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Abstract: Pathogens, such as Escherichia coli (E. coli), have been identified as significant causes
of poultry mortality. Poultry can serve as potential sources of E. coli transmission, even when
asymptomatic, posing a substantial threat to food safety and human health. The in ovo administration
of antimicrobials is crucial for preventing and/or effectively combating acute and chronic infections
caused by poultry pathogens. To achieve this goal, it is critical that antimicrobials are properly injected
into embryonic fluids, such as the amnion, to reach target tissues and trigger robust antimicrobial
responses. Several protocols based on antimicrobials were evaluated to meet these requirements. This
review analyzed the impacts of antimicrobial substances injected in ovo on the control of E. coli in
poultry. The reduction in infection rates, resulting from the implementation of in ovo antimicrobials,
combined with efforts aimed at hygienic-sanitary action plans in poultry sheds, reinforces confidence
that E. coli can be contained before causing large scale damage. For example, antimicrobial peptides
and probiotics have shown potential to provide protection to poultry against infections caused by
E. coli. Issues related to the toxicity and bacterial resistance of many synthetic chemical compounds
represent challenges that need to be overcome before the commercial application of in ovo injection
protocols focused on microbiological control.

Keywords: antimicrobials; egg microbiology; in-ovo injection; microbial reduction; poultry
microbiology; poultry safety

1. Introduction

The establishment of microbiota in the eggshell may or may not influence healthy
embryonic growth. It has been suggested that embryos may be resistant to bacterial infec-
tions originating in the eggshell, thanks to transgenerational immunological benefits [1].
On the other hand, it has been reported that the frequency of dead chick embryos with
neck and beak deformities during the late incubation period may be associated with the
Escherichia coli (E. coli) infectious process [2]. This microorganism is commonly found
on eggshells [3]. The colonization of the microbiota in the eggshell begins in the hen’s
oviduct [4], raising questions about the possible negative effect of oviductal bacteria on
embryonic development. However, microbiota colonization of freshly laid eggshells has
received greater attention given the recognized association with embryonic infections
resulting from bacterial penetration [5].

Research has revealed several active agents, mainly with antibacterial effects, for the
treatment of hatching eggshells after collection [6–15]. Oliveira et al. [10] reported that one
hour after spraying a 0.39% clove essential oil solution on hatching eggs, the count of total
aerobic mesophilic bacteria (−1.19 log) and Enterobacteriaceae (−1.19 log) in eggshells
significantly reduced. Cantu et al. [9] demonstrated that spraying 3% hydrogen peroxide
followed by immediate exposure to UVC light (254 nm) significantly reduced aerobic plate
counts (−3.51 log) on the surface of the hatching eggshell. However, before applying
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sanitizers, it is crucial to consider that a specific microbial load may have penetrated or
already have been present in the internal contents during egg formation in the oviduct.
Direct treatment of the egg contents may be beneficial, as it is not yet clear what proportion
of sanitizer residues applied to eggshells have to penetrate and perform their antimicrobial
role internally. Given that the poultry embryo is the most important figure in poultry
production, it is essential to guarantee their development away from any microbiological
risk that would make their survival unfeasible at any stage. Therefore, it is hypothesized
that the injection of antimicrobial substances directly into the internal contents of the egg
during embryonic development represents a strategy to ensure more effective protection of
embryos against microbial action, thus seeking to protect them from possible infections
after hatching.

To address this issue, this review analyzed the impacts of antimicrobial substances
injected in ovo on controlling E. coli infections in poultry.

2. Consultation of Published Studies

This review was prepared based on bibliographical research, consulting studies in-
dexed on Google Scholar. The terms used were “in ovo injection”, “antimicrobial substances
in ovo”, “eggshell”, “eggshell contamination”, “microorganisms in eggshells”, “eggshell
penetration”, “eggshell antimicrobial defense”, “albumen”, “albumen antimicrobial de-
fense”, “yolk”, “yolk antimicrobial defense”, “poultry embryonic infection”, “ E. coli in
hatching eggs”, “E. coli in poultry embryos”, “poultry infected by E. coli”, “in ovo antimi-
crobials to control E. coli”, and “humans infected with E. coli”. The criteria adopted for
inclusion included: original articles and reviews written in English or Portuguese; studies
that investigated the eggshell; studies focused on administering antimicrobial substances
through the in ovo technique; and studies related to microbial contamination of eggs and
embryos, specifically with E. coli. Any studies that did not meet these inclusion criteria
were promptly excluded from the analysis. The literature was consulted until the writing
of each topic was finalized.

3. Eggshells and Their Natural Defenses

The eggshell generally has two predominant functions: nourishing and protecting the
embryo. This protective function encompasses defense against pathogens, which is effec-
tive thanks to the interaction between the physical barrier capacity and the antimicrobial
proteins present in the eggshell [16]. In addition to having pores, the eggshell is subdivided
into the cuticular, vertical crystal, palisade, and mammillary layers, and the outer and inner
membranes (Figure 1) [17]. The cuticle is the upper layer, rich in polysaccharides, hydrox-
yapatite crystals, lipids, and glycoproteins [18]. The eggshell comprises the lower layer,
the vertical crystal, formed by crystals aligned perpendicular to the surface, the palisade
layer, composed of calcite crystals embedded in an organic matrix, and the mammillary
layer, consisting of calcified columns and cones that penetrate the shell membranes [19].
The inner layers, formed by the outer and inner membranes, represent the basal protective
layer of the eggshell, composed of protein fibers [17,19].

Over the years, several studies have explored different possibilities as to how pathogens
can overcome eggshell barriers (Table 1). The channels that influence the penetration of mi-
croorganisms into the eggshell can be significantly linked to poultry, egg, microorganisms,
or environmental conditions.
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Table 1. Some factors associated with microbial penetration into the eggshell.

Factors Reference

Absence or partial deposition of the cuticle [20]
Eggshell pore diameter [20]
Exposure of the egg to temperature variation regimes [21]
Translucent eggshell surface [21]
Genetic origin of Poultry [22]
Egg dynamic stiffness [23]
High contamination of the eggshell surface [23]
Motile and non-clustering properties of some microorganisms [24]
Poultry housing system [25]
Poultry feed [25]
Washing and sanitizing methods [26]
Egg storage time [27]
Number of pores in the eggshell [27]
Eggshell condensation [28]
Newly laid eggs (immature cuticle) [29]
Chemical composition of the cuticle [29]

4. Escherichia coli (E. coli) as a Threat during and after Embryonic Development

E. coli is a harmful pathogen in avian infections. This Gram-negative bacterium belongs
to the Enterobacteriaceae family and can thrive in both aerobic and anaerobic environments,
demonstrating adaptability when growing at temperatures ranging from 18–44 ◦C [30]. It
may represent the most predominant bacteria among those isolated from eggs, shell-dead
embryos, and newborn chicks [31]. E. coli can progress from harmless and asymptomatic
colonization of the eggshell to the onset of potentially fatal embryonic diseases [32]. Its
pathogenic specificity becomes particularly evident in embryonic infections, where E. coli
demonstrates a remarkable ability to colonize the eggshell, invade it, and colonize embry-
onic tissues [33]. The invasion of E. coli through the eggshell not only represents a direct
threat, but also promotes the invasion of other bacteria, such as Staphylococcus aureus, which
is associated with high rates of embryonic mortality [34]. Among the main complications
resulting from embryonic E. coli infection that lead to embryonic death are septicemia,
omphalitis, and congenital deformities [2,35,36]. The presence of E. coli can result in the
death of up to 92% of affected embryos [32]. Wang et al. [33] revealed that chick embryos
died 48 h after being infected by E. coli. These findings provide an explanation for the
decreased hatchability rate of E. coli-infected embryos at 18 days of development [37].

Another worrying aspect is the possibility of infection of embryos by E. coli through
the eggshell, without them showing clinical signs during development. Such symptoms
can appear after hatching [38], substantially increasing the risk of cross-contamination
outbreaks and widespread mortality in poultry houses. Undesirable effects have been
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identified in broiler chickens infected by E. coli, manifesting through clinical signs and
histopathological lesions such as: (1) Ruffled feathers, (2) inappetence, (3) respiratory mani-
festations, (4) sitting on hocks, (5) yellow and whitish diarrhea, (6) pericarditis, (7) enteritis,
(8) airsacculitis, (9) liver and lung congestion, and (10) myocardial degeneration [39].

5. Escherichia coli (E. coli) as a Threat to Human Health

Although this review does not directly focus on human health, it is imperative to
recognize that the seriousness of microbial contamination in hatcheries, poultry farms and
slaughterhouses cannot, under any circumstances, be ignored. Human health must always
prevail over any poultry production process. Both ingestion and inhalation are crucial
routes of direct exposure to microbial contamination in humans, covering both occupational
and non-occupational contexts. Hatcheries, poultry farms and slaughterhouses pose poten-
tial risks to humans, both in terms of contamination through inhalation and the possibility
of ingestion if the final products intended for consumption are contaminated, as these
products are considered one of the main reservoirs of E. coli [40]. An additional concern
arises when products initially supplied to commercial establishments, in accordance with
microbiological standards, end up suffering contamination during storage, especially if
this occurs under inadequate climatic and sanitary conditions. The consequences resulting
from the inhalation or ingestion of E. coli can manifest themselves in humans as acute or
chronic infections, compromising the integrity of human health. Some such infections
include urinary infections that may or may not be associated with cases of bacteremia [41],
intestinal problems, including diarrhea [42], and meningitis, associated with significant
mortality rates, or with a high risk of developing serious neurological sequelae [42,43]
(Figure 2).
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6. What Is the In Ovo Injection Technique?

Antimicrobials administered into the egg via injections may represent an effective
and rapid regimen to ensure microbial suppression during embryonic development and
post-hatch. This regime, known as “in ovo injection”, aims to deposit a compound of
interest in the internal environment of the egg via the intervention of qualified profession-
als [44]. Approximately forty years ago, researchers tested this regime in the laboratory
for vaccinating poultry before hatching [45]. Today, its commercial application around the
world continues to prioritize vaccination as its main objective. Based on research already
carried out [46–51], in ovo injections offer a range of advantages in poultry farming, such as:

• The in ovo injection technique does not require very complex professional training to
be administered.

• It can be considered the best option for early and systemic immunization of poultry,
with the absence of pain and stress.
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• This technique allows for rapid and effective absorption of the injected medication,
leading to faster immunization, or a faster response to treatment.

• It can inhibit bacterial growth and multiplication, thus reducing the cross-spread of
bacteria in hatcheries and farms, as well as outbreaks of fatal diseases.

• It can induce long-lasting immunity, ensuring that poultry protection is maintained
over time.

• It can favor the achievement of productivity gains related to the effects of the
injected compound.

• It precipitates a reduction in operational and treatment costs related to poultry farming.

Firstly, before carrying out the in ovo injection technique, individual safety equip-
ment must be used (Figure 3). The use of syringes with sterile needles and appropriate
calibers for eggs is crucial, as it must be a minimally invasive and painless protocol. In
general, the amount of substance injected is 0.1 mL [52], although a larger volume may
be considered [53]. However, it is essential to highlight that, depending on the nature of
the substance, the injection volume cannot exceed 0.4 mL, as this practice may be related
to undesirable productive effects [54]. Additionally, 1 mL syringes with 23-G and 1-inch
needles have been efficiently used in this practice [55]. After application, sterile paraffin
is normally used to seal the pierced egg [56]. Although the recommendations above are
not a general rule, the absence of adequate conditions, specifically for each antimicrobial
substance, can significantly increase the risk of failures and embryonic mortality in the
in ovo injection process [54]. The anatomical region of the egg used to administer antimi-
crobials is relevant to the safety and effectiveness of treatments developed to prevent or
treat avian microbiological complications until post-hatch. Thus, the amnion, an extra-
embryonic membrane, has been recommended as a potential site for the direct delivery of
antimicrobial substances [48] (Figure 3). This intervention can occur during the prenatal or
perinatal phases of embryonic development [51]. After the intervention, an immediate and
prolonged microbial reduction is expected.
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To understand the in ovo drug administration route, it is necessary to understand
the physiology of embryonic development. Among the various in ovo injection routes,
the amniotic route, as mentioned earlier, is the most popular approach for in ovo drug
administration. The main advantage of the drug administration system via the amniotic
route, compared to other in ovo delivery routes (Figure 4), is the rapid distribution of
the compound to the embryo. According to Williams [47], after being deposited in the
amnion, therapeutic substances are rapidly absorbed orally and through the mucosal
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surfaces of the embryo’s respiratory and digestive tracts. Antibacterial therapies require
that pharmacological agents act quickly on the body of the target organism to provide
protection and/or treatment. In this context, the amnion stands out as the best option for
prevention or treatment against E. coli in embryos, since the drugs deposited in it normally
have an efficacy rate above 90% [57].
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7. In Ovo Injection as a Front Line against Escherichia coli (E. coli) Infection in Poultry

The management of infectious diseases in poultry requires daily administration of
antimicrobials for a period that varies according to the target bacteria and its susceptibility
to the antimicrobial, the severity of the infection, the immunological status of the poultry,
and administration standards defined by the manufacturer, among others. However,
non-adherence to therapy by poultry can lead to recurrence of the disease. Therefore, it
is more advantageous to adopt preventive management practices even before signs of
avian infection appear. The use of injectable antimicrobial formulations in the egg during
embryonic development emerges as an effective preventive practice against microbial
infection in poultry, especially by E. coli (Table 2). However, it is worth highlighting the
importance of being cautious when using antibacterials for this purpose, mainly due to
the development of antibacterial resistance. It is hypothesized that this efficiency of the in
ovo injection practice is due to the rapid distribution of the antimicrobial throughout the
body and its prolonged action. Twenty-four hours after administration into the amnion,
the antimicrobial substance may have already spread throughout the embryo’s body,
including the gastrointestinal tract, respiratory system, and skin [48]. The effectiveness of
the antimicrobial administered in ovo can allow the survival of 90% of embryos against
E. coli infection [58] and ensure the protection of 100% of chicks against yolk sac infection
by the same microorganism [59]. Furthermore, the antimicrobial effect of the injectable
substance in the egg can be observed in poultry even when they reach 21 days of age [49].



Antibiotics 2024, 13, 205 7 of 14

Table 2. Control of E. coli in poultry after application of antimicrobials in ovo.

Compound
Classification Concentration

Day of
Application
in Embryos

Application
Location

Effects Found after
Application Study

Immune stimulants
Cytosine-phosphodiester-

guanine
oligodeoxynucleotides +

polyphosphazene

50 µg/100 µL E18 Amnion

Increased the
immunoprotective effect
against E. coli infections

in poultry

[46]

Cytosine
-phosphodiester-guanine

oligodeoxynucleotides
50 µg/100 µL E18 Amnion

It can be used to prevent
and control mortality due to
yolk sac infection by E. coli

[60]

Probiotics

Intestinal microbial product 3.3 × 105 viable
bacteria/egg

E18 Amnion

Reduced the abundance of
Enterobacteriaceae (a family
that includes E. coli) in the

intestinal microbiota

[61]

Bacillus spp. probiotic-based 5 × 107 CFU/mL
(1 × 107 CFU/200 µL)

E18 Amnion

Reduced the severity of
virulent horizontal

transmission of E. coli and
infection of poultry in the

incubation cabinet

[62]

Lactic acid microbiota 107 CFU/mL E19 Amnion
Reduced Enterobacteriaceae
colonization in poultry after

E. coli infection
[63]

Bacillus subtilis, Pediococcus
acidilactici, and Enterococcus

faecium
107 CFU/mL E18 Amnion

Reduced the intestinal
population of E. coli

in poultry
[64]

Antimicrobial peptides

Avian antimicrobial
peptides

30 µg peptide/100 µL
PBS/embryo E18 Amnion

Effective protection against
yolk sac infection caused by

E. coli
[65]

Chicken cathelicidin analog
DCATH-2

4.4 mg/mL/100 µL
PBS/embryo E18 Amnion Protected poultry against

E. coli infection [48]

Prebiotics

Raffinose and stachyose 5 and 10% E17 Amnion

The concentration of E. coli
in the intestinal content of

poultry did not show
significant variations

[66]

Nanomaterials

Green Silver Nanoparticles 0.17 mg/mL E17.5 Amnion Reduced E. coli counts in the
cecal content of poultry [67]

Bacteriophages

Phage cocktail
100 µL of the phage
cocktail (5.2 × 108

PFU/mL) or DPBS
E16 Allantois Prevented the development

of avian colibacillosis [50]

Synbiotics

Lactobacillus plantarum +
Astragalus polysaccharide

200 µL of the
Lactobacillus plantarum +

2 mg/egg Astragalus
polysaccharide

E18.5 Amnion

Increased colonization of
Lactobacillus spp. and

Bifidobacterium spp. and
decreased the population of
E. coli in the avian cecum.

[49]

Natural extract and
vitamins

Grape seed extract and
vitamin C

Grape seed extract (3,
4.5 or 6 mg/egg), and
vitamin C (3 mg/egg)

E18 Air sac Decrease in the population
of E. coli in the ileum [68]

Amino acids

L-arginine 1–0.5% E14 Amnion Reduced E. coli in the cecum
of poultry [69]
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As noted previously, successful antimicrobials demonstrate high efficacy in long-
lasting prevention and rapid treatment of poultry infection-causing pathogens such as
E. coli, providing systematic protection that effectively limits or prevents the spread of
infection in farming systems. Many antimicrobials demonstrate success in combating E. coli
due to their action mechanisms that result in the death of this bacterium. It has been
elucidated that natural antimicrobials may have the ability to cause damage to the cell
membrane of E. coli, resulting in the leakage of proteins and nucleic acids (Figure 5). This
phenomenon triggers the destabilization of metabolic activity, ultimately culminating in
bacterial cell death [70]. In the same way, synthetic chemical antimicrobials can also induce
disturbances in the cell walls and membranes of E. coli, reducing its protection and resulting
in the loss of intracellular content [71]. This is the most elucidated antibacterial mechanism.
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Advances in preventing or treating E. coli infections through in ovo delivery of sub-
stances have primarily focused on the use of antimicrobial peptides and probiotics. A
peptide is a chain of amino acids that generally does not exceed 50 amino acids, linked
together by peptide bonds [72]. Identified sources of peptides include microorganisms,
plants, animals, and humans [73]. Peptides present a cocktail of attractive characteristics,
such as compatibility with poultry safety [65]. Furthermore, they have pharmacological
aspects, including activity against gram-positive and gram-negative bacteria [65,74]. The
implementation of antibacterial peptides in poultry farming can significantly contribute
to solving several problems related to poultry productivity and health [75]. Two impor-
tant families of antimicrobial peptides with potential application in poultry farming are
β-defensins and cathelicidins [76].

Probiotics are beneficial live microorganisms that, in certain concentrations, exert a
broad spectrum of biological activities. This includes antibacterial properties, which have
played a significant role in increasing interest in opening new therapeutic horizons in poul-
try farming [77,78]. A review carried out by Cox and Dalloul [79] on the role of probiotics
in poultry concluded that probiotics are beneficial for improving performance, maintaining
healthy balance of the intestinal microbiota, and neutralizing adverse effects of infectious
diseases. Several microorganisms have physiological and technological characteristics
that classify them as probiotics. Among them are Lactobacillus acidophilus, Lactobacillus
casei, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus lactis,
Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus,
Lactobacillus salivarius, Bifidobacterium longum, Bifidobacterium bifidum, Bifidobacterium breve,
Bifidobacterium animalis, and Streptococcus thermophilus [80].

In short, it has been observed that the antibacterial compounds injected into the egg
act mainly to reduce the bacterial load of the poultry, protecting them against infections
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before or after hatching. Furthermore, they beneficially modulate the intestinal microbiota
and strengthen the poultry immune response, minimizing cases of mortality.

8. Is In Ovo Injection Harmful to Hatchability?

Hatchability is the gold parameter for evaluating antimicrobial techniques involving
embryos and hatchery performance. It represents the proportion of chicks born alive for a
specific sample of eggs [51]. A recent bibliographic mapping addressing the relationship
between hatchability and the in ovo injection technique [51] showed that, in general, the
practice of in ovo injection tends to improve hatchability. However, the review highlighted
that this technique has a more significant impact on poultry health parameters than on
hatchability itself, and that association of the technique with possible loss of hatchability
was observed in specific cases [51]. Therefore, it is more interesting for the poultry sector
to adopt sanitary procedures, with the potential not only to ensure poultry is free from
bacterial infections but also to at least preserve hatchability, given that poultry yields
depend significantly on this index and high-quality standards of the poultry. Choosing
a multifunctional antimicrobial can also minimize costs that could otherwise make the
adoption of in ovo infection unfeasible. A wide repertoire of antimicrobial solutions, such
as carbohydrate/electrolyte + potassium chloride + theophylline, tripotassium citrate +
potassium chloride + theophylline, creatine + potassium chloride + theophylline [81], the
nano form of zinc, copper, or selenium [82], vitamin A, vitamin E, vitamin D3, folic acid, [83]
L-Arginine, and L-Threonine [84], were not associated with harm in hatchability.

9. Antimicrobials and Hygiene Practices in the Poultry Sector

Eggshell contamination by E. coli often originates in breeding sheds. Subsequently,
this contamination can be transmitted horizontally to the embryo, persisting until after
hatching. Furthermore, poultry can be directly contaminated by E. coli present in the shed
environment. Therefore, poultry houses with unsanitary and microbiologically compro-
mised conditions can negatively affect the quality of poultry and act as sources of inoculum
for pathogenic microorganisms, such as E. coli, which can cause significant damage to poul-
try production and the safety of poultry food products. These unsanitary conditions also
have the potential to obstruct trade in poultry products in both national and international
markets. To prevent infectious outbreaks caused by E. coli and poultry health emergencies
at regional, national, or international levels, it is essential to implement preventive micro-
bial control programs. This includes effective safety management before, during and after
production. The use of antimicrobials selected based on antibiograms, under the guidance
of qualified professionals and in partnership with poultry companies, is a key component
of these programs, ensuring effective disease prevention.

Ahmed et al. [85] showed that the application of 250 mL of chlorine dioxide (ClO2)
for fumigation in a broiler shed at the end of 5 weeks of rearing resulted in a significant
reduction in the concentration of E. coli in just 10 min. This reduction remained significantly
effective up to 12 h after application, without causing any adverse effects to the health of
the poultry. Likewise, Jiang et al. [86] presented results indicating that spraying a poultry
house with a sanitizer containing aldehydes, quaternary ammonium salt, and alcohol (ratio
1:1500) resulted in a significant reduction in the relative abundance of pathogens of the
genus Escherichia-Shigella. Based on these studies, the importance of a detailed management
plan that incorporates antimicrobial actions in poultry sheds is reinforced. However, the
efficiency of the plan depends on the daily execution of these actions, as well as the training
of the professionals responsible for their execution [13].

10. Conclusions and Future Perspectives

The in ovo injection technique allows the development of personalized protocols to
overcome specific challenges in the effective administration of antimicrobials and combat-
ing E. coli infections. The integration of this technique with practices already established in
the poultry sector, such as rigorous hygienic-sanitary maintenance in sheds, can enhance
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the efficiency and precision of treatment, ensuring a more targeted and effective approach
to poultry care. Although this technology has great potential, it is crucial to address some
issues before its full implementation in industrial poultry environments. For example,
additional research is essential to evaluate the effectiveness of combining eggshell sanita-
tion and in ovo antimicrobial administration, specifically to improve the practice of in ovo
injection in poultry production, especially in the treatment of E. coli. Furthermore, before
proceeding with its large-scale adoption in poultry farming, it is vital that the combined
technology undergoes rigorous testing to ensure its safety for poultry, humans, and the
environment. It is hoped that this review will provide poultry researchers and professionals
with a clear perspective on how careful selection of antimicrobials, combined with a refined
in ovo application protocol, can constitute an effective strategy to significantly optimize
yields in the poultry sector.

In the practice of in ovo injection in the poultry industry, it is expected that, in addition
to vaccination, there will be a routine dedication to the in ovo delivery of antimicrobials,
with the main objective of controlling bacterial proliferation. However, this requires a
careful and comprehensive approach to several issues, such as:

• Over the past few decades, several protocols have been developed for the delivery of
substances in ovo in the poultry field. Some of these protocols have been specifically
designed to protect poultry against bacterial infections. Within these protocols, the use
of antimicrobial peptides and probiotics has been the subject of intense investigation
and reporting. The implementation of these protocols, centered on such compounds,
takes priority in commercial production, given the concentrated database available
that supports their characteristics of simplicity, cost-benefit, ease of in ovo application,
and compatibility with poultry safety. In addition, the toxicity and bacterial resistance
of many synthetic chemical compounds have been considered.

• The chosen in ovo delivery route may influence the effectiveness of antibacterials for
poultry. Therefore, studies have proposed the amniotic route as the most effective
to guarantee avian protection. These results will contribute to the development of
commercial protocols utilizing a more advantageous in ovo delivery route.

• Some tested compounds may exhibit antibacterial specificity for a specific group of
bacteria, meaning that the compound does not have a broad antibacterial spectrum.
Although this review focuses on the control of E. coli, the search for compounds with
broad-spectrum antibacterial properties represents a promising avenue for in ovo
injection protocols. This requires further investigation.

• When developing in ovo application protocols, it is crucial to consider the associated
economic cost and environmental damage. High costs can create barriers to com-
mercial application, while the use of toxic synthetic chemicals can pose a threat to
the environment.

• Many of the compounds tested in ovo were only evaluated under laboratory conditions.
Therefore, testing under commercial conditions is essential, since the results obtained
in the laboratory may encounter several limitations, even if minimal, due to the
different realities faced in practice.
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