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Abstract: The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique
properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing
these properties requires a deep understanding of complex interactions. This study incorporated data-
driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles.
The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum
concentration, no significant variations in structural, morphological, and optical properties were
observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-
negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and
55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus,
respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and
Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random
Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis
extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum
content and particle size were irrelevant, despite what can be assumed. This approach offers a
promising avenue for developing effective and tailored strategies to reduce the time and cost of
developing antimicrobial nanoparticles.

Keywords: antibacterial; nanoparticles; lanthanum; machine learning; ZnO

1. Introduction

Multidrug-resistant bacteria pose significant risks to human health [1]. Antibiotics
are commonly administered to combat bacterial infections through various mechanisms,
such as targeting prokaryotic cell wall synthesis, protein translation, and DNA replication
machinery [2]. However, some bacteria have developed resistance or tolerance mecha-
nisms, including expressing enzymes that degrade antibiotics [3], adapting their cellular
components like cell walls and ribosomes [4], and expressing efflux pumps that protect
against numerous antibiotics [5]. Some clinically relevant bacteria that have adopted these
metabolic properties are the Gram-negative Escherichia coli, Pseudomonas aeruginosa, and the
Gram-positive Staphylococcus aureus [6]. These microorganisms cause gastroenteritis, skin
infections, and various systemic infections [7,8].
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In addition to their size, metal oxide nanoparticles (NPs) possess physicochemical
properties like charge, a high surface-to-mass ratio, and high reactivity that can enhance
antimicrobial activity [9]. As a result, various NPs composed of gold, silver, and metal
oxides have been developed [10–12].

Zinc oxide (ZnO) is a semiconductor with a hexagonal wurtzite structure and a
wide direct band gap of 3.4 eV, along with an excitation binding energy of 60 meV. Due
to its unique properties, ZnO has been utilized in electronic devices such as thin-film
transistors, photovoltaics, gas sensors, and biomedical sensors. Additionally, ZnO exhibits
biotechnological properties, including antibacterial and antineoplastic activity. ZnO NPs
may exert antimicrobial activity by changing cell polarity, producing oxygen-reactive
species (ROS) and free radicals, and activating signal transduction pathways [12–14]. The
antibacterial activity of doped ZnO NPs is associated with variation in the optical band
gap and particle size. ZnO has been approved by the Federal Drug Administration (FDA,
Rockville, MD, USA) for use as an alternative therapy. These properties can be further
enhanced by manipulating its morphology, which is influenced by the synthesis route.
A wide variety of synthesis methods have been developed for obtaining ZnO, including
green chemistry, combustion-assisted methods, microwave synthesis, and hydrothermal
methods, among others [13–15].

Lanthanum, a rare earth element, has been used as a doping element or oxide in
biomedical applications such as drug delivery, anticancer, and magnetic resonance imaging
(MRI) [16–19]. In all these applications, there is an improvement in the desired characteris-
tics after lanthanum doping. In recent reports, lanthanum-doped ZnO nanoparticles have
been primarily prepared using solution-based methods such as chemical precipitation, sol-
gel routes, and green synthesis. The resulting morphologies typically include nanoparticles
and nanorods. Lanthanum nitrate is commonly used as the precursor due to its water
solubility [20–22].

Machine learning is a powerful tool for modeling and understanding complex phe-
nomena in various fields, including science, engineering, finance, and healthcare [23].
Machine learning is a form of artificial intelligence that trains models on large datasets to
accurately predict future outcomes when presented with new input [24]. The modeling
process typically begins by collecting and cleaning data that may originate from sensors,
databases, or user interactions. This data is then fed into a machine learning algorithm to
identify patterns and relationships between variables, which can be used to predict future
events or better understand underlying phenomena [25].

Machine learning models adopt many forms, ranging from simple linear regression
models to deep learning neural networks [26]. Each model is designed to capture different
aspects of the data, and can be adapted to specific use cases [27]. In this work, eight
models were built: Multi-Layer Perceptron (MLP), K-Neighbors (KNN), Gradient Boosting
(XGB), Extremely Random Trees (ERT), Random Forest (RF), Decision Trees (DT), Linear
Regression (LR), and Support Vector Regressor (SVR). Multi-Layer Perceptron (MLP) is
a type of feedforward artificial neural network. It consists of multiple layers of nodes
(neurons), each connected to the next layer. The input layer receives the initial data, which
passes through hidden layers where computation occurs and finally produces an output.
MLPs can learn complex patterns in data and are commonly used for classification and
regression tasks. They utilize activation functions to introduce non-linearity, allowing
them to approximate a wide range of functions. K-Neighbors (KNN) is a simple yet
effective supervised learning algorithm for classification and regression tasks. In KNN,
the prediction for a new data point is based on the average (for regression) of its k nearest
neighbors in the training data. The distance metric, such as Euclidean distance, is typically
used to determine the similarity between data points. Gradient Boosting (XGB) is an
ensemble learning technique that builds a robust predictive model by combining multiple
weak learners sequentially. Each weak learner is trained to correct the errors made by the
previous ones.
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Gradient Boosting involves minimizing a loss function by iteratively adding decision
trees (boosting) to the model. It achieves high predictive accuracy by focusing on areas
where previous models perform poorly. Extremely Random Trees (ERT) is an ensemble
learning method like Random Forest (RF). However, instead of selecting the best split
among a subset of features at each node in a decision tree, ERT randomly selects splits for
each feature. This introduces more randomness, which can reduce overfitting and improve
generalization performance. Random Forest (RF) is another ensemble learning technique
based on decision trees. It builds multiple decision trees during training and outputs the
mode (for classification) or the mean prediction (for regression) of the individual trees.
RF is robust to overfitting and noise, making it popular for various classification and
regression tasks. Decision Trees (DT) are non-parametric supervised learning algorithms
for classification and regression tasks. They recursively split the data into subsets based on
the values of the features, with each split maximizing the information gain or minimizing
impurity. Decision trees are easy to interpret and visualize, making them helpful in
understanding the decision-making process in a model. Linear Regression (LR) is a linear
approach to modeling the relationship between a dependent variable and one or more
independent variables. It assumes a linear relationship between the input variables and
the output. LR estimates the coefficients of the linear equation, representing the best-fit
line or hyperplane that minimizes the sum of squared differences between the observed
and predicted values. Support Vector Regressor (SVR) is a type of support vector machine
(SVM) used for regression tasks. SVR works by finding the hyperplane that maximizes the
margin between predicted and actual values. It uses a kernel function to map the input
variables into a higher-dimensional space where a linear relationship can be found. SVR
is effective in handling high-dimensional data, and is robust to outliers. All eight models
described can be considered classic machine learning algorithms commonly applied to solve
regression problems [28–30]. Advantageously, machine learning can handle extensive and
complex datasets that would be difficult or impossible to analyze manually [31]. This study
fed analytical data into various machine-learning algorithms to model the antibacterial
behavior of ZnO doped with lanthanum. To do so, parameters such as the type of bacteria,
the dosage of doped NPs applied, treatment time, and cell parameters were considered. The
inhibitory effect of the material was represented by the absorbance read from the culture.

Here, we systematically studied the effect of incorporating lanthanum at different
concentrations into ZnO prepared via the solution-polymerized method, focusing on
their structural, optical, and morphological properties, as well as their relationship with
antibacterial activity. Material characterization data were collected to identify the factors
contributing most to the antibacterial activity of the doped nanoparticles compared to
undoped ZnO. Antimicrobial activity was assessed using the zone of inhibition (ZOI)
and bacterial growth curves. Finally, experimental data on bacterial growth kinetics were
analyzed using machine learning algorithms to plan future experiments (Figure 1). The
best models were optimized using randomized techniques and cross-validation to reduce
the likelihood of overfitting. The combination of materials data and antibacterial activity
offers new insights into the effectiveness of doping ZnO as an antimicrobial agent.
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Figure 2a. All XRD patterns matched the standard JCPDS # 36-1451, corresponding to the 
ZnO hexagonal wurtzite structure. All samples exhibited the (100), (002), (101), (102), 
(110), (103), (200), (112), and (201) diffraction peaks, and no secondary phases related to 
La3+ were observed. As confirmation, the patterns of the doped ZnO NPs were compared 
with those of the standard La2O3 (JCPDS # 40-1284), and not one peak of this phase was 
observed. Crystallinity decreased as La3+ content increased (Figure 2a). The samples were 
labeled as ZL0 for the undoped ZnO, ZL1, ZL5, and ZL10 for respective concentrations (1, 
5, 10 at.%). 

Figure 1. A workflow of the application of machine learning in modeling antibacterial properties of
Ln-doped ZnO nanoparticles; XRD—X-ray Powder Diffraction.

2. Results and Discussion
2.1. Nanoparticle Characterization

Undoped and La-doped ZnO NPs were prepared by solution polymerization. The
X-ray diffraction (XRD) patterns of the Zn1−XLaXO (x = 0, 1, 5 y 10 at.%) NPs are shown
in Figure 2a. All XRD patterns matched the standard JCPDS # 36-1451, corresponding to
the ZnO hexagonal wurtzite structure. All samples exhibited the (100), (002), (101), (102),
(110), (103), (200), (112), and (201) diffraction peaks, and no secondary phases related to
La3+ were observed. As confirmation, the patterns of the doped ZnO NPs were compared
with those of the standard La2O3 (JCPDS # 40-1284), and not one peak of this phase was
observed. Crystallinity decreased as La3+ content increased (Figure 2a). The samples were
labeled as ZL0 for the undoped ZnO, ZL1, ZL5, and ZL10 for respective concentrations (1,
5, 10 at.%).
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form Infrared Spectroscopy (FTIR) spectra of undoped and doped ZnO nanoparticles. 
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Structural parameters were modified as La3+ content increased (Table 1). The c/a ratio 
or packing factor for an ideal stoichiometric structure is 1.6333. An R (degree of distortion) 
value greater or less than unity indicates the presence of zinc and oxygen vacancies [36]. 
The average crystallite size (D) was calculated from the Scherrer equation [37]. The D 
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Figure 2. (a) X-ray Powder Diffraction (XRD) patterns of ZnO with varying La (Lanthanum) concen-
trations; the wurtzite ZnO’s lattice planes (hkl) are indicated. (b) a and c lattice parameters calculated
from peak positions. (c) Texture coefficient (TC) of different planes and (d) Fourier Transform Infrared
Spectroscopy (FTIR) spectra of undoped and doped ZnO nanoparticles.

Table 1 summarizes the structural parameters that characterize the undoped and
doped ZnO NPs. Slight variations in 2(θ) positions were observed, which can be attributed
to La3+ incorporation into the ZnO structure and differences in the radii between La3+

(1.16 Å) and Zn2+ (0.74 Å) [32]. The a and c lattice parameters were then calculated [33]
(Figure 2b). As La3+ content increased, the a and c lattice parameters decreased due to
two phenomena: First, a compressive hydrostatic pressure arises when doping ions are
introduced in a ZnO host. Second, when doping ions (La3+) localize in the nonequilibrium
position, these ions shift toward an equilibrium position. Similar results have been reported
after doping ZnO with rare earth elements [34,35].
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Table 1. Structural parameters of prepared nanoparticles. c and a lattice parameter; D the average
crystallite size.

Sample 2(θ) (100) 2(θ) (101) c/a Ratio Unit Cell Vol (Å3) Distortion (R) D (nm)

ZL0 31.778 36.277 1.602 47.58 1.019 27
ZL1 31.780 36.280 1.602 45.57 1.019 24
ZL5 31.813 36.267 1.600 47.35 1.020 6
ZL0 32.002 36.405 1.609 46.81 1.015 5

Structural parameters were modified as La3+ content increased (Table 1). The c/a ratio
or packing factor for an ideal stoichiometric structure is 1.6333. An R (degree of distortion)
value greater or less than unity indicates the presence of zinc and oxygen vacancies [36].
The average crystallite size (D) was calculated from the Scherrer equation [37]. The D value
decreased due to a reduced growth rate [38]. The texture coefficient (TC) was calculated
from the XRD analysis to evaluate the effect of La3+ incorporation on preferred orientation
growth using the Harrys texture equation [39]. According to the literature, the preferred
orientation growth is determined by the interaction between solvents and crystal planes
of the NPs [40]. Strong interactions between solvent-crystal surfaces reduce growth in a
particular crystal plane. No significant changes were observed in the TC value for the
(100) plane (Figure 2c). More significant variation was observed for the (002) and (101)
planes. Upon incorporating various ions from the original lattice (ZnO), the nucleation type
changes from homogenous to heterogeneous due to forming a new nucleation center [41].

The presence of functional groups on the surface of the NPs was confirmed by
Fourier-transform infrared spectroscopy (Figure 2d). All NPs exhibited similar spectra;
the peak of ~3765 cm−1 can be attributed to carbon from measurement residues [42]. The
3700–3584 cm−1 absorption peaks correspond to the –OH stretching vibration from water
adsorbed on the particle surface. A weak band localized at ~2995 cm−1 corresponded
to C–H stretching vibration. The band at ~2346 cm−1 was due to atmospheric CO2. The
strong intensity peaks between 1490 and 1400 cm−1 were related to C–H bending vibra-
tion. A band at ~893 cm−1 corresponded to the formation of tetrahedral coordination of
Zn. Another band at ~710 cm−1 was related to the stretching vibration of ZnO particles.
The broad absorption band observed at ~460 cm−1 confirmed the successful formation of
metal–oxygen (M–O, stretching vibration) from undoped and La-doped NPs. The inset
of Figure 2d reveals a slight shift in the M–O band, which can be attributed to lattice
distortion and is supported by XRD analysis [43]. The residual organic groups were related
to poly(vinyl alcohol) (PVA)/sucrose decomposition during synthesis.

The optical properties of undoped and La-doped ZnO NPs were analyzed by UV–vis
diffuse reflectance spectroscopy (DRS) (Figure 3a). All samples exhibited an absorption
edge of ~365 nm, which can be attributed to the direct band gap of ZnO. This is due to the
electron transition from the valence band (VB) to the conduction band (CB) (O2p–Zn3d) [44].
The observed variation in the absorbance spectra is related to defects in features such as
crystallite size, grain boundaries, and oxygen vacancies [45]. The band gap was calculated
using the absorbance data, the Kubelka–Munk function, and Tauc’s relation (Figure 3b) [46].
The obtained values were 3.22, 3.21, 3.24, and 3.25 eV for ZL0, ZL1, ZL5, and ZL10,
respectively. For the ZL1 sample, a red shift was observed. In contrast, the ZL5 and ZL10
samples exhibited a blue shift compared with the ZL0 sample. According to a previous
report, red and blue shifts are due to tensile and compressive stress, respectively [47].
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Figure 3. (a) UV–Vis spectra. (b) Kubelka-Munk function versus energy plots to determine band gap
for undoped and doped ZnO nanoparticles. (c) Conduction and valence bands energies. (d) Particle
size (PS) in solution and zeta potential.

The energy of the CB and VB (Figure 3c) were calculated from band gap values [48];
their positions determine the formation of ROS and, therefore, the biological applications
of NPs. Here, the CB and VB values included the potential of the superoxide anion and
hydroxyl (1.99 and −0.33 eV), which affect the antibacterial properties of the NPs [49]. The
size distribution and zeta potential of the NPs in aqueous medium are shown in Figure 3d.
According to these values, NPs tended to agglomerate when in suspension. The average
size of ZL0 was almost three times higher than the other NPs. The zeta potential of all the
samples was less than −30 mV, indicating they are strongly anionic. The ZL10 exhibited
lower zeta potential values according to the size distribution results.

Field emission scanning electron microscopy was used to evaluate the microstructure
of the La-doped ZnO NPs; representative results for 5 at.% La content samples are shown
in Figure 4a. PVA was used as a stabilizing agent in this synthesis method to control the
growth of NPs, whereas sucrose was used to fuel the reaction. Our previous work described
the chemical mechanism in detail [43]. Figure 4a shows that the microstructure consisted
primarily of interconnected bubbles and was highly porous, likely due to the presence of
organic materials during synthesis. Figure 4a (inset) represents a Zn (red), O (green), and
La (blue) elemental map-ping mix. High-magnification images (Figure 4b–e) revealed the
average particle sizes of ZL0, ZL1, ZL5, and ZL10 to be 36.4, 35.3, 28.3, and 24.5 ± 5% nm,
respectively. The composition of the samples measured using energy-dispersive X-ray
spectroscopy (EDS) is shown in Figure 4f.
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Figure 4. (a) Low-magnification Field emission scanning electron microscopy (FESEM) image and
energy-dispersive X-ray spectroscopy (EDS) element overlap maps of La-ZnO 5 at.%. (d) High-
magnification images of (b) ZN0, (c) ZN1, (d) ZN5, and (e) ZN10. (f) EDS spectrum of all the samples.
The scale bar corresponds to 10 mm (a) and 100 nm (b–e).

2.2. Potential Role of Particles as Nano-Antibiotics

Two assays were performed to evaluate the antibacterial activity of the Zn1−XLaXO
(x = 0, 1, 5, 10 at.%) NPs against (a) E. coli, (b) S. aureus, and (c) P. aeruginosa. First, bacterial
inhibition was measured in nutrient agar plates, where a change in the color of the nutrient
agar characterized the ZOI. For E. coli and S. aureus, variations in the agar color increased
with NP concentration. However, this effect was unnoticeable for ZL10. Figure 5 shows the
ZOI by quantifying the radii in the Petri dish after 24 h of exposure to E. coli, S. aureus, and
P. aeruginosa for each NP and concentration. Inhibition results varied across bacteria. The
inhibition of E. coli and S. aureus was associated with the NP type, not the concentrations,
as the ZnO NP generated a greater ZOI. P. aeruginosa exhibited similar results following
exposure to the La-doped ZnO at 10 at.%.
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P. aeruginosa employs many virulence mechanisms, equipping the bacteria with ad-
vanced properties that enhance the adaptation process inside the host environment. These
factors encompass a complex array of secretion (T1SS, T2SS, T3SS, T4SS, T5SS, and T6SS)
and communication systems (quorum sensing). Additionally, the bacteria produce profi-
cient lipopolysaccharides and toxins, and employ intricate biochemical mechanisms that
allow them to face redox conditions and iron starvation in the host [50].

An interesting effect was observed when P. aeruginosa was exposed to NPs. P. aeruginosa pro-
duced a blue-greenish virulence factor known as pyocyanin (N-methyl, L-hydroxyphenazine),
which, together with pyoverdine, highly contributes to the colonization of P. aeruginosa.
Pyocyanin is a zwitterion with a phenolic group whose redox properties render it highly
reactive [51]. Significant levels have been detected in chronic infections associated with
sputum sol, ear secretions, and wounds [52]. Pyoverdine is a siderophore that plays an
essential role in the uptake of external iron, one of the primary metabolic nutrients that
determines the activity of various metalloproteins.

Thus, decreasing the production of both pigments could attenuate the virulence of P. aerug-
inosa, thereby strengthening the host’s natural defense against infection [53]. Many studies have
shown the inhibition of this pigment at high NP concentrations, especially when P. aeruginosa is
exposed to silver NPs [54]. Previous studies have shown that using ZnO nanoparticles promotes
a significant decrease in diverse virulence factors exhibited by P. aeruginosa, including various
clinical isolates. Remarkably, an optimal concentration of 8 mg/mL exhibited high efficiency in
diminishing virulence capacity, affecting the production of rhamnolipids, pyoverdine, elastases,
and proteases. Furthermore, a downregulation in gene expression associated with the Quorum
sensing system was also observed [55]. An assessment employing a concentration profile of ZnO
NPs reveals that optimal efficacy in biomass reduction, biofilm formation, and the expression
of virulence factors, such as pyocyanin and pyoverdine, is achieved at higher concentrations.
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The statistical analysis of ZOI data shown in Figure 6 highlights significant differences in these
values for the ZL10 sample.
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A bacterial growth kinetics assay was used to characterize the antibacterial properties
of La-doped ZnO NPs. Figure 7 shows the growth rate of the three bacteria following
exposure to NPS at different doping and concentrations (C1 = 5 mg/mL, C2 = 10 mg/mL,
C3 = 20 mg/mL). The highest inhibition of bacterial growth compared to the control was
measured after 10 h of exposure; this duration was used for further analysis.
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At the C1 dose, ZL0 exerted significant antibacterial activity (61%) against E. coli,
whereas ZL1 treatment proved effective against S. aureus with approximately 79% inhibition.
P. aeruginosa was most inhibited by ZL1 (nearly 55%). The inhibitory effects of ZL0, ZL1,
and ZL5 at the C2 concentration were similar (76–78%) against E. coli. ZL0 treatment
exerted the highest antibacterial activity against S. aureus, with nearly 95% inhibition. ZL5
performed best against P. aeruginosa (around 51%). At C3, the growth of E. coli was the
most inhibited when treated with ZL5 (around 95%), whereas S. aureus was most inhibited
by ZL0 (87%). ZL1 treatment best inhibited (55%) the bacterial density of P. aeruginosa.
Regardless of dose, ZL10 had lower antibacterial activity against E. coli and S. aureus strains.
Dose-dependent inhibition of bacterial growth was determined for all strains, as bacterial
density decreased with increasing doses of NPs.

According to statistical analysis (Figure 8), E. coli was sensitive to ZL0, ZL1, and ZL5
doping at higher concentrations (C3, p < 0.001). However, ZL10 was ineffective, allowing
the bacteria to reach viability up to 50.50%. S. aureus was less sensitive to NPs regardless of
doping or concentration. Interestingly, ZL1 inhibited S. aureus equally across all concentra-
tions, where bacterial viability reached an average minimum of 15.87%. Despite doping, P.
aeruginosa was less sensitive to this type of NP, even at high concentrations; all treatments
yielded a bacterial viability of 50% or more.
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Figure 8. Bar plot and Tukey´s test of bacterial survival percent in different strains: (a) E. coli,
(b) S. aureus, and (c) P. aeruginosa, using different nanoparticle concentrations (C1 = 5 mg/mL,
C2 = 10 mg/mL, C3 = 20 mg/mL).

The half-maximal effective concentration (EC50) is the concentration of a drug or
chemical that induces a biological response halfway between the baseline and the maximum
effect. In nanomedicine, EC50 refers to the potency of NPs that kill cells, change gene
expression, or generate other cellular responses. Figure 9a–c shows that, regardless of
doping, bacterial survival declined as NP concentration increased. E. coli and S. aureus were
least affected by ZL10 (Figure 9a,b), with EC50 values of 6.55 and 7.17 mg/mL, respectively.
Even at high concentrations, P. aeruginosa was less susceptible to NPs, presenting a bacterial
survival above 40% (Figure 9c). Among the three bacteria examined, NPs doped at 10 at.%
were the least effective (EC50 = 7.20 mg/mL, p > 0.05). ZL0 had similar effects on E. coli
and S. aureus with EC50 values of 3.73 and 3.49 mg/mL, respectively (Figure 9d). ZL1
elicited a more significant response from S. aureus and P. aeruginosa, but did not affect E. coli.
Although E. coli and P. aeruginosa are Gram-negative bacteria, and S. aureus is Gram-positive,
the results did not correlate with the Gram-stain, suggesting that the antibacterial activity
of NPs is not influenced by membrane composition.
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The antibacterial activity of undoped and doped ZnO NPs can be attributed to several
potential factors, such as particle size, structural defects (i.e., vacancies), metal ion release,
photocatalytic activity, and ROS [56]. In this work, the potential activity of the materials as
nano-antibiotics was measured under dark conditions.

Previous studies have attributed the antimicrobial activity of ZnO under dark con-
ditions to superficial defects. Indeed, ROS are produced due to defects responsible for
trapped carriers [57] as follows:

O2 + e− → ◦O−
2 (1)

◦O−
2 + H2O → ◦HO2 + OH− (2)
◦HO2 +

◦HO2 → H2O2 (3)

H2O2 +
◦O−

2 → O2 +
◦OH + OH− (4)

In the initial step, an electron from the NP surface reacts with atmospheric oxygen to
produce a superoxide radical, which reacts with water to produce hydroperoxyl radicals.
Next, these hydroperoxyl radicals recombine to produce hydrogen peroxide. Finally,
a reaction between superoxide radicals and hydrogen peroxide enables the formation
of hydroxyl ions and hydroxyl radicals. The antibacterial activity of ZnO under dark



Antibiotics 2024, 13, 220 13 of 22

conditions is related to the ◦O−
2 and H2O2. These ions and radicals destroy the organic

groups of the outer cell membrane, killing bacteria.

2.3. Machine Learning Modeling

Table 2 summarizes the computational experiments performed to predict bacterial
survival. The table reports the time required to train the model in each case and the time to
compute the predictions on the test set. The mean absolute error (MAE) value is notably
lower for better models. A correlation coefficient R2 is also computed for the training and
test sets; if their difference is less than 2%, the model was not overfitted or underfitted. All
the models accurately predicted the bacterial survival rate (%).

Table 2. Metrics for the error and determination coefficient for the predicted values of the com-
plete datasets.

Model Training Time (s) Prediction Time (s) Explained Variance MAE R2 Train Set R2 Test Set

LR 0.011 0.000 0.4785 10.204 0.6457 0.4722
RF 0.080 0.003 0.9046 3.906 0.9844 0.9022

ERT 0.069 0.003 0.9003 4.017 0.9999 0.9047
DT 0.001 0.000 0.7917 5.472 1.0 0.791

MLP 0.258 0.000 0.3787 11.671 0.2860 0.3619
KNN 0.001 0.081 0.7504 6.702 0.9037 0.7282

GB 0.048 0.001 0.862 5.309 0.9393 0.8595
SVR 0.008 0.004 0.2664 11.91 0.1689 0.2555

Random forest (RF) generated the smallest MAE (about 4%), though the Extremely
Random Tree (ERT) model showed very similar results. Remarkably, the R2 scores of the
decision tree (DT), ERT, and RF models were almost perfect (1.0), although the MAE in
those cases hovered around 5%. This may be due to a slight model overfitting, which can
be reduced in the workflow’s next step. The multilayer perceptron (MLP) and the support
vector regressor (SVR) models performed worst. These results are shown in Figure 10a,b.
In addition, Figure 10c–e show the residual and the Q–Q plots of train and test values for
representative models. The predicted values of residuals represent normal distribution as
the base distribution.

2.4. Hyperparameter Optimization

After the training, hyperparameter optimization can be performed to determine the
best model. Hyperparameters define the behavior and performance of a machine learning
algorithm; they are not learned directly from the data, but instead are assigned before
training the model. Examples include learning rate, regularization strength, number of
hidden layers, number of nodes per layer, and activation functions. Hyperparameter opti-
mization is crucial in machine learning because it directly impacts the model’s performance.
Hyperparameters are settings external to the model and control aspects such as complexity,
learning rate, regularization, and more. Finding the right combination of hyperparameters
can significantly improve a model’s accuracy, generalization ability, and efficiency. Without
proper hyperparameter tuning, a model may suffer from overfitting or underfitting, where
it either learns the training data too well but fails to generalize to new data or fails to
capture the underlying patterns in the data, respectively. Hyperparameter optimization
helps strike a balance between model complexity and generalization by fine-tuning these
settings. Moreover, different datasets and problem domains may require different hyperpa-
rameter configurations for optimal performance. Therefore, performing hyperparameter
optimization ensures that the model is tailored to the specific data characteristics, leading
to better results and more robust models. Overall, hyperparameter optimization is essential
for maximizing the performance and effectiveness of machine learning models in various
tasks and domains.
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Hyperparameter optimization techniques include grid search, random search, and
Bayesian optimization. This work used random search, which randomly samples hyper-
parameters from a given search space. Random search is less computationally expensive
than grid search, especially in high-dimensional hyperparameter spaces. Grid search
evaluates every possible combination of hyperparameters within set ranges, resulting in
exponentially more evaluations as the number of hyperparameters increases.

On the other hand, random search randomly samples a subset of hyperparameter
combinations, providing an appropriate balance between exploration and exploitation.
Second, random search outperforms grid search in discovering optimal hyperparameter
configurations. Grid search may overlook critical hyperparameter values that are not
in the specified grid. Random search, by definition, explores the hyperparameter space,
improving the possibility of identifying promising configurations. Finally, while Bayesian
optimization can determine the next set of hyperparameters to assess based on prior
findings, it requires additional modeling and computational overhead. Random search, in
contrast, is simple to implement and does not rely on any assumptions about the underlying
function being optimized, making it a practical choice for hyperparameter optimization in
many scenarios.

The process of random search for hyperparameter optimization can be summarized
as follows:

1. Define the hyperparameter search space: The first step is to define a range of values
for each hyperparameter that will be optimized.

2. Set the number of iterations: Next, determine how many iterations of the random
search will be run. This will determine the number of combinations of hyperparame-
ters that will be sampled.

3. Sample hyperparameters: For each iteration, randomly sample a set of hyperparame-
ters from the defined search space.

4. Train the model: Train a model using the sampled hyperparameters.
5. Evaluate the model on a validation set.
6. Store the results: Store the hyperparameters and the corresponding performance

metric (e.g., accuracy, F1 score) for each iteration.
7. Select the best hyperparameters: After completing all iterations, select the set of

hyperparameters that performed the best on the validation set.

Experimental validation, mainly through techniques like cross-validation, is crucial
for assessing the generalization performance of machine learning models on unseen data.
While a model may perform well on the training data, its actual test is how effectively it
can generalize to new, unseen instances.

Firstly, experimental validation helps detect overfitting, a common pitfall in machine
learning where the model learns to memorize the training data rather than capture un-
derlying patterns. By evaluating the model on unseen data, validation techniques reveal
whether the model’s performance degrades significantly, indicating overfitting. Secondly,
validation provides insights into the model’s ability to generalize across different subsets of
the data. Cross-validation, for example, splits the data into multiple subsets, allowing the
model to be trained and tested on different combinations of training and validation sets.
This process helps in understanding how robust the model is to variations in the data and
whether it can make accurate predictions across different scenarios. Furthermore, experi-
mental validation enables comparisons between different models or variations of the same
model. By assessing performance metrics on unseen data, researchers and practitioners
can objectively evaluate which model performs better and choose the most suitable one for
deployment in real-world scenarios.

The results of the random search are shown in Table 3. The accuracy of the RF and ERT
models improved by 5.51% and 15.54%, respectively. Tuning the hyperparameters requires
cross-validation (in this case, five folds) to reduce variance, select optimal hyperparameters,
maximize data utilization, and avoid over-optimistic results. Thus, the results obtained
here are more robust than those reported in Table 2, where only one experiment was run.
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Overall, the best model to predict bacterial survival was an ERT assigned the parameters in
the last row of Table 3.

Table 3. Results of tuning the hyperparameters of the two models that performed the best in the first
set of experiments (RF and ERT). The * in the name of the method indicates the optimized version.

Model Parameters MAE Accuracy R2 Score

Random Forest Default 3.96 58.16 0.90

Random Forest *
{‘n_estimators’: 500, ‘min_samples_split’: 2,
‘min_samples_leaf’: 1, ‘max_features’: ‘sqrt’,
‘max_depth’: 60, ‘bootstrap’: False}

3.98 58.80 0.91

Extremely Randomized Trees Default 3.98 53.89 0.90

Extremely Randomized Trees *
n_estimators: 522, min_samples_split: 2,
min_samples_leaf: 1, max_features: sqrt,
max_depth: 20, criterion: log2, bootstrap: False

3.48 62.27 0.95

Finally, a feature importance analysis was performed. Feature importance should
be calculated to highlight underlying patterns in the data and identify the most relevant
features for making accurate predictions. Here, the permutation importance was performed
where the values of a single feature in the test set were randomly changed and subsequent
decreases in model performance were measured. The more significant the decrease in
performance, the more influential the feature is. Figure 11 reveals the three most influential
features in predicting bacterial survival after removing the treatment duration and the dose
of the nanomaterial. This is because the antibacterial properties of ZnO have proved that it
is dose-dependent [58].

Antibiotics 2024, 13, x FOR PEER REVIEW 17 of 23 
 

 
Figure 11. Feature importance results. The bigger the value, the more substantial the contribution 
of the variable to the model. The values were computed using the permutation importance method. 

3. Methods 
3.1. Nanoparticles Synthesis 

The solution-polymerization method synthesized Zn1-XLaXO (x = 0, 1, 5 y 10 at.%) 
based nanoparticles [60]. Four solutions were prepared using La3+ content (0, 1, 5, 10 at.%). 
For the preparation, 0.4 g of Polyvinyl alcohol (PVA, Mw: 70,000–1000, Sigma-Aldrich, St. 
Louis, MO, USA) and 3.0 g of sucrose (C12H22O11, Sigma-Aldrich. ACS reagent, St. Louis, 
MO, USA) were dissolved in 150 mL of distilled water while stirring at 85 °C for each 
solution. When the PVA was dissolved, stoichiometric amounts of Zn(NO3)26H2O (Sigma-
Aldrich, St. Louis, MO, USA, 99.9%), as well as La(NO3)36H2O (Sigma-Aldrich, St. Louis, 
MO, USA, 99.9%), were added, and the solutions were mixed thoroughly while pH was 
adjusted to 1 with citric acid (C6H8O7H2O, Sigma-Aldrich, St. Louis, MO, USA) (Table 4). 
Furthermore, the solutions were stirred and kept at 85 °C for the evaporation of the re-
maining water. Subsequently, the obtained foams were dried at 200 °C for 4 h. Finally, the 
powders were calcined at 450 °C for 4 h in a Thermolyne muffle (Thermo Fischer Scientific, 
Waltham, MA, USA) under an air atmosphere. All the chemicals were purchased from 
Sigma-Aldrich. The samples were labeled as ZL0 for the undoped ZnO, ZL1, ZL5, and 
ZL10 for respective concentrations (1, 5, 10 at.%). 

Table 4. Formulation composition. 

Sample PVA (g) Sucrose (g) Zn2+ Precursor La3+ Precursor 
ZL0 0.4 3.0 3.654 0 
ZL1 0.4 3.0 3.568 0.065 
ZL5 0.4 3.0 3.321 0.254 

ZL10 0.4 3.0 3.016 0.487 

3.2. Nanoparticles Characterization Techniques 
The crystal structure of the nanoparticles was characterized by XRD (Bruker, Biller-

ica, MA, USA D-8 Advanced diffractometer, rotation activated, Cu anode λ = 1.5406 Å). 
XRD patterns were obtained from a 20° to 80° (2θ) with a 0.01° step size. Attenuated total 
reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed to assess 
the presence of organic matter in the structure of the nanoparticles. ATR-FTIR spectra 
were recorded in the 4000–400 cm−1 range using an IR Affinity-1S (Shimadzu, Columbia, 

Figure 11. Feature importance results. The bigger the value, the more substantial the contribution of
the variable to the model. The values were computed using the permutation importance method.

The following relevant feature is the gram type of the bacteria; the most relevant
is the Gram-negative type. Regarding the structural parameter of the NPs, the alpha
(α-angle) and mu (µ-distance) are related to the Zn–O bond [59], which were modified
after lanthanum doping. Nevertheless, the models explored here have not explicitly
identified a specific NP characteristic associated with higher antimicrobial activity. Further
experimental investigations are needed to optimize the composition of antimicrobial NPs.
The other variables are R (lattice distortion), alpha, beta and mu (structural angle), APF
(atomic packing factor), La and Zn (lanthanum and zinc content), BG (band gap), and c/a
ratio (lattice parameters).



Antibiotics 2024, 13, 220 17 of 22

3. Methods
3.1. Nanoparticles Synthesis

The solution-polymerization method synthesized Zn1−XLaXO (x = 0, 1, 5 y 10 at.%)
based nanoparticles [60]. Four solutions were prepared using La3+ content (0, 1, 5, 10 at.%).
For the preparation, 0.4 g of Polyvinyl alcohol (PVA, Mw: 70,000–1000, Sigma-Aldrich,
St. Louis, MO, USA) and 3.0 g of sucrose (C12H22O11, Sigma-Aldrich. ACS reagent, St.
Louis, MO, USA) were dissolved in 150 mL of distilled water while stirring at 85 ◦C for
each solution. When the PVA was dissolved, stoichiometric amounts of Zn(NO3)26H2O
(Sigma-Aldrich, St. Louis, MO, USA, 99.9%), as well as La(NO3)36H2O (Sigma-Aldrich,
St. Louis, MO, USA, 99.9%), were added, and the solutions were mixed thoroughly while
pH was adjusted to 1 with citric acid (C6H8O7H2O, Sigma-Aldrich, St. Louis, MO, USA)
(Table 4). Furthermore, the solutions were stirred and kept at 85 ◦C for the evaporation
of the remaining water. Subsequently, the obtained foams were dried at 200 ◦C for 4 h.
Finally, the powders were calcined at 450 ◦C for 4 h in a Thermolyne muffle (Thermo
Fischer Scientific, Waltham, MA, USA) under an air atmosphere. All the chemicals were
purchased from Sigma-Aldrich. The samples were labeled as ZL0 for the undoped ZnO,
ZL1, ZL5, and ZL10 for respective concentrations (1, 5, 10 at.%).

Table 4. Formulation composition.

Sample PVA (g) Sucrose (g) Zn2+ Precursor La3+ Precursor

ZL0 0.4 3.0 3.654 0
ZL1 0.4 3.0 3.568 0.065
ZL5 0.4 3.0 3.321 0.254

ZL10 0.4 3.0 3.016 0.487

3.2. Nanoparticles Characterization Techniques

The crystal structure of the nanoparticles was characterized by XRD (Bruker, Billerica,
MA, USA D-8 Advanced diffractometer, rotation activated, Cu anode λ = 1.5406 Å). XRD
patterns were obtained from a 20◦ to 80◦ (2θ) with a 0.01◦ step size. Attenuated total
reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed to assess the
presence of organic matter in the structure of the nanoparticles. ATR-FTIR spectra were
recorded in the 4000–400 cm−1 range using an IR Affinity-1S (Shimadzu, Columbia, MD,
USA) spectrometer. The morphology of the nanoparticles was investigated using FESEM
(TESCAN MIRA3 model, Warrendale, PA, USA). Optical properties were investigated
through absorption spectra obtained using a Cary-5000 UV–vis (Agilent Technologies,
Santa Clara, CA, USA) spectrometer equipped with a polytetrafluoroethylene (PTFE)
integration sphere. A dynamic light scattering instrument (DLS, Microtrac Nanotrac
Wave II, Montgomeryville, PA, USA) was used to calculate the average particle size, size
distribution, and ζ-potential in water suspensions (1 mg/mL), at pH = 7.

3.3. Effect of Nanoparticles on Bacterial Growth

The antibacterial activity of the nanoparticles was evaluated against Escherichia coli
(ATCC 10536), Pseudomonas aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC
33594). A single isolated colony was tacked to inoculate 10 mL of nutrient broth medium
(Merck, Millipore, Burlington, MA, USA) and incubated at 37 ◦C, shaking it at 200 rpm
overnight. The Petri dishes consisted of a lower layer of solid LB agar and an upper layer
of 10 mL of LB agar 7.5 g/L with 100 µL of the isolated cultured. After solidification, 5 µL
of the nanoparticles at different concentrations (5, 10, 20 mg/mL) and 2 µL of 50 µg/mL of
Ampicillin (control) were dropped by separated across the surface. The nanoparticles were
left to dry. Finally, the Petri dish was incubated at 37 ◦C for 48 h. The concentrations were
labeled as C1, C2, and C3 for 5, 10, and 20 mg/mL, respectively.
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3.4. Quantitative Determination of the Effect of Nanoparticles on Bacterial Growth

Kinetics data were obtained by monitoring the growth of each bacteria. The optical
density (OD600) was measured (Synergy HTX multi-mode reader, Biotek, Agilent Technolo-
gies, Inc, Santa Clara, CA, USA) during 8 h, in steps of 1 h. The microplate contained 5 µL
of nanoparticle stock solution at C1, C2, and C3 concentrations, glycerol (negative control),
and bacteria (positive control), mixed with LB medium to obtain 200 µL per well. The
bacterial culture measurements were normalized using controls; samples were analyzed
in triplicate.

3.5. Statistical Data Analysis

All experiments were done in triplicate, and the results were presented as mean ± standard
deviation. The experimental data were analyzed by ANOVA with a post hoc Tukey HSD
test with a 95% confidence. Statistical significance was marked with asterisks depending
on the p-value: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.6. Machine Learning Modeling

The goal of neural network modeling is to build a model of the inhibitory effect
of La-doped ZnO, using data obtained while characterizing the material and testing it
in vitro over three different types of bacteria. The bacterial survival rate (%) is reported
as a scalar number, which means the problem is to compute a regression model. The
traditional process of creating a Machine Learning regression model involves several key
steps (Figure 1) [61]. These steps are as follows:

• Define the problem: The first step is clearly defining the problem you want to solve
with the regression model. This includes identifying the input variables (features) and
the output variable (target) that you want to predict.

• Collect and preprocess the data: Next, you need to collect and preprocess the data
used to train and test the model. This involves cleaning the data, handling missing
values, removing outliers, and splitting the data into training and testing sets.

• Choose a regression algorithm: There are several regression algorithms, such as linear
regression, polynomial regression, and support vector regression. You need to select
the appropriate algorithm based on the problem you are trying to solve and the
characteristics of your data.

• Train the model: Once you have chosen the algorithm, you must train the model
using the training data. This involves feeding the input data into the algorithm, which
will adjust its internal parameters to produce the best possible predictions for the
output variable.

• Evaluate the model: After training, you must evaluate its performance using the
testing data. This involves measuring how well the model predicts the output variable
on data it has not seen before. Standard evaluation metrics include mean squared
error (MSE) and R-squared.

• Tune the model: If the model’s performance is unsatisfactory, you can try to improve
it by tweaking its parameters or using a different algorithm. This process is called
hyperparameter tuning, and involves testing different combinations of parameters to
find the best-performing one.

• Deploy the model: Once satisfied with its performance, you can deploy it into produc-
tion. This involves integrating the model into a software system or application that
can use it to make predictions on new data.

In this work, the raw dataset contained 396 rows and 31 columns. The variables
in the dataset are the concentration of the doping material, treatment time, dose of the
nanomaterial, type of bacteria (E. coli, S. aureus, P. aeruginosa), Gram-staining results,
structural, morphological, and optical materials properties. In contrast, the response
variable is the bacterial survival rate (%). The dataset was split into two sets: train and test,
with a proportion of 70/30% of the total rows, meaning 277 rows for training and 119 for
testing. After this separation, the columns with the data for the independent variables
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were transformed by computing a Min-Max Scaling. After this, all those values were
between 0 and 1. It is also important to mention that some variables have categoric values
(for instance, the bacteria type or the staining (Gram+ or Gram−)). Those variables were
transformed using a One-Hot encoding technique.

With the data prepared, it was possible to compute several models to determine the
most promising ones. In this work, eight models were built: Multilayer Perceptron (MLP),
K-Neighbors (KNN), Gradient Boosting (XGB), Extremely Random Trees (ERT), Random
Forest (RF), Decision Trees (DT), Linear Regression (LR), and Support Vector Regressor
(SVR). All the experiments reported in this section were run on an HPZ440 Server (HP
Inc, Palo Alto, CA, USA) with a Xeon E51620V3 Processor (Intel, Santa Clara, CA, USA) at
3.5 GHz, 16 GB RAM, 4 Cores, and 8 Processes running Ubuntu 22.04.

In this type of analysis, the first stage usually involves exploring the behavior of
various models. Based on each, the subset with the best results is selected, and its hyper-
parameters are optimized to obtain the best model from a good set of possibilities. The
hyperparameters to be optimized depend on each model, and several methods exist to
perform this step. In the case reported in this article, an optimization based on a random-
ized search in the parameter space was used. In any case, the Mean Absolute Error (MAE)
and the R2 coefficient were considered suitable metrics to measure the accuracy of the
model obtained.

4. Conclusions

In summary, antimicrobial La-doped ZnO NPs were fabricated using the solution poly-
merization method. The incorporation of lanthanum produces lattice parameter contraction
and increases the optical band gap. Also, a reduction in the average crystallite size was
observed. Three strains of bacteria were more susceptible to NP concentration than material
type (lanthanum content %). Interestingly, all the NPs induced pyocyanin production in
P. aeruginosa, and their antimicrobial activity decreased with increasing lanthanum content.
In addition, machine learning algorithms were used to predict the bacterial survival per-
centage of E. coli, P. aeruginosa, and S. aureus when exposed to different concentrations of
La-doped ZnO nanoparticles. The ERT model had the best correlation value (0.96) and
the slightest error (3.1%). The hyperparameter optimization analysis showed that NP
dose and incubation time contributed the most to the prediction. This study shows that
machine learning approaches can inform the rational design of antimicrobial nanomaterials
to combat antibiotic-resistant bacteria. With this study, the effectiveness of doping ZnO
with lanthanum for antibacterial application was proved. This study can be extended to
other nanoparticles where quantitative data on the biological activity are available.
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