[36] + + ? - + + ? - ?

[37] + + + - + + ? - ?

Notes: + low concern, - high concern, ? unclear.
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2.3. Predictive Performance of Artificial Intelligence Algorithms

The most evaluated performance metric was AUC, which ranged from 0.64 to 0.992
(the highest value was obtained by the multilayer perceptron). This algorithm also achieved
the highest sensitivity (0.967) and specificity (0.992) for auditing appropriate surgical antimi-
crobial prophylaxis. The highest precision was achieved by the gradient boosted tree, with
an average precision of 0.99 for the selection of vancomycin + meropenem. The other main
results are available in Table 1. All the studies concluded that ML algorithms were useful to
assist antimicrobial stewardship teams in multiple tasks such as identifying inappropriate
prescribing practices [20], choosing the appropriate antibiotic therapy [22,23,34,36], audit-
ing surgical antimicrobial prophylaxis [24], predicting personal risk of treatment-induced
emergence of resistance [25], estimating patient outcomes under the contrasting scenarios
of stopping or continuing antibiotic treatment [26], predicting AMR [27], and identifying
patients at low risk of bacterial infections [29].

Regarding the choice of the most appropriate antibiotic therapy, the model with
the best performance was random forest, with an area under the curve of 0.80 (95% CI
0.66–0.94) for the prediction of susceptibility to ceftriaxone, 0.74 (0.59–0.89) for ampicillin
and gentamicin, and 0.85 (0.70–1.00) for susceptibility to neither [36].

For the identification of inappropriate prescribing practices of piperacillin-tazobactam,
the algorithm applied was the supervised learning module of APSS (antimicrobial prescrip-
tion surveillance system). It obtained an overall positive predictive value of 74% (95% CI,
68–79), with sensitivity (recall) of 96% (92–98) and accuracy of 79% (74–83) [20].

Logistic regression achieved a 67% reduction in second-line antibiotics relative to
clinicians and an 18% reduction in inappropriate antibiotic therapy [35].

3. Discussion
3.1. Main Findings

A systematic review of the utility of AI in antimicrobial stewardship for inpatients and
outpatients who needed antimicrobial decisions was conducted, and eighteen studies were
included. Logistic regression and random forest were the most used algorithms. AUC was
the most common predictive performance measure, and the highest value was obtained
by the multilayer perceptron [24]. The most studied application of AI in ASPs was the use
of AI for choosing the appropriate antibiotic therapy. In one study, the algorithm used
was a semi-supervised decision support system [21]; the remaining algorithms applied
supervised ML algorithms, which are generally used to make predictions. All the studies
concluded that AI algorithms can help choose the best antimicrobial therapy, benefiting,
for example, the control of AMR. These results are aligned with what has been found about
AI use in infectious diseases, since other systematic reviews summarize its applicability in
antimicrobial susceptibility testing [14], predicting antimicrobial resistance [38], prediction
of treatment success, diagnosis of infection, and prediction of sepsis [13].

3.2. AI and Antimicrobial Stewardship

Although AI can be helpful in addressing the large amount of data gathered nowadays
and performing repetitive tasks, there are some risks and ethical concerns that must be
considered, for example, the possibility of the algorithm making associations between fea-
tures and outcomes that are not relevant or are without physiological/clinical rationale, the
blind obedience/overdependence on AI, liability, or accountability in case of mistakes [39].
Clinical decisions are complex and include factors about the patient, the disease, the econ-
omy, or the environment, so the algorithm should not uniquely make the final decision.
“Black box” is an aspect of AI that raises concerns, since these algorithms cannot explain the
underlying mechanism to generate outputs, and we may not know the source of data input.
This has a significant impact on transparency and trust [40,41]. In response to the rise of AI
health technologies, the WHO published six regulatory areas of AI for health, including
the transparency of development processes, external data validation, cybersecurity, and
data protection [42]. The WHO emphasizes the need for collaboration between regulators,
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patients, healthcare professionals, industry, and governments to ensure the compliance of
AI models with regulation. The application of AI on antimicrobial stewardship programs
is still very limited, as seen in the few studies included in this systematic review. The
methodological heterogeneity and the reduced number of diseases in which AI has been
applied on ASPs restrict the widespread use of ML models in antimicrobial stewardship.
Tools based on AI for this purpose are still in a development phase before they can be safely
implemented in healthcare.

Addressing the perception among some clinicians that the use of AI in antimicrobial
stewardship is more of a mirage than a reality necessitates a clear discussion on its evident
benefits. Implementing AI requires a calculated investment in technology and skilled data
analysts, with the scale dependent on each hospital’s needs. A thorough cost/benefit anal-
ysis is vital, showcasing the expenses and expected advancements in healthcare efficiency
and patient care quality. Embracing AI, despite initial doubts, is crucial for the evolution
of antimicrobial stewardship, moving the perception of antimicrobial stewardship from
skepticism to accepted implementation.

3.3. Limitations of the Studies Included

The research on AI applications in ASP is mostly from high-income countries, which
can introduce bias on the algorithms and inequalities in healthcare because it does not
represent the entire population [43]. This may happen because low- and middle-income
countries may face more challenges to implement systems allowing for the collection of
large amounts of structured health data, access to health is scarcer, and the financial support
for implementing AI algorithms needs to be improved. Efforts should be made to include
data from these populations in training and validation datasets.

There needs to be a publicly recognized tool for quality and risk assessment of ML pre-
diction models. PROBAST and the National Institute of Health (NIH) Quality Assessment
Tool for Observational Cohort and Cross-Sectional Studies were used for a more complete
assessment. For most studies, there was a lack of information about sample size justification
or power description and a poor description of the statistical adjustment of confounders.
This is a concern, since AI algorithms can provide biased results if the information input
is subject to uncontrolled biases. Bolton et al. [26] consider that the models may have
“learned” the association between less severe patients receiving fewer antibiotics and, there-
fore, having a shorter ICU length of stay, causing some confounding. PROBAST assessment
of ROB raises concerns, since only one study was ranked as “low concern”. This is mainly
due to the analysis domain, as not all the included studies provided information about the
handling of missing data or the methods to avoid overfitting, and two studies [20,37] did
not report information on validation methods. One of the studies performed external vali-
dation of the model [22], which raises concerns about the generalizability of the algorithms
used in the other studies. G. Eickelberg and colleagues [29] state that their future research
will focus on external validation and clinical utility assessment of the models. The lack of
participant information and the definition of the inclusion and exclusion criteria also raise
concerns about the applicability and biases of the study’s conclusions [27]. It is relevant
to note that providing participants’ information can minimize or highlight biases that can
influence the application of the algorithms in specific populations in which they were not
studied. Kanjilal et al. [35] admit this limitation in their study. The features selected for
the ML algorithms were adequate, since they gather information that influences therapy
decisions and patients’ outcomes, mainly raising low concerns. Studies on AI use in health
should provide all the features included so there is more transparency and understanding
of the processes involved. This will allow for analysis of whether the features have a
medical reasoning behind the clinical outcome.

3.4. Limitations of the Review

There are some limitations to this review. The literature search was limited to PubMed,
Web of Science, and Scopus articles, with no other bibliographic databases having been
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searched. Although this is a recent research topic, this information can be quickly comple-
mented with more recent data.

Publication bias is a possible limitation of this review, since it is likely that the studies
with more favorable results have higher chances of being accepted for publication. Due to
the diversity of the included studies (including differences in outcomes, assessed features,
and the algorithms used), we could not perform meta-analysis.

It must be kept in mind that the AI algorithms are not implemented to substitute
the healthcare professionals who make up antimicrobial stewardship teams but rather to
assist in decision-making, mainly when a considerable amount of health data are gathered
every day.

In the future, it would be interesting to research the integration of AI in ASPs, its
adoption by healthcare professionals, usability and applicability, and their knowledge
about the potential of using AI as a tool [44].

4. Materials and Methods

The systematic review was carried out in accordance with the Cochrane Handbook for
Systematic Reviews of Interventions [45]; in addition, we followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) [46] checklist for the review
(Supplementary Materials, Table S1).

4.1. Data Source and Search Strategy

The electronic bibliographic databases of PubMed, Scopus, and Web of Science were
searched using a combination of MeSH terms and/or keywords regarding broad domains
such as artificial intelligence, antimicrobial resistance, and stewardship. For this search
strategy, the following query was used: (“artificial intelligence” OR “machine learning”
OR “deep learning”) AND (“antibiotic resistance” OR “antibiotic resistant” OR “antifungal
resistance” OR “antifungal resistant” OR “antimicrobial resistance” OR “antimicrobial
resistant” OR “antibiotic susceptibility” OR “antifungal susceptibility” OR “antimicrobial
susceptibility” OR “drug resistance” OR “drug resistant”). Additionally, and to avoid any
bibliography loss, the terms (“artificial intelligence” OR “machine learning” OR “deep
learning”) AND (stewardship) were included. Studies were selected and screened from
January 2010 until December 2022, when the search results were last consulted. The search
included all publication types except reviews or systematic reviews, and no language
restrictions were applied.

4.2. Eligibility Criteria

Studies were included in this review if they assessed the performance of artificial
intelligence models in ASP applied to hospital inpatients and outpatients with infections
that needed antimicrobial treatment. We excluded (1) studies conducted only in vitro;
(2) studies addressing non-infectious diseases such as cancer, epilepsy, or other neurologic
diseases; (3) studies addressing the application of AI in food or animal production, drug
development, disease diagnostic or survival or studies focusing on HIV, parasitic diseases,
or tuberculosis; and (4) studies not focusing on bacterial infections.

This review intended to study the performance of AI algorithms for antimicrobial
stewardship. The question being addressed can be expressed as follows:

P: Inpatients and outpatients who need an antimicrobial prescription;
I: Machine learning models used in antimicrobial stewardship;
C: Clinical or antimicrobial stewardship teams’ decision;
O: Predictive performance of ML algorithms (area under the curve (AUC), sensitivity,

specificity, positive predictive value (PPV), negative predictive value (NPV), etc.).

4.3. Data Extraction and Synthesis

The extracted studies were uploaded to EndNoteTM20 and Rayyan software [47]
for duplicate removal, quality assessment, and further selection. Studies were selected
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first by title and abstract screening and then by full text reading. Both processes were
independently performed by two reviewers (RPS and SCO) in a blinded, standardized
manner. Eighteen studies were included in the systematic review (Figure 1).

A form was developed to extract the data from the included studies uniformly and
consistently. We retrieved data on the study type, year of publication, country, study time
frame, target population (demographic data), number of patients, hospital setting, type of
infection, study objective, ML algorithms used, training data sets, number of features, data
source (clinical and/or laboratory data), predictors, performance validation and metrics
(AUC, sensitivity, specificity, etc.), and clinical outcome. Two authors (RPS and SCO)
extracted data from primary studies independently.

4.4. Risk of Bias (ROB) Assessment

To evaluate the risk of bias of the studies included in this review, the National Institute
of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional
Studies and PROBAST (a tool to assess the risk of bias and applicability of prediction model
studies) were used [48–50]. A three-point scale was used to grade the potential source of
bias as good, fair, or poor. Regarding PROBAST, the risk of bias and applicability were
assessed focusing on four domains (participants, predictors, outcomes, and analysis), which
were evaluated for each included study. The risk of bias was defined as “high risk/concern”
if the item’s answer was “No” or “Probably no” and “Unclear risk” if relevant information
was absent. No studies were excluded based on quality. ROB assessment was performed
independently by all authors.

4.5. Data Analysis

The predictive performance of the AI algorithms was extracted as some of these
metrics: area under the curve, specificity, sensitivity, precision, accuracy (Table 1).

A meta-analysis was not conducted, due to the heterogeneity between the populations,
algorithms, features, and aim of the studies included.

5. Conclusions

This systematic review focuses on various tasks where AI can be a supplemental tool
for antimicrobial stewardship teams, benefiting the patient and the healthcare providers.
It can assist in the identification of inappropriate prescriptions, the choice of appropriate
antibiotic therapy, or the estimation of patient outcomes. This is essential in the One
Health dimension, because preventing AMR and multiresistant microorganisms in humans
interdependently benefits the health of animals, plants, and ecosystems. The supervised
machine learning module of antimicrobial prescription surveillance systems and random
forest could be useful tools for guiding the most appropriate antibiotic therapy. AI can
assist antimicrobial stewardship teams, aiming at better control of AMR; thus, AI can be a
valuable tool against this growing global health issue.
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