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Abstract: The outcome of bacterial infection management relies on prompt diagnosis and effective
treatment, but conventional antimicrobial susceptibility testing can be slow and labor-intensive.
Therefore, this study aims to predict phenotypic antimicrobial susceptibility of selected beta-lactam
antimicrobials in the bacteria of the family Enterobacteriaceae from different beta-lactamase resistance
genotypes. Using human datasets extracted from the Antimicrobial Testing Leadership and Surveil-
lance (ATLAS) program conducted by Pfizer and retail meat datasets from the National Antimicrobial
Resistance Monitoring System for Enteric Bacteria (NARMS), we used a robust or weighted least
square multivariable linear regression modeling framework to explore the relationship between
antimicrobial susceptibility data of beta-lactam antimicrobials and different types of beta-lactamase
resistance genes. In humans, in the presence of the blaCTX-M-1, blaCTX-M-2, blaCTX-M-8/25, and blaCTX-M-9

groups, MICs of cephalosporins significantly increased by values between 0.34–3.07 µg/mL, however,
the MICs of carbapenem significantly decreased by values between 0.81–0.87 µg/mL. In the presence
of carbapenemase genes (blaKPC, blaNDM, blaIMP, and blaVIM), the MICs of cephalosporin antimicro-
bials significantly increased by values between 1.06–5.77 µg/mL, while the MICs of carbapenem
antimicrobials significantly increased by values between 5.39–67.38 µg/mL. In retail meat, MIC of
ceftriaxone increased significantly in the presence of blaCMY-2, blaCTX-M-1, blaCTX-M-55, blaCTX-M-65, and
blaSHV-2 by 55.16 µg/mL, 222.70 µg/mL, 250.81 µg/mL, 204.89 µg/mL, and 31.51 µg/mL respectively.
MIC of cefoxitin increased significantly in the presence of blaCTX-M-65 and blaTEM-1 by 1.57 µg/mL
and 1.04 µg/mL respectively. In the presence of blaCMY-2, MIC of cefoxitin increased by an average
of 8.66 µg/mL over 17 years. Compared to E. coli isolates, MIC of cefoxitin in Salmonella enterica
isolates decreased significantly by 0.67 µg/mL. On the other hand, MIC of ceftiofur increased in the
presence of blaCTX-M-1, blaCTX-M-65, blaSHV-2, and blaTEM-1 by 8.82 µg/mL, 9.11 µg/mL, 8.18 µg/mL,
and 1.04 µg/mL respectively. In the presence of blaCMY-2, MIC of ceftiofur increased by an average
of 10.20 µg/mL over 14 years. The ability to predict antimicrobial susceptibility of beta-lactam
antimicrobials directly from beta-lactamase resistance genes may help reduce the reliance on routine
phenotypic testing with higher turnaround times in diagnostic, therapeutic, and surveillance of
antimicrobial-resistant bacteria of the family Enterobacteriaceae.

Keywords: predictive modeling; beta-lactamase gene; MIC; Enterobacteriaceae

1. Introduction

Antimicrobial resistance (AMR) has risen to become a significant global concern, driven
by the rapid increase in AMR infection rates [1]. AMR develops and disseminates in
microorganisms in response to stressful environmental signals, usually in the presence of
antimicrobial selection pressure, which eventually leads to reduced efficacy of antimicrobial
therapy [2,3]. In the United States alone, antimicrobial resistance (AMR) is associated
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with 2.8 million infections and more than 30,000 deaths, with an extra USD 20 billion in
healthcare costs annually [4,5]. Global estimates indicate that deaths directly attributed to
AMR exceeded 1.2 million in 2019, with a projected increase to around 10 million annually
by 2050 if no additional measures are taken to combat AMR [6].

An important driver of AMR in the human healthcare setting is the injudicious use
and misuse of antimicrobials. These improprieties are primarily due to non-prescription
uses, improper prescription, and poor regulation, of antimicrobials [7,8]. According to the
World Health Organization (WHO), certain antimicrobials—such as the third and fourth-
generation cephalosporins and carbapenems—are classified as critically important due to
being the last resort for human treatment against antimicrobial-resistant bacteria [9,10]. It
is, therefore, of utmost importance to protect the efficacy of these antimicrobials. However,
in recent years, there have been increasing reports of resistance even to these critically
important antimicrobials. Part of the strategic objectives of the World Health Organization’s
(WHO) Global Action Plan (GAP) is to optimize the use of antimicrobials by improved
diagnostics and strengthen knowledge of AMR through surveillance and research [11].

The outcome of the clinical management of antimicrobial-resistant infection is de-
pendent on both proper and timely diagnosis and treatment [12]. Clinical diagnosis of
antimicrobial-resistant pathogens has been largely identified via phenotype-based methods
such as disk diffusion and minimum inhibitory concentration (MIC). These methods offer
high reliability and accuracy and represent the gold standard as compared to other diagnos-
tics procedures; however, the procedures are time-consuming and labor-intensive [13–15].
While accuracy in diagnosis is important for the treatment of microbial infection when
antimicrobial-resistant pathogens are present, the timeliness of diagnosis may be equally
critical. For example, delayed treatment of bloodstream infection (BSI), one of the most
fatal antimicrobial-resistant infections and a leading cause of death globally with around
two million in North America and one-quarter of a million in Europe, worsen clinical out-
comes and increases the risk of mortality [12,14,16,17]. While efforts have been made to
expedite AMR diagnoses through the adoption of molecular tools with proven results, a
challenge associated with these is that the AMR genotype does not always correspond to the
AMR phenotype due to silent genes, environmental influences on gene expression, and the
complex interplay of multiple genetic elements, resulting in clinical treatment failure [18].
Data-driven approaches have shown promise in providing effective prediction of AMR
phenotype from genotype to aid effective clinical management [19–22], however, there is
still a shortage of scalable data-driven analytical approaches suitable for clinical use [22].

Clinical diagnosis of AMR depends on phenotypic antimicrobial susceptibility tests with a
turnaround time of at least 48 hours [23]. Meanwhile, molecular methods can detect pathogens
and resistance genes within a day [24]. One increasingly utilized method for predicting
AMR outside of standard phenotypic testing for susceptibility is machine learning [25,26].
However, this approach relies on predictive models resulting from data that are highly
specific to a geographic location or a single pathogen and are therefore not generalizable [27].
Although recently, machine learning models have incorporated more robust global datasets to
overcome this challenge [20]. For an improved ability to monitor AMR at the global level and
simultaneously aid in the identification, and treatment of AMR phenotypes, a data-driven
method utilizing heterogeneous geographies and phenotypes is needed.

The use of a linear regression model for analysis of existing surveillance data, which
contains both AMR phenotypes and genotypes, has the potential to offer reliable predictions
of susceptibility or resistance from important genes or AMR determinants, which can
provide additional support and/or replacement of the existing antimicrobial susceptibility
testing [28]. The use of such predictive models may offer a reduction in susceptibility testing
turnaround time, support for data-driven and evidence-based empirical antimicrobial
selection, and support for efficient and efficacious antibiotic dosing regimens–especially in
cases when there are no established antimicrobial susceptibility breakpoints. A predictive
model that incorporates robust parameters could also improve decision-making in the use
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of AMR genotype data as a proxy for characterizing AMR phenotypes in surveillance of
AMR in humans, animals, and the environment.

We posit that the use of data that account for multiple variables, and phenotype
patterns could easily and reliably be predicted from genotypes and offer better predictive
model generalizability. Based on Pfizer’s Antimicrobial Testing Leadership and Surveil-
lance (ATLAS) human datasets, we aim to develop a predictive model to estimate the
phenotypic antimicrobial susceptibility of critical and high-priority antibiotics from AMR
genotype data while selecting for various factors, such as organism types (Gram-positive
and Gram-negative), infection types (Intra-abdominal, lower respiratory, urinary tract,
bloodstream, skin and community-acquired and hospital-acquired), and spatiotempo-
ral features (country and year). In addition, we use National Antimicrobial Resistance
Monitoring System (NARMS) for Enteric Bacteria retail meat data to predict the mini-
mum inhibitory concentration (MIC) of cephalosporin antimicrobials from beta-lactamase
genes with other selected variables such as sampling year, bacterial genus (Escherichia
coli and Salmonella enterica) and meat types (chicken breast, ground beef, ground turkey,
and pork cuts). Prediction of phenotypic antimicrobial susceptibility information directly
from genotype data will help reduce the reliance on routine phenotypic testing, thereby
resulting in more timely diagnoses, quicker therapeutics, and improved clinical outcomes
of antimicrobial-resistant infections.

2. Results
2.1. Prediction of MIC: Human Dataset from ATLAS
2.1.1. Cefepime

Robust model was used in the cefipime model due to heteroscedasticity. From the
model, cefepime’s minimum inhibitory concentration (MIC) exhibited significantly higher
values in several countries, namely China, Croatia, Greece, India, Italy, Kenya, Latvia, Nigeria,
Poland, Romania, Taiwan, and Ukraine. Conversely, it was significantly lower in Australia,
Austria, Belgium, Canada, Colombia, Denmark, France, Germany, Hong Kong, Ireland, Japan,
Netherlands, New Zealand, Philippines, Portugal, Slovenia, Spain, Sweden, and the United
Kingdom compared to Argentina. When comparing it to E. coli, the MIC of Citrobacter spp.,
Enterobacter spp., and Providencia spp. displayed significantly higher values, while the MIC
of Klebsiella spp. and Serratia spp. demonstrated significantly lower values. Regarding age
groups, the MIC was higher (1.11 µg/mL) in the 65-to-84-years age range. In medical ICU
settings, the MIC of cefepime was higher compared to clinical settings. Furthermore, for
every one-year increase, the MIC of cefepime increased by 1.05 µg/mL. In the presence of
the blaCTX-M-1, blaCTX-M-2, blaCTX-M-8/25, and blaCTX-M-9 groups of beta-lactamase genes, the
likelihood of cefepime’s MIC was significantly increased by 6.98 µg/mL, 5.46 µg/mL, 4.41
µg/mL, and 3.98 µg/mL, respectively. Similarly, the MIC of cefepime was raised at 3.24
µg/mL, and 2.98 µg/mL more likely in the presence of blaVEB and blaPER genes. Moreover, in
the presence of carbapenemase genes blaNDM, blaVIM, and blaIMP, the MIC of cefepime was
significantly increased by 2.09 µg/mL, 3.28 µg/mL, and 2.09 µg/mL, respectively. On the
other hand, in the presence of blaCMY-2 and blaDHA, the MIC of cefepime was significantly
decreased by 0.37 µg/mL and 0.33 µg/mL respectively. (Table 1).

2.1.2. Ceftazidime

A robust model was used in the ceftazidime model due to heteroscedasticity. From
the model, the exhibited MIC of ceftazidime was significantly higher in Chile, Croatia, the
Dominican Republic, Greece, Guatemala, India, Italy, South Korea, Latvia, Nigeria, Panama,
Philippines, Poland, Romania, Russia, Taiwan, Thailand, and Ukraine. Contrarily, it was
significantly lower in Australia, Belgium, Columbia, Czech Republic, Denmark, France, Ger-
many, Ireland, Japan, The Netherlands, and Spain compared to Argentina. In the case of
bacterial strain, MIC of ceftazidime showed significant variations. Specifically, in Enterobac-
ter spp. and Providencia spp., ceftazidime’s MIC was significantly higher by 2.33 µg/mL
and 1.44 µg/mL, respectively. However, in Klebsiella spp. and Proteus spp., it was signifi-
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cantly lower by 0.73 µg/mL and 0.28 µg/mL, respectively, compared to E. coli. The MIC
of ceftazidime was found to be significantly higher in the Medicine ICU and Pediatric ICU
compared to the clinic or office settings. Additionally, for every one-year increase, the MIC
of ceftazidime decreased by 0.97 µg/mL. In the presence of the blaCTX-M-1 and blaCTX-M-2
groups, the MIC of ceftazidime was significantly increased by 2.97 µg/mL and 1.54 µg/mL,
respectively. Conversely, in the presence of blaCTX-M-8/25 and blaCTX-M-9, it decreased sig-
nificantly by 0.34 µg/mL and 0.58 µg/mL, respectively. Similarly, the presence of blaVEB,
blaPER, blaGES, blaACC, blaCMY-2, blaDHA, and blaFOX genes significantly increased the MIC of
ceftazidime by 6.23 µg/mL, 7.44 µg/mL, 2.17 µg/mL, 9.62 µg/mL, 3.29 µg/mL, 2.14 µg/mL,
and 2.12 µg/mL, respectively. Furthermore, ceftazidime’s MIC showed a substantial increase
of 3.44 µg/mL, 1.23 µg/mL, 2.57 µg/mL, 5.77 µg/mL, 3.51 µg/mL, and 2.46 µg/mL in the
presence of blaKPC, blaOXA, blaNDM, blaIMP, blaVIM, and blaSHV genes, respectively (Table 1).

2.1.3. Ceftaroline

Robust model was used in the ceftaroline model due to heteroscedasticity. From
the model, the MIC of ceftaroline demonstrated significantly lower in Brazil, Cameroon,
Canada, Chile, China, Colombia, Costa Rica, Croatia, the Dominican Republic, Finland,
France, Germany, Guatemala, Hong Kong, India, Ireland, Ivory Coast, Japan, Jordan,
Kenya, Latvia, Lithuania, Malaysia, Morocco, the Netherlands, New Zealand, Nigeria,
Panama, Portugal, Qatar, Romania, Saudi Arabia, Singapore, Spain, Sweden, Switzerland,
Ukraine, the United Kingdom, and the United States compared to Argentina. Regarding
bacterial strains, ceftaroline MIC was significantly higher in Citrobacter spp., Enterobacter
spp., Klebsiella spp., Morganella spp., and Providencia spp. compared to E. coli. The MIC of
ceftaroline was found to be higher in the Medicine General and ICU units compared to
clinic or office settings. Additionally, with every one-year increase, the MIC of ceftaroline
decreased by 0.65 µg/mL. In the presence of the blaCTX-M-1, blaCTX-M-2, blaCTX-M-8/25, and
blaCTX-M-9 gene groups, the MIC increased by 3.09 µg/mL, 2.70 µg/mL, 3.07 µg/mL, and
3.07 µg/mL, respectively. Furthermore, in the presence of carbapenemases genes (blaKPC,
blaNDM, blaIMP, and blaVIM), the MIC of ceftaroline increased by 1.98 µg/mL, 1.06 µg/mL,
2.37 µg/mL, and 1.58 µg/mL, respectively (Table 1).

2.1.4. Imipenem

Robust model was used in the imipenem model due to heteroscedasticity. From
the model, the MIC of imipenem was significantly higher in Australia, Austria, Belgium,
Brazil, Canada, Chile, China, Croatia, Denmark, Germany, Greece, Guatemala, Hong Kong,
Hungary, India, Ireland, Italy, Kuwait, Latvia, Lithuania, Malaysia, Mexico, Morocco, The
Netherlands, Nigeria, Qatar, Romania, Russia, Saudi Arabia, Spain, Sweden, Switzerland,
Taiwan, Thailand, Turkey, Ukraine, and the United States compared to Argentina. The
MIC of imipenem exhibited significant variations across different bacterial strains. Specif-
ically, in Citrobacter spp., Enterobacter spp., Klebsiella spp., Morganella spp., Proteus spp.,
Providencia spp., Raoultella spp., and Serratia spp., the MIC was significantly higher by
2.04 µg/mL, 3.03 µg/mL, 1.63 µg/mL, 2.30 µg/mL, 9.98 µg/mL, 3.55 µg/mL, 2.35 µg/mL,
and 4.67 µg/mL, respectively, compared to E. coli. When considering age groups, individu-
als between 19 and 64 years and those aged 85 years and over had significantly higher MIC
values compared to the 0 to 2 years age group. Furthermore, the MIC of imipenem was
found to be significantly higher in the Medicine General, Medicine ICU, Surgery General,
and Surgery ICU compared to clinic or office settings. Moreover, with every one-year in-
crease, the MIC of imipenem increased by 1.03 µg/mL. In the presence of the blaCTX-M-1 and
blaCTX-M-9 gene groups, the MIC of imipenem decreased by 0.81 µg/mL and 0.84 µg/mL,
respectively. Conversely, the presence of blaGES, blaCMY-2, and blaDHA genes increased
the MIC by 1.61 µg/mL, 1.46 µg/mL, and 2.20 µg/mL, respectively. Additionally, in the
presence of carbapenemase genes (blaKPC, blaOXA, blaNDM, blaIMP, and blaVIM), the MIC of
imipenem significantly increased by 17.1 µg/mL, 7.46 µg/mL, 10.1 µg/mL, 5.39 µg/mL,
and 7.76 µg/mL, respectively (Table 1).
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Table 1. Prediction of MIC of selected antimicrobials in the human dataset from ATLAS surveillance.

Variables Categories Cefepime Ceftazidime Ceftaroline Imipenem Meropenem

MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value

Country

Argentina Ref

Australia 0.75 0.65–0.99 <0.01 0.64 0.52–0.77 <0.01 0.81 0.66–0.98 0.03 1.12 1.01–1.23 0.02 1.15 1.01–1.31 0.03

Austria 0.80 0.77–0.96 0.04 0.72 0.54–0.95 0.02 0.71 0.53–0.94 0.02 1.17 1.01–1.34 0.03 1.13 0.95–1.34 0.14

Belgium 0.86 0.87–1.04 0.01 0.80 0.70–0.92 <0.01 1.00 0.88–1.14 0.94 1.10 1.01–1.19 0.02 1.18 1.05–1.32 <0.01

Brazil 0.95 0.69–1.38 0.26 0.95 0.86–1.05 0.36 0.87 0.79–0.96 0.01 1.17 1.09–1.25 <0.01 1.35 1.22–1.49 <0.01

Cameroon 0.98 0.67–0.95 0.90 0.89 0.68–1.16 0.42 0.61 0.52–0.70 <0.01 1.11 0.92–1.35 0.28 0.80 0.66–0.97 0.02

Canada 0.80 0.96–1.15 0.01 0.83 0.68–1.01 0.08 0.57 0.49–0.65 <0.01 1.17 1.05–1.31 0.01 1.26 1.09–1.46 <0.01

Chile 1.06 1.03–1.32 0.24 1.16 1.02–1.31 0.02 0.86 0.77–0.96 0.01 1.22 1.13–1.31 <0.01 1.84 1.65–2.06 <0.01

China 1.17 0.74–0.89 0.01 0.96 0.81–1.14 0.65 0.50 0.44–0.56 <0.01 1.37 1.24–1.51 <0.01 1.33 1.18–1.49 <0.01

Colombia 0.82 0.74–1.47 <0.01 0.73 0.65–0.82 <0.01 0.90 0.81–0.99 0.04 1.02 0.95–1.09 0.57 0.98 0.89–1.09 0.75

Costa Rica 1.04 1.05–1.38 0.82 0.85 0.55–1.32 0.48 0.63 0.54–0.74 <0.01 1.06 0.88–1.29 0.53 1.34 1.03–1.74 0.03

Croatia 1.20 0.87–1.06 0.01 1.42 1.21–1.68 <0.01 0.62 0.56–0.69 <0.01 1.34 1.20–1.48 <0.01 1.44 1.24–1.68 <0.01

Czech Republic 0.96 0.46–0.70 0.42 0.82 0.73–0.93 <0.01 1.04 0.93–1.17 0.47 1.04 0.97–1.12 0.29 0.89 0.81–0.98 0.02

Denmark 0.57 0.83–1.28 <0.01 0.36 0.26–0.49 <0.01 0.77 0.55–1.07 0.12 1.17 1.01–1.34 0.03 0.95 0.81–1.09 0.46

Dominican
Republic 1.03 0.32–1.86 0.79 1.42 1.16–1.72 <0.01 0.53 0.46–0.60 <0.01 0.93 0.82–1.06 0.27 1.03 0.93–1.15 0.59

Finland 0.77 0.71–0.87 0.56 0.82 0.35–1.93 0.66 0.49 0.25–0.97 0.04 0.99 0.74–1.34 0.96 1.04 0.85–1.28 0.70

France 0.78 0.75–0.92 <0.01 0.75 0.66–0.85 <0.01 0.87 0.77–0.98 0.02 1.06 0.99–1.14 0.11 0.99 0.91–1.09 0.87

Germany 0.83 1.16–1.41 <0.01 0.65 0.56–0.74 <0.01 0.86 0.76–0.97 0.01 1.16 1.07–1.25 <0.01 1.09 0.98–1.21 0.11

Greece 1.28 0.96–1.25 <0.01 1.25 1.10–1.40 <0.01 1.08 0.97–1.21 0.17 1.27 1.18–1.37 <0.01 1.69 1.53–1.87 <0.01

Guatemala 1.09 0.53–0.93 0.19 1.24 1.06–1.44 0.01 0.60 0.54–0.67 <0.01 1.37 1.24–1.52 <0.01 1.76 1.53–2.02 <0.01

Hong Kong 0.70 0.85–1.03 0.01 0.79 0.58–1.06 0.12 0.62 0.49–0.79 <0.01 1.35 1.13–1.61 <0.01 1.20 0.99–1.46 0.06

Hungary 0.94 1.16–1.37 0.20 1.01 0.88–1.14 0.92 1.00 0.89–1.13 0.99 1.12 1.04–1.22 0.01 1.07 0.97–1.19 0.18

India 1.26 0.50–0.88 <0.01 1.38 1.25–1.53 <0.01 0.64 0.59–0.69 <0.01 1.30 1.21–1.41 <0.01 1.79 1.61–1.99 <0.01

Ireland 0.67 0.89–1.08 <0.01 0.69 0.52–0.91 0.01 0.54 0.44–0.67 <0.01 1.17 1.00–1.36 0.05 1.07 0.88–1.30 0.48
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Table 1. Cont.

Variables Categories Cefepime Ceftazidime Ceftaroline Imipenem Meropenem

MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value

Country

Israel 0.98 1.09–1.28 0.72 0.97 0.86–1.08 0.62 1.07 0.96–1.19 0.20 1.04 0.97–1.11 0.29 1.03 0.94–1.13 0.51

Italy 1.18 0.72–1.20 <0.01 1.44 1.30–1.58 <0.01 1.02 0.93–1.12 0.62 1.19 1.12–1.27 <0.01 1.45 1.33–1.58 <0.01

Ivory Coast 0.93 0.67–0.95 0.59 0.96 0.74–1.24 0.75 0.68 0.59–0.79 <0.01 0.97 0.83–1.14 0.71 0.86 0.74–0.99 0.04

Japan 0.80 0.55–1.10 0.01 0.67 0.54–0.82 <0.01 0.72 0.58–0.89 <0.01 1.11 0.99–1.23 0.06 1.11 0.99–1.25 0.08

Jordan 0.78 1.01–1.35 0.16 1.15 0.88–1.48 0.30 0.44 0.38–0.52 <0.01 0.93 0.73–1.19 0.59 0.79 0.58–1.08 0.14

Kenya 1.17 0.99–1.21 0.04 1.23 0.98–1.55 0.07 0.81 0.68–0.95 0.01 0.87 0.69–1.09 0.24 1.36 1.11–1.67 <0.01

South Korea 1.10 0.87–1.04 0.06 1.19 1.06–1.34 <0.01 1.01 0.90–1.12 0.91 1.10 1.03–1.18 0.01 1.19 1.09–1.31 <0.01

Kuwait 0.95 1.41–2.28 0.27 0.99 0.89–1.11 0.96 1.05 0.95–1.17 0.30 1.12 1.04–1.21 <0.01 1.22 1.11–1.35 <0.01

Latvia 1.79 0.84–1.22 <0.01 1.64 1.24–2.15 <0.01 0.57 0.49–0.65 <0.01 1.28 1.08–1.52 0.01 0.95 0.83–1.09 0.45

Lithuania 1.01 0.94–1.18 0.90 0.94 0.75–1.18 0.59 0.52 0.46–0.59 <0.01 1.17 1.02–1.34 0.02 1.05 0.88–1.24 0.61

Malaysia 1.05 0.99–1.16 0.40 1.08 0.94–1.24 0.28 0.76 0.68–0.85 <0.01 1.31 1.18–1.45 <0.01 1.18 1.04–1.33 0.01

Mexico 1.07 0.88–1.17 0.06 1.07 0.97–1.18 0.17 1.01 0.92–1.10 0.85 1.09 1.02–1.16 0.01 1.14 1.04–1.23 <0.01

Morocco 1.01 0.55–0.85 0.87 1.16 0.98–1.37 0.07 0.65 0.58–0.73 <0.01 1.16 1.04–1.30 0.01 1.10 0.95–1.28 0.20

The Netherlands 0.69 0.28–0.74 <0.01 0.41 0.32–0.54 <0.01 0.68 0.49–0.94 0.02 1.21 1.05–1.39 0.01 1.10 0.92–1.31 0.31

New Zealand 0.46 1.11–1.35 <0.01 0.71 0.41–1.22 0.22 0.60 0.44–0.80 <0.01 1.40 0.99–1.97 0.06 0.95 0.81–1.11 0.50

Nigeria 1.23 0.98–1.39 <0.01 1.27 1.14–1.42 <0.01 0.64 0.59–0.71 <0.01 1.23 1.14–1.33 <0.01 1.29 1.16–1.43 <0.01

Panama 1.17 0.75–0.91 0.08 1.25 1.04–1.51 0.02 0.59 0.52–0.67 <0.01 1.06 0.91–1.22 0.46 1.18 0.99–1.42 0.07

Philippines 0.83 1.09–1.33 <0.01 1.28 1.14–1.43 <0.01 1.04 0.93–1.16 0.51 1.15 1.07–1.23 <0.01 1.22 1.10–1.34 <0.01

Poland 1.21 0.77–0.92 <0.01 1.24 1.09–1.40 <0.01 0.98 0.88–1.10 0.77 1.34 1.22–1.46 <0.01 1.68 1.47–1.92 <0.01

Portugal 0.84 0.71–1.16 <0.01 0.89 0.79–1.0 0.05 0.89 0.79–0.99 0.03 0.97 0.90–1.03 0.32 1.01 0.92–1.09 0.89

Qatar 0.90 1.05–1.28 0.42 0.89 0.67–1.16 0.38 0.75 0.64–0.87 <0.01 1.57 1.36–1.82 <0.01 1.26 1.00–1.59 0.05

Romania 1.16 1.01–1.18 <0.01 1.51 1.33–1.71 <0.01 0.79 0.71–0.88 <0.01 1.31 1.19–1.44 <0.01 1.68 1.48–1.91 <0.01

Russia 1.09 0.65–1.08 0.03 1.25 1.13–1.38 <0.01 0.93 0.85–1.01 0.09 1.29 1.21–1.38 <0.01 1.59 1.46–1.74 <0.01

Saudi Arabia 0.84 0.59–1.87 0.17 1.12 0.86–1.45 0.39 0.57 0.49–0.65 <0.01 1.35 1.15–1.58 <0.01 1.63 1.30–2.04 <0.01
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Table 1. Cont.

Variables Categories Cefepime Ceftazidime Ceftaroline Imipenem Meropenem

MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value

Country

Singapore 1.05 0.29–0.91 0.87 1.65 0.86–3.17 0.13 0.52 0.35–0.78 <0.01 0.88 0.50–1.54 0.65 1.40 0.77–2.53 0.27

Slovenia 0.51 0.85–1.02 0.02 0.54 0.27–1.08 0.08 1.27 0.72–2.23 0.41 0.91 0.67–1.22 0.52 2.46 0.62–9.68 0.20

South Africa 0.93 0.66–0.79 0.14 0.89 0.78–1.01 0.07 0.92 0.82–1.03 0.16 1.05 0.97–1.14 0.24 1.19 1.07–1.32 <0.01

Spain 0.72 0.49–0.86 <0.01 0.81 0.72–0.91 <0.01 0.74 0.66–0.83 <0.01 1.11 1.03–1.19 <0.01 1.11 1.00–1.22 0.04

Sweden 0.65 0.57–1.03 <0.01 0.62 0.45–0.86 <0.01 0.37 0.25–0.54 <0.01 1.18 0.99–1.39 0.05 1.12 0.91–1.36 0.28

Switzerland 0.76 1.01–1.29 0.08 0.76 0.55–1.04 0.09 0.54 0.45–0.65 <0.01 1.21 1.02–1.43 0.03 1.21 0.99–1.47 0.05

Taiwan 1.14 0.97–1.15 0.03 1.58 1.38–1.79 <0.01 1.03 0.92–1.16 0.62 1.24 1.15–1.34 <0.01 1.24 1.11–1.37 <0.01

Thailand 1.06 0.90–1.08 0.22 1.29 1.16–1.43 <0.01 1.01 0.91–1.11 0.85 1.13 1.05–1.22 <0.01 1.13 1.02–1.24 0.02

Turkey 0.99 1.17–1.46 0.75 0.98 0.88–1.09 0.70 0.96 0.87–1.06 0.39 1.37 1.28–1.47 <0.01 1.53 1.39–1.67 <0.01

Ukraine 1.29 0.59–0.78 <0.01 1.33 1.16–1.52 <0.01 0.54 0.49–0.59 <0.01 1.40 1.25–1.56 <0.01 2.40 2.04–2.83 <0.01

United Kingdom 0.68 0.85–1.01 <0.01 0.69 0.59–0.81 <0.01 0.80 0.68–0.93 <0.01 1.00 0.92–1.10 0.93 0.99 0.89–1.11 0.86

United States 0.93 0.88–1.07 0.09 1.07 0.96–1.19 0.23 0.65 0.59–0.72 <0.01 1.12 1.05–1.20 <0.01 1.27 1.16–1.39 <0.01

Venezuela 0.97 1.07–1.92 0.56 1.05 0.93–1.19 0.43 1.08 0.96–1.21 0.19 1.05 0.97–1.13 0.25 1.11 1.00–1.22 0.04

Bacteria

E. coli Ref

Citrobacter spp. 1.43 1.07–1.93 0.02 1.58 1.08–2.31 0.02 2.00 1.58–2.52 <0.01 2.04 1.67–2.49 <0.01 2.79 1.98–3.92 <0.01

Enterobacter spp. 1.66 1.46–1.88 <0.01 2.33 2.05–2.64 <0.01 1.16 1.04–1.28 0.01 3.03 2.73–3.38 <0.01 4.97 4.18–5.91 <0.01

Klebsiella spp. 0.85 0.81–0.90 <0.01 0.73 0.67–0.78 <0.01 1.24 1.17–1.31 <0.01 1.63 1.57–1.69 <0.01 1.72 1.63–1.81 <0.01

Morganella spp. 1.32 0.21–8.26 0.77 0.95 0.05–17.1 0.97 2.60 1.87–3.62 <0.01 2.30 1.86–2.84 <0.01 1.61 0.55–4.71 0.38

Proteus spp. 0.93 0.85–1.03 0.17 0.28 0.24–0.32 <0.01 0.70 0.60–0.81 <0.01 9.98 9.35–10.7 <0.01 2.16 1.99–2.34 <0.01

Providencia spp. 1.91 1.60–2.28 <0.01 1.44 1.17–1.76 <0.01 1.50 1.26–1.77 <0.01 3.55 3.09–4.08 <0.01 3.72 3.08–4.49 <0.01

Raoultella spp. 0.52 0.19–1.35 0.18 0.66 0.14–3.05 0.60 0.91 0.11–7.35 0.93 2.35 1.24–4.43 0.01 1.32 0.78–2.24 0.29

Serratia spp. 0.75 0.61–0.93 0.01 0.23 0.18–0.29 <0.01 0.40 0.32–0.51 <0.01 4.67 4.16–5.26 <0.01 5.39 4.41–6.59 <0.01

Gender
Male Ref

Female 0.98 0.96–1.00 0.08 0.97 0.95–0.99 0.04 1.00 0.98–1.03 0.82 0.99 0.98–1.01 0.59 0.99 0.97–1.02 0.63
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Table 1. Cont.

Variables Categories Cefepime Ceftazidime Ceftaroline Imipenem Meropenem

MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value

Age
group

0 to 2 Years Ref

13 to 18 Years 0.96 0.85–1.07 0.42 1.03 0.89–1.18 0.66 0.98 0.88–1.09 0.69 1.00 0.91–1.09 0.94 1.12 0.99–1.27 0.08

19 to 64 Years 1.07 0.99–1.16 0.08 1.07 0.97–1.18 0.18 1.00 0.91–1.08 0.93 1.08 1.01–1.15 0.02 1.17 1.07–1.28 <0.01

3 to 12 Years 0.93 0.85–1.01 0.10 1.01 0.89–1.12 0.92 0.98 0.89–1.07 0.63 1.04 0.98–1.11 0.23 1.04 0.95–1.13 0.43

65 to 84 Years 1.11 1.02–1.19 0.01 1.11 0.99–1.22 0.05 1.03 0.94–1.12 0.50 1.06 0.99–1.13 0.07 1.17 1.07–1.28 <0.01

85 and over 1.07 0.98–1.16 0.15 1.05 0.93–1.17 0.43 0.99 0.89–1.09 0.86 1.07 0.99–1.14 0.05 1.11 1.01–1.22 0.03

Specialty

Clinic/Office Ref

General
Unspecified ICU 1.03 0.96–1.09 0.47 1.07 0.98–1.16 0.10 1.07 0.99–1.16 0.05 1.05 0.99–1.10 0.07 1.05 0.97–1.13 0.21

Medicine-
General 1.01 0.97–1.06 0.48 1.06 1.01–1.11 0.02 1.09 1.04–1.14 <0.01 1.03 0.99–1.06 0.05 1.01 0.97–1.05 0.55

Medicine-ICU 1.06 1.01–1.11 0.02 1.15 1.08–1.22 <0.01 1.05 1.00–1.11 0.04 1.07 1.03–1.10 <0.01 1.09 1.04–1.15 <0.01

None Given 1.02 0.94–1.09 0.64 1.05 0.96–1.15 0.24 1.13 1.04–1.23 <0.01 1.00 0.94–1.06 0.90 1.01 0.93–1.09 0.83

Other 1.01 0.93–1.11 0.75 1.02 0.92–1.13 0.68 1.08 0.98–1.19 0.12 1.00 0.94–1.07 0.95 0.98 0.89–1.07 0.60

Pediatric-
General 1.05 0.96–1.16 0.28 0.96 0.84–1.08 0.46 1.07 0.96–1.18 0.22 1.04 0.97–1.12 0.25 0.99 0.89–1.09 0.86

Pediatric-ICU 1.06 0.96–1.17 0.22 1.14 1.00–1.28 0.04 1.06 0.95–1.17 0.28 1.03 0.96–1.11 0.38 0.98 0.88–1.09 0.74

Surgery-General 1.00 0.95–1.05 0.99 1.03 0.97–1.09 0.33 1.03 0.98–1.08 0.25 1.06 1.02–1.09 <0.01 1.05 1.01–1.09 0.03

Surgery-ICU 1.04 0.98–1.09 0.19 1.07 1.00–1.15 0.04 1.01 0.95–1.07 0.76 1.11 1.06–1.16 <0.01 1.11 1.05–1.18 <0.01

Year Year 1.05 1.05–1.06 <0.01 0.97 0.96–0.97 <0.01 0.65 0.65–0.66 <0.01 1.03 1.02–1.03 <0.01 1.09 1.09–1.1 <0.01

blaCTX-M-1 Yes 6.98 6.69–7.29 <0.01 2.97 2.83–3.11 <0.01 3.09 2.96–3.23 <0.01 0.81 0.79–0.83 <0.01 0.87 0.84–0.91 <0.01

blaCTX-M-2 Yes 5.46 4.96–6.00 <0.01 1.54 1.37–1.72 <0.01 2.70 2.44–2.99 <0.01 1.06 0.98–1.14 0.13 2.46 2.15–2.82 <0.01

blaCTX-M-8/25 Yes 4.41 3.81–5.11 <0.01 0.34 0.28–0.43 <0.01 3.07 2.62–3.61 <0.01 0.93 0.83–1.05 0.27 0.89 0.75–1.06 0.20

blaCTX-M-9 Yes 3.98 3.77–4.20 <0.01 0.58 0.55–0.62 <0.01 3.07 2.91–3.25 <0.01 0.84 0.81–0.86 <0.01 0.83 0.79–0.87 <0.01

VEB Yes 3.24 2.70–3.89 <0.01 6.23 4.90–7.91 <0.01 1.91 1.62–2.25 <0.01 0.64 0.56–0.73 <0.01 0.57 0.47–0.67 <0.01
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Table 1. Cont.

Variables Categories Cefepime Ceftazidime Ceftaroline Imipenem Meropenem

MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value MIC 95% CI p Value

PER Yes 2.98 2.09–4.24 <0.01 7.44 4.48–12.3 <0.01 1.26 0.89–1.79 0.19 1.21 0.88–1.65 0.25 0.93 0.64–1.35 0.70

GES Yes 0.86 0.62–1.19 0.37 2.17 1.56–3.03 <0.01 0.83 0.62–1.11 0.21 1.61 1.22–2.12 <0.01 1.87 1.27–2.76 <0.01

ACC Yes 0.90 0.62–1.31 0.59 9.62 7.15–12.9 <0.01 2.88 2.18–3.79 <0.01 0.69 0.55–0.86 <0.01 0.68 0.50–0.92 0.01

CMY-2 Yes 0.37 0.33–0.40 <0.01 3.29 3.06–3.54 <0.01 1.06 0.97–1.14 0.18 1.46 1.39–1.53 <0.01 1.09 1.02–1.16 0.01

DHA Yes 0.33 0.29–0.36 <0.01 2.14 1.98–2.30 <0.01 0.70 0.64–0.76 <0.01 2.20 2.09–2.32 <0.01 1.05 0.99–1.12 0.12

FOX Yes 0.44 0.18–1.06 0.07 2.12 1.09–4.18 0.03 0.87 0.42–1.81 0.70 0.85 0.61–1.17 0.31 0.87 0.63–1.21 0.41

ACT Yes 0.62 0.31–1.23 0.17 0.36 0.10–1.28 0.12 0.30 0.05–1.83 0.19 1.77 0.82–3.83 0.14 0.80 0.56–1.13 0.21

KPC Yes 4.14 3.92–4.37 <0.01 3.44 3.25–3.64 <0.01 1.98 1.88–2.09 <0.01 17.1 16.5–17.7 <0.01 67.38 63.7–71.2 <0.01

OXA Yes 1.22 1.17–1.26 <0.01 1.23 1.16–1.31 <0.01 0.97 0.93–1.01 0.17 7.46 7.13–7.80 <0.01 21.21 19.8–22.7 <0.01

NDM Yes 2.09 1.99–2.19 <0.01 2.57 2.45–2.69 <0.01 1.06 1.02–1.10 0.01 10.1 9.59–10.6 <0.01 37.68 34.9–40.6 <0.01

IMP Yes 3.71 2.91–4.73 <0.01 5.77 4.48–7.42 <0.01 2.37 1.85–3.03 <0.01 5.39 4.22–6.90 <0.01 19.40 13.1–28.7 <0.01

VIM Yes 3.28 2.89–3.73 <0.01 3.51 3.06–4.02 <0.01 1.58 1.41–1.76 <0.01 7.76 6.83–8.80 <0.01 15.05 12.4–18.2 <0.01

SHV Yes 1.22 1.16–1.29 <0.01 2.46 2.30–2.64 <0.01 0.84 0.79–0.89 <0.01 0.95 0.91–0.98 0.01 1.05 0.99–1.11 0.05

TEM Yes 1.09 1.07–1.12 <0.01 1.06 1.02–1.08 <0.01 1.09 1.06–1.11 <0.01 1.02 1.00–1.04 0.01 1.01 0.99–1.04 0.27

MIC: minimum inhibitory concentration; Ref: reference; ICU: intensive care unit.
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2.1.5. Meropenem

A robust model was used in the meropenem model due to heteroscedasticity. From
the model, the MIC of meropenem was significantly higher in Australia, Belgium, Brazil,
Canada, Chile, China, Costa Rica, Croatia, Greece, Guatemala, India, Italy, Kenya, South
Korea, Kuwait, Malaysia, Mexico, Nigeria, the Philippines, Poland, Romania, Russia, Saudi
Arabia, South Africa, Spain, Taiwan, Thailand, Turkey, Ukraine, the United States, and
Venezuela compared to Argentina. In the context of bacterial strains, MIC was found to
be significantly higher in Citrobacter spp., Enterobacter spp., Klebsiella spp., Proteus spp.,
Providencia spp., and Serratia spp. compared to E. coli. In terms of age groups, the MIC of
meropenem was higher in the 19 to 64 Years, 65 to 84 Years, and 85 and over age groups. The
Medicine and Surgery ICU settings exhibited higher MIC values for meropenem compared
to clinic or office settings. Furthermore, with each one-year increase in age, the MIC of
meropenem increased by 1.09 µg/mL. In the presence of blaCTX-M-1 and blaCTX-M-9 gene
groups, the MIC of meropenem decreased by 0.87 µg/mL and 0.83 µg/mL, respectively.
On the other hand, in the presence of carbapenemase genes (blaKPC, blaOXA, blaNDM, blaIMP,
and blaVIM), the MIC of meropenem increased significantly by 67.38 µg/mL, 21.21 µg/mL,
37.68 µg/mL, 19.40 µg/mL, and 15.05 µg/mL, respectively (Table 1).

2.2. Prediction of MIC: Retail Meat Dataset from NARMS
2.2.1. Ceftriaxone

The heteroscedasticity was detected in the initial model of ceftriaxone dataset as
such, weighted least square model was used in the predictive modeling. The MIC of
ceftriaxone was significantly higher in the presence of blaCMY-2 by 57.59 µg/mL. In addition,
in the presence of ESBL genes, blaCTX-M-1, blaCTX-M-55, and blaCTX-M-65; MIC of ceftriaxone
significantly increased by 223.23 µg/mL, 254.64 µg/mL, and 203.68 µg/mL respectively.
There was no significant difference in MIC in the following years compared to 2002, except
in 2009 and 2010 where MIC increased by 1.10 µg/mL and 1.49 µg/mL, respectively
(Figure 1) (Supplementary Table S1).
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2.2.2. Cefoxitin

Weighted least squares model was used in the cefoxitin model due to heteroscedasticity.
The MIC of cefoxitin increased significantly in the presence of blaCTX-M-65 and blaTEM-1
by 1.57 µg/mL and 1.04 µg/mL respectively. Compared to E. coli isolates, the MIC of
cefoxitin in Salmonella enterica isolates decreased significantly by 0.67 µg/mL (Figure 2).
Interaction was observed between blaCMY-2 and year; blaCMY-2 and meat type; blaCMY-2 and
genus; genus, and meat type for Cefoxitin in retail meat data. Over the 17 years, the MIC
of cefoxitin increased by an average of 8.66 µg/mL in the presence of the blaCMY-2 gene
(Figure 3). Moreover, MIC increased in E. coli and S. enterica by 5.05 µg/mL and 6.76 µg/mL
respectively in the presence of blaCMY-2 (Figure 4). In the presence of the blaCMY-2 gene, the
MIC value increased in chicken breast, ground beef, ground turkey, and pork cut at the level
of 5.04 µg/mL, 4.36 µg/mL, 4.59 µg/mL, and 3.77 µg/mL, respectively (Figure 5). Finally,
in the presence of E. coli, the MIC of cefoxitin significantly increased in chicken breast and
ground turkey by 1.49 µg/mL and 1.31 µg/mL respectively (Figure 6) (Supplementary
Table S2).

2.2.3. Ceftiofur

A weighted least squares model was used in the ceftiofur model due to heteroscedas-
ticity. The MIC of ceftiofur increased significantly in the presence of blaCTX-M-1, blaCTX-M-65,
blaSHV-2, and blaTEM-1 by 8.82 µg/mL, 9.11 µg/mL, 8.18 µg/mL, and 1.04 µg/mL respec-
tively. In comparison with E. coli, the MIC of ceftiofur significantly increased in S. enterica
by 2.28 µg/mL (Figure 7). There was an interaction found between blaCMY-2 and year; and
blaCMY-2, and meat type. The average increase of the MIC of ceftiofur by 10.20 µg/mL in
the presence of the blaCMY-2 gene over 14 years from 2002 to 2015 (Figure 8). In addition, In
the presence of the blaCMY-2 gene, the MIC of ceftiofur value increased in chicken breast,
ground beef, ground turkey, and pork cuts by 14.46 µg/mL, 12.49 µg/mL, 12.89 µg/mL,
and 9.63 µg/mL respectively (Figure 9) (Supplementary Table S3).
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3. Discussion

This study focuses on using predictive modeling to estimate the phenotypic MIC
values of beta-lactam antimicrobials to members of the family Enterobacteriaceae from
different beta-lactamase resistance genes. We utilized the enhanced human and retail
meat data set provided by the ATLAS and NARMS surveillance programs, respectively.
To achieve accurate predictive modeling, we used a robust/weighted least square linear
regression framework that was described earlier in research [28–31], which has proven
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successful in predicting and validating MICs based on the presence of beta-lactamase genes
while adjusting for other epidemiological variables.

Antimicrobial treatment decisions typically hinge on culture and susceptibility testing;
disc diffusion method or minimum inhibitory concentration [32]. However, by employing
a predictive approach and leveraging insights about the prevalent bacteria in a specific
geographic region, the results derived from predictive models can inform initial treatment
choices while awaiting the outcomes of culture and susceptibility testing. This predictive
modeling approach is highly advantageous and holds significant potential, complementing
traditional laboratory testing in both diagnosis and treatment strategies. By taking into con-
sideration the practice-based AMR trend, the predictive approach provides evidence-based
prioritization of antimicrobial selection even with the timely availability of culture and
susceptibility results. In this study, within the human dataset, the MIC of cephalosporins
and carbapenems antimicrobials exhibited an annual increase ranging from 0.65 to 1.09
µg/mL. This trend could be attributed to the yearly escalation in antimicrobial usage. Klein
et al. reported a 65% increase in antibiotic consumption or defined daily doses and a 39%
rise in antibiotic consumption rates between 2000 and 2015 [33]. Geographical location
plays a significant role in influencing the rise in antimicrobial susceptibility. In our study,
we observed an increase in MIC primarily driven by low and middle-income countries.
This finding aligns with previous research that indicates resistance levels are exacerbated
by the widespread and inappropriate use of antibiotics in humans, animals, and crops
as well as the inadequate management of pharmaceutical waste [34]. However, in this
research, the predicted MIC value for gender was not found to be statistically significant.
This result contrasts with the previous findings of Schröder et al., who reported that women
had a 27% higher likelihood of receiving antibiotic prescriptions during their lifetime and
exhibited greater antimicrobial resistance [35]. Furthermore, our investigation revealed
that medicine and surgery intensive care units (ICUs) displayed elevated resistance levels
to cephalosporin and carbapenem drugs. This phenomenon can be attributed to a mul-
titude of factors, including a prolonged stay, escalated antibiotic consumption, frequent
exposure to healthcare-associated infections, the potential for antibiotics to be excessively
or improperly administered, and the rapid dissemination of multidrug resistance genes
and mutations [36].

One major challenge for the clinical settings is that the definition of susceptibility
and resistance breakpoint for susceptibility testing is continuously evolving or in some
cases non-available. Also, the phenotypic method conventionally requires breakpoint
value and interpretation for therapeutic purposes. However, predictive modeling as
performed in this study provides a framework for clinical and therapeutic decision-making
based on antimicrobial sensitivity testing (AST) or genomic data integration without the
need for clinical breakpoint. The presence of beta-lactamase genes in bacteria of the
family Enterobacteriaceae provides a resistance mechanism that inactivates the beta-lactam
antimicrobials [37]. These beta-lactamase inactivations directly translate into increases in
MIC values, which can indirectly provide evidence of the extent of antimicrobial resistance.
For example, and as shown in this study, in the presence of carbapenemase (blaKPC, blaOXA,
blaNDM, blaIMP, blaVIM), the MIC of meropenem increased by values from 15.5–67.38 µg/mL
even though the laboratory MIC testing range of meropenem is 0.06–4 µg/mL. Similarly,
Imipenem increased by 5.39–17.1 µg/mL in the presence of carbapenemase genes, where
≥4 µg/mL is considered as the resistance for Enterobacteriaceae [38]. Such increases are
evidently outside the resistance range and directly inferred resistance even without the
need for a breakpoint.

From the NARMS retail meat dataset, we have seen significant and large increases
in the range of 57.59–254.64 µg/mL in the MICs of ceftriaxone in E. coli and S. enterica in
the presence of extended-spectrum beta-lactamase genes; blaCMY-2, blaCTX-M-1, blaCTX-M-55,
and blaCTX-M-65 even though the laboratory MIC testing range of ceftriaxone is 0.25–64
µg/mL. The primary mechanism of ceftriaxone resistance in E. coli and Salmonella enterica
is the production of ESBL genes, and ceftriaxone resistance is one of the indicator of the
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presence of ESBL production [39]. On the other hand, the presence of the ampC beta-
lactamase gene (blaCMY-2) exhibited resistance and increased MIC of cefoxitin by an average
of 8.66 µg/mL from 2002 to 2017 in the United States. This result can be correlated to
the transfer of blaCMY-2 genes in food animals over the years. It has been proved that the
blaCMY-2 plasmid can be transferred between E. coli and S. enterica isolates originating from
both food animals and humans [40]. In our study, the presence of the blaCMY-2 gene was
observed to significantly elevate resistance levels to cefoxitin and ceftiofur in retail meat,
with MIC increasing by 3.77–5.04 µg/mL and 9.63–14.46 µg/mL, respectively. Previously,
the blaCMY-2 gene had been identified in E. coli and S. enterica isolates obtained from food-
producing animals and retail meat, displaying complete resistance to cefoxitin and an
88% resistance rate to ceftiofur [41].

With the availability of historical phenotypic MIC and genotypic data, we can ac-
curately predict and provide a more accurate expected antimicrobial in vitro and in vivo
response clinically. Integrating phenotypic and genotypic data not only provides optimal
clinical and therapeutic decision-making not based on AST or genomic method alone but
also avoids errors associated with the clinical interpretations of AST or genomic method
alone [42]. Other impacts of this work include the provision of opportunity for monitoring
AMR trends taking into consideration other factors for both human and food animal/retail
meat that may influence AMR trends, e.g., across hospital specialties, bacteria type, gender,
and age group as well as across time and geographical space. Since the increase in MIC
indirectly translates into the possibility of resistance development, the increase in MIC
trend over time and geographical space as shown in this predictive modeling can be used
for AMR monitoring. As recommended by the WHO, AMR monitoring is germane for
supporting antimicrobial stewardship policy-making at national and global scales [11].
Also, such monitoring provides the framework for a better understanding of the epidemi-
ology for the prevention, and control of antimicrobial resistance to critically important
antimicrobials not only in human health but across one health interface.

In addition, the ability to predict beta-lactam phenotypic antimicrobial susceptibility
directly from beta-lactamase resistance genes further illuminates how these resistance genes
mediate resistance to critically important beta-lactam antimicrobials. Such predictive mod-
eling may help reduce the reliance on routine phenotypic testing with higher turnaround
times in diagnostic, therapeutic, and surveillance of antimicrobial-resistant bacteria of the
family Enterobacteriaceae.

This study has certain limitations, as the data analysis was conducted based on the
availability of data. We incorporated left and right-censored MIC values into the true
MIC values, with left-censored values representing the smallest concentration and right-
censored MIC values representing the highest concentration. This study was only focused
on resistant genes of beta-lactam antimicrobials in the Enterobacteriaceae bacteria family
and application of these models to other bacteria families may be impractical.

4. Materials and Methods
4.1. Data Collection

A cross-sectional study design was performed, and the data for this research were
retrieved from two AMR surveillance programs; ATLAS (access at https://www.pfizer.
com/science/focus-areas/anti-infectives/antimicrobial-surveillance, accessed on 15 June
2023) and obtained through the Vivli Center for Global Clinical Research Data (accessed
at https://amr.vivli.org on 15 June 2023), and the retail meat surveillance data from the
NARMS (accessed at https://www.cdc.gov/narms/index.html on 1 February 2022).

Data from the ATLAS program was collected from 61 countries and involved samples
obtained from humans across various hospital specialties and six different age categories:
0–2 years, 3–12 years, 13–18 years, 19–64 years, 65–84 years, and ≥85 years. On the other
hand, in NARMS surveillance, USDA collected retail meat samples of cattle, chicken, swine,
and turkey in the United States.

https://www.pfizer.com/science/focus-areas/anti-infectives/antimicrobial-surveillance
https://www.pfizer.com/science/focus-areas/anti-infectives/antimicrobial-surveillance
https://amr.vivli.org
https://www.cdc.gov/narms/index.html
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Data for the period 2004 to 2021 was acquired from ATLAS. The available data in-
cluded bacterial species of the family Enterobacteriaceae (E. coli, Citrobacter spp., Enter-
obacter spp., Klebsiella spp., Morganella spp., Proteus spp., Providencia spp., Raoultella spp.,
and Serratia spp.), various beta-lactamase gene groups (blaCTXM-1, blaCTXM-2, blaCTXM-8/25,
blaCTXM-9), and specific genes blaSHV, blaTEM, blaVEB, blaPER, blaGES, blaACC, blaCMY-2, blaDHA,
blaFOX, blaACT, blaKPC, blaOXA, blaNDM, blaIMP, and blaVIM). Additionally, we collected in-
formation on the minimum inhibitory concentration (MIC) of cefepime (fourth-generation
cephalosporin), ceftazidime (third-generation cephalosporin), ceftaroline (fifth-generation
cephalosporin), imipenem, and meropenem antimicrobial drugs. In the case of ATLAS,
MICs were established through broth microdilution in accordance with Clinical and Labo-
ratory Standards Institute (CLSI) guidelines, and the interpretation utilized the 2020 CLSI
breakpoints. For NARMS, MIC breakpoints followed the guidelines established by the CDC
NARMS [38], available at (https://www.cdc.gov/narms/antibiotics-tested.html, accessed
on 1 February 2022). From the NARMS data, observations of two bacteria (Salmonella
enterica and E. coli) and four types of meat (chicken breast, ground beef, ground turkey, and
pork cut) were obtained for the period 2002 to 2018. To predict the MICs of three drugs
(ceftriaxone, cefoxitin, and ceftiofur), several beta-lactamase genes were also acquired from
the dataset. These genes included (blaCMY-2, blaCMY-3, blaCTX-M-1, blaCTX-M-55, blaCTX-M-65,
blaSHV-2, blaTEM-1).

4.2. Data Analysis

We used Microsoft Excel 365 for data cleaning, organization, and management. From
the raw data source, the beta-lactamase genes were extracted and assembled with other
variables. Independent variables in the human dataset from ATLAS included country,
bacterial species, gender, age group, specialty (the unit where patients were treated), year,
and beta-lactamase genes. On the other hand, the dependent variables were the MIC
values of cefepime, ceftazidime, ceftaroline, imipenem, and meropenem. For the NARMS
dataset, bacterial species, year, meat types, and beta-lactamase genes were the independent
variables, and the MIC values of ceftriaxone, cefoxitin, and ceftiofur were the dependent
variables. The focus of our analysis was to predict MICs of Enterobacteriaceae from different
beta-lactamase resistance gene families available in the ATLAS and NARMS data while
adjusting for the other associated variables.

To conduct our statistical analysis, the dataset was exported into the R open-source
scripting software (version 4.2.2, R Foundation for Statistical Computing, Vienna, Aus-
tria https://www.R-project.org/, accessed on 14 February 2022). Since the MIC values
of the antimicrobials (cefepime, ceftazidime, ceftaroline, ceftriaxone, cefoxitin, ceftiofur,
imipenem, and meropenem) followed a geometric increase pattern, we transformed the
MICs using log2 transformation to approximate the MIC values to a normal distribution as
much as possible. Initially, simple linear regression modeling was performed to explore
the relationship between the log2-MIC of each antimicrobial and the other variables indi-
vidually. Subsequently, a multivariable linear regression model was employed with each
antimicrobial as the dependent variable. Multicollinearity and interaction between the
variables were checked. In addition, all models were checked based on the higher adjusted
R square and lower Akaike information criterion (AIC) for selecting the final model. If
heteroscedasticity is detected in the initial model, indicating that the variability of the errors
is not constant across all levels of the independent variables, it will leading to a transition
to a weighted least squares model (WLS) [43]. It assigned different weights to different
observations based on the variance of the errors. The model lowered the error variability
by giving lower weights to observations with more variability and higher weights to lower
variance. WLS model followed the equation:

n

∑
i=1

wi (yi − ŷi)
2

https://www.cdc.gov/narms/antibiotics-tested.html
https://www.R-project.org/
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where n is the number of observations, yi is the observed response for the i-th observation,
ŷi is the predicted response for the i-th observation and wi is the weight assigned to the
i-th observation. To determine the weights (wi) the inverse of the squared residuals ( ϵi)
was applied.

wi =
1

ϵi
2

The retail meat dataset conformed to the weighted least squares model, whereas the
human dataset did not, necessitating a switch to a robust model. The coefficients of the
weighted least squares or robust models were back-transformed by computing the square of
log2-MIC values. ATLAS data were presented in a table, and NARMS data were visualized
in plots using R package sjPlot. For all statistical analyses, statistical significance was set at
p < 0.05.

5. Conclusions

The challenge of identifying and diagnosing antimicrobial resistance (AMR) is a signif-
icant concern for global health. Timely and precise diagnosis is a crucial factor in the battle
against AMR, with one of the primary obstacles being the lengthy process involved in de-
termining susceptibility levels. The current gold standard for susceptibility testing, known
as the MIC method, is both time-consuming, labor-intensive, and expensive. However,
the application of predictive modeling, specifically using multivariable linear regression
analysis, has shown promising results in validating anticipated MIC values based on factors
such as beta-lactamase genes and other epidemiological variables. Unlike conventional
breakpoint interpretation of phenotypic values, this predictive modeling offers a more
accurate computed value, particularly in the presence of specific beta-lactamase genes in
the integrated surveillance dataset. Utilizing this type of analysis enables us to identify
the most suitable antimicrobial treatments and employ them in combination therapies,
ultimately leading to improved outcomes for patients facing antimicrobial resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://
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MIC of Ceftiofur from retail meat.
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