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Abstract: Antimicrobial resistance (AMR) is considered one of the greatest threats to both human and
animal health. Efforts to address AMR include implementing antimicrobial stewardship programs
and introducing alternative treatment options. Nevertheless, effective treatment of infectious diseases
caused by bacteria will still require the identification and development of new antimicrobial agents.
Eight different natural products were tested for antimicrobial activity against seven pathogenic
bacterial species (Brachyspira sp., Chlamydia sp., Clostridioides sp., Mannheimia sp., Mycobacterium sp.,
Mycoplasma sp., Pasteurella sp.). In a first pre-screening, most compounds (five out of eight) inhibited
bacterial growth only at high concentrations, but three natural products (celastramycin A [CA],
closthioamide [CT], maduranic acid [MA]) displayed activity at concentrations <2 µg/mL against
Pasteurella sp. and two of them (CA and CT) also against Mannheimia sp. Those results were confirmed
by testing a larger collection of isolates encompassing 64 Pasteurella and 56 Mannheimia field isolates
originating from pigs or cattle, which yielded MIC90 values of 0.5, 0.5, and 2 µg/mL against Pasteurella
and 0.5, 4, and >16 µg/mL against Mannheimia for CA, CT, and MA, respectively. CA, CT, and MA
exhibited higher MIC50 and MIC90 values against Pasteurella isolates with a known AMR phenotype
against commonly used therapeutic antimicrobial agents than against isolates with unknown AMR
profiles. This study demonstrates the importance of whole-cell antibacterial screening of natural
products to identify promising scaffolds with broad- or narrow-spectrum antimicrobial activity
against important Gram-negative veterinary pathogens with zoonotic potential.

Keywords: natural products; antibacterial activity; antimicrobial susceptibility testing; Mannheimia
haemolytica; Pasteurella multocida

1. Introduction

Historically, natural products have played important roles as drugs in many therapeu-
tic areas, including infectious diseases [1]. Following the discovery of antibiotics almost a
century ago, several classes of antimicrobial agents of natural origin, such as β-lactams,
tetracyclines, or aminoglycosides, were introduced as therapeutic agents. Antibiotic use,
since then, has had an enormous impact on the treatment of infectious diseases in both
human and veterinary medicine, but also on the ability to perform surgical procedures and
immunosuppressing chemotherapy.

However, the ensuing frequent use of antimicrobial agents, including their misuse
and overuse, has led to the concomitant emergence and dissemination of antimicrobial
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resistance (AMR) in bacteria [2–6], with the consequence that AMR is now considered one
of the greatest threats to both human and animal health. In line with this, the Animal
Health Law (Regulation (EU) 2016/429) states that “microorganisms that have developed
resistance to antimicrobials should be treated as if they were transmissible diseases”.
For 2019, predictive statistical models estimated a worldwide 4.95 million human deaths
associated with bacterial AMR, thereof 1.27 million directly attributable to bacterial AMR [7].
Since antimicrobial administration to food animals and humans is a major driver of AMR
and is projected to even increase in the future, bacterial AMR is anticipated to increase
as well [8–12]. Thus, a continued presence of resistance determinants in commensal and
pathogenic bacteria is the likely consequence of this uninterrupted selective pressure.
Worldwide efforts have been and are being undertaken to address this threat [13,14]. In
addition to antimicrobial stewardship programs and alternative novel and innovative
treatment options [15], new antimicrobial agents will still be needed to combat AMR. Here,
the role of natural products has declined in the current drug discovery process due to
technical, economic, and intellectual property challenges [16], resulting in an antimicrobial
agent pipeline that remains insufficient against priority pathogens [17,18]. The spectrum of
chemical scaffolds used to develop novel antibacterial agents, thus, remains limited, so the
discovery of new antimicrobial compound classes with novel modes of action is urgently
needed [19].

A resurgence in natural product screening has been stimulated by recent progress
in many different fields of research. These include not only bioinformatic analysis, ge-
nomics, and genome mining, as well as the exploitation of exotic ecological niches, but also
involve improved understanding of AMR [20] and the development of new techniques
to explore the chemistry of antimicrobial compounds [21]. Frequently identified with a
specific research question in mind, most structures of interest are not routinely screened for
activity against a broad panel of bacterial pathogens due to limited resources, especially in
academia. Potential narrow-spectrum antimicrobials will, for example, almost certainly
remain undiscovered this way. Examination of existing compound libraries is therefore
still a promising strategy to identify new candidates for further development of novel
antimicrobial drugs.

For the current study, we, therefore, selected eight substances out of six distinct chemo-
type classes from the natural product collection of the Leibniz-HKI based on, e.g., biotech-
nological accessibility, preliminary cell line toxicity, and primary bioactivity data. Particular
emphasis was put on compounds with known anti-Gram-negative activity. All products
selected were discovered in various ecological contexts, such as closthioamide, a unique
polythioamide representing the first antibiotic found in an obligate anaerobic bacterium, or
cervimycins from Streptomyces isolated from prehistoric cave wall paintings, which were
made using bat dung [22,23].

The natural products selected were tested for antimicrobial activity against a diverse
panel of bacterial species with importance as animal and/or zoonotic pathogens. For this
purpose, we chose bacterial species that represent not only Gram-positive, Gram-negative,
cell-wall-free, spore-forming, and acid-fast species, but also organisms with difficult-to-
treat slow-growing or intracellular lifestyles. Additional criteria for choosing the bacterial
species were (i) representing a relevant pathogen in human and/or veterinary medicine,
(ii) the presence of frequently occurring AMR, an increasing problem for disease control [24],
and (iii) the existence of established livestock animal models, which offers the possibility
to evaluate the in vivo application of qualified substances at a later developmental stage
(summarized in Table 1).
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Table 1. Background information on the bacterial species included in the current study concerning the diseases they cause in livestock, their most relevant AMR, and
available infection models.

Bacterial Species Infectious
Lifestyle

Disease in Animals
(Most Relevant Hosts) Reference

Antimicrobial Resistance (AMR) Animal Model
(Host, Organ System)

Antibiotic Class
Affected Reference Species Reference

Brachyspira
hyodysenteriae Extracellular Dysentery (Swine) Hampson et al.,

2019 [25]
Macrolides,

Pleuromutilins
Hampson et al., 2019 [26]

Herbst et al., 2014 [27]
Swine,

Intestinal tract
La et al.,
2019 [28]

Chlamydia suis Intracellular
Respiratory disease,

Diarrhea,
Conjunctivitis (Swine)

Rogers et al., 1999 [29]
Reinhold et al., 2008 [30]
Guscetti et al., 2009 [31]

Tetracyclines Bommana et al., 2019 [32] Swine,
Respiratory tract

Reinhold et al.,
2011 [33]

Clostridioides
difficile Extracellular Diarrhea

(Piglets, Horses) Weese, 2020 [34]
Fluoroquinolones,

Macrolides,
Ansamycins

Dureja et al., 2022 [35] Swine,
Intestinal tract

Steele et al.,
2010 [36]

Mannheimia
haemolytica

Extracellular
and facultative

intracellular

Respiratory disease
(Cattle, Goats, Sheep) Michael et al., 2018 [37]

β-Lactams,
Macrolides,

Tetracyclines
Michael et al., 2018 [37] Cattle,

Respiratory tract
Schroedl et al.,

2001 [38]

Mycobacterium avium
ssp. Intracellular Respiratory disease,

Johne’s disease (Cattle) Fecteau, 2018 [39] Macrolides,
Ansamycins Saxena et al., 2021 [40] Goat,

Intestinal tract
Köhler et al.,

2015 [41]

Mycoplasma
bovis Extracellular

Respiratory disease,
Mastitis, Arthritis

(Cattle)
Dudek et al., 2020 [42]

Macrolides,
Phenicols,

Tetracyclines

EFSA Panel on
Animal Health and

Welfare et al., 2021 [24]

Cattle,
Respiratory tract

Dudek et al.,
2019 [43]

Cattle,
Mammary gland

Byrne et al.,
2005 [44]

Pasteurella
multocida

Extracellular
and facultative

intracellular

Respiratory disease
(Cattle, Sheep, Swine),

Mastitis (Sheep),
Septicaemia (Cattle)

Michael et al., 2018 [37]
β-Lactams,
Macrolides,

Tetracyclines
Michael et al., 2018 [37] Cattle,

Respiratory tract
Reinhold et al.,

2002 [45]
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2. Results

The natural products were selected from the Leibniz-HKI natural compound collection,
based on accessibility, data on preliminary activity, cytotoxicity, and individual properties.
In total, eight natural products from six different compound classes exhibited promising
characteristics. These products were screened following a two-stage process: First, in a
pre-screening step, seven bacterial species were used to determine MIC (minimal inhibitory
concentration) values. Based on the resulting activity profiles, we identified the most
promising combinations of target species and test substances for secondary screening.
Then, we determined the distribution of MIC values with a larger set of field isolates
harboring varying resistance determinants.

The pre-screen results showed that the natural products inhibited growth in 5–78%
of all isolates tested, with celastramycin A, closthioamide, and maduranic acid showing
activity against several isolates at concentrations below 2 µg/mL (Figure 1). The remaining
test compounds only inhibited growth in this concentration range in one control strain
(cervimycin K1 in S. aureus) or, if at all, showed antibacterial activity at concentrations
≥2 µg/mL (Supplemental Table S1). In detail, micacocidin inhibited growth in two out
of seven isolates of M. bovis at 16 µg/mL. Griseochelin and the cervimycin derivatives
showed activity against two species, C. difficile and M. bovis, with MIC values of at least
4 µg/mL. Griseochelin was additionally active against B. hyodysenteriae at ≥2 µg/mL,
while the cervimycin derivatives were additionally only active against one out of six
isolates of the M. avium subspecies (8 µg/mL). In order to meet favorable pharmacoki-
netic/pharmacodynamic (PK/PD) relationships, low MIC values are preferred for further
optimization in drug development. Closthioamide showed the broadest overall activity
inhibiting the growth of isolates from six out of seven bacterial test species at relevant
concentrations <2 µg/mL, followed by celastramycin A (three out of seven species), and
maduranic acid (two out of seven species) (Figure 2). These compounds predominantly
inhibited the growth of P. multocida field isolates, as well as the S. aureus control strain. In
addition, celastramycin A, as well as closthioamide, inhibited M. haemolytica growth at
concentrations below 1 µg/mL. Therefore, we selected the compounds celastramycin A,
closthioamide, and maduranic acid for further screening.
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Figure 1. Heat map of the pre-screening results. Shown are the absolute numbers of isolates at their
individual minimal inhibitory concentrations (MICs) for all eight substances. The heat map shows in
bold the number of isolates combined from all bacterial species with a specific MIC value for each
compound. Except for C. suis (n = 2 biological replicates), all isolates were tested once. The color
intensity increases with the absolute number of strains identified to have a specific MIC value for a
natural product.
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with MIC values ≤2 µg/mL that were evaluated for activity against isolates of Gram-positive, as
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isolates (from an individual bacterial species with a specific MIC value for each compound. Except
for C. suis (n = 2 biological replicates), all isolates were tested once. The color intensity increases with
the absolute number of strains identified to have a specific MIC value for a natural product.

M. haemolytica and P. multocida play major roles as causative agents of severe infections
in farm animals that are frequently subject to antimicrobial treatment [46–49]. Compounds
specifically targeting both pathogens are of particular interest. Therefore, field isolates
of P. multocida (n = 64) and M. haemolytica (n = 56) collected from various cattle and pig
sources (see Supplemental Table S2) were tested to determine MIC values for celastramycin
A, closthioamide, and maduranic acid. As already indicated by the pre-screening results
(Figure 2), growth inhibition generally required higher concentrations of the natural prod-
ucts in M. haemolytica than in P. multocida (Figure 3A–C). When applying a cut-off for MIC
values higher than 1 µg/mL, celastramycin A showed growth-inhibition rates of 100% for
M. haemolytica, as well as for P. multocida. The MIC50 and MIC90 values of celastramycin A
determined against M. haemolytica were both 0.5 µg/mL, while the corresponding values
against P. multocida were 0.125 and 0.5 µg/mL, respectively. The percentage of isolates
showing inhibition determined for closthioamide in general (i.e., no cut-off applied) were
60.7% and 100% for M. haemolytica and P. multocida, respectively. In line with this observa-
tion, closthioamide showed higher MIC50 and MIC90 values against M. haemolytica with
1 and 4 µg/mL, respectively, while the equivalent values against P. multocida were the
same as for celastramycin A with 0.125 and 0.5 µg/mL, respectively. In line with the pre-
screening results, maduranic acid showed no activity against M. haemolytica, yet inhibited
growth at concentrations below 2 µg/mL in 79.7% of the P. multocida isolates tested. The
resulting MIC50 and MIC90 values were both higher than 16 µg/mL against M. haemolytica,
and 0.5 and 2 µg/mL against P. multocida, respectively. The distribution of the MIC values
of celastramycin A, closthioamide, and maduranic acid against P. multocida displayed a
bimodal curve. When respective isolates of P. multocida are grouped by their resistance
status (known or unknown), those isolates with known antibiotic resistance displayed, in
most cases, higher MICs for celastramycin A, closthioamide and maduranic acid than the
total average (Figure 3D–F).
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Figure 3. MIC values of the highly active natural products (A,D) celastramycin A, (B,E) closthioamide,
and (C,F) maduranic acid against (A–C) field isolates of P. multocida (n = 64) and M. haemolytica (n = 56),
as well as against (D–F) P. multocida isolates with (n = 13) known resistances against commonly used
chemotherapeutics (see Supplemental Table S2) and P. multocida isolates that were previously not
tested against commonly used chemotherapeutics (“unknown status”, n = 51). Results of broth
microdilution assays.

3. Discussion

The emergence, evolution, and spread of AMR threaten global health systems, so
multifaceted strategies, such as the 2015 WHO Global Action Plan on AMR, have become
key elements in the effort to successfully combat AMR [50]. These include the screening of
compounds to detect novel antimicrobial agents.

Of the eight compounds tested in the pre-screen, only celastramycin A, closthioamide,
and maduranic acid showed promising antimicrobial activities at concentrations ≤2 µg/mL,
with closthioamide inhibiting growth in most species (five out of seven). Closthioamide
is, thus, the sole compound identified in this study with characteristics pointing towards
a broad-spectrum antibiotic that is active against both Gram-negative and Gram-positive
bacteria. In a previous study, closthioamide demonstrated activity against a broad spec-
trum of Gram-positive bacteria via the inhibition of DNA gyrase [51]. Celastramycin A
and maduranic acid were active against fewer species at concentrations below 2 µg/mL.
Two species, i.e., M. haemolytica and P. multocida, were inhibited by closthioamide and
celastramycin A, while maduranic acid only inhibited growth in P. multocida. Both species
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frequently co-occur in respiratory diseases of farm animals [52,53]. While P. multocida
has a broader host-range that also includes humans [54], M. haemolytica is predominantly
pathogenic for ruminants [37]. Economic losses due to treatment costs and reduced weight
gain in beef production [55,56], as well as decreased milk yield and other negative effects
on dairy cow health [57–59], highlight the importance of treatment options for infections
caused by these two pathogens; especially, since multidrug-resistant (MDR) isolates are
increasingly isolated from cattle with bovine respiratory disease (BRD). In Germany, the
rates of MDR isolates have increased more than six-fold in P. multocida within a five-year
period (2015–2020) [60]. That study reported MDR rates of 13.9% and 5.1%, while rates of
pan-susceptibility were only 15.1% and 12.1% in isolates of P. multocida and M. haemolytica,
respectively [60]. Another recent study identified a novel high-level macrolide resistance
determinant in M. haemolytica, further limiting treatment options for BRD [61]. New an-
timicrobial agents that target P. multocida and M. haemolytica would consequently be highly
advantageous. Therefore, we enlarged the panel of bacterial isolates from these species by
testing field isolates that originated from cattle and pigs (P. multocida) or only from cattle
(M. haemolytica). Comparing the distribution of MIC values for the three compounds tested,
isolates of M. haemolytica overall showed higher MIC values than those of P. multocida.
As both genera are rather closely related, we have, so far, no physiological or mechanis-
tic explanation for this observation. As an example, M. haemolytica isolates had higher
MIC values than P. multocida isolates with respect to closthioamide and maduranic acid.
The latter did not inhibit growth in M. haemolytica, yet reached a MIC90 of 2 µg/mL for
P. multocida. As coinfections of M. haemolytica and P. multocida are frequently present in
BRD, effective treatment requires agents targeting both species. Therefore, maduranic
acid could be interesting for further investigation as a narrower-spectrum treatment op-
tion for infections with P. multocida other than BRD, especially due to its reported activity
against Gram-positive bacteria [62]. Closthioamide showed activity against both species;
however, the MIC90 of 4 µg/mL against M. haemolytica leaves only a narrow therapeutic
window. The broad spectrum of bacterial species inhibited in growth by this compound
(six out of seven) yet motivates further tests also against AMR-isolates of other relevant
pathogens. Predestined for further testing would be, e.g., Histophilus somni and M. bovis,
as in the context of BRD, both are the major bacterial agents of the syndrome besides
P. multocida and M. haemolytica [52]. Further testing of closthioamide should therefore
include field isolates of M. bovis, as closthioamide also displayed low MIC values against
this species in the pre-screening, as well as isolates of H. somni, which was not part of this
investigation, to cover the four most important bacterial pathogens from the BRD complex.
Celastramycin A achieved the best results with MIC90 values for both panels of P. multocida
and M. haemolytica field isolates. Moreover, celastramycin A has a modulatory effect on the
immune system [63], like several other antibiotic classes (e.g., macrolides) [64–66], making
this substance a promising candidate for further research.

While the MIC values for all three substances formed a single defined peak in all
M. haemolytica isolates tested, isolates of P. multocida, in contrast, showed a bimodal MIC
distribution. This observation partly reflects the classification of the isolates into two
groups—with or without known AMR phenotype—and is most pronounced for maduranic
acid. There, isolates with known resistance exclusively belong to the peak of MIC values
≥0.5 µg/mL. On the other hand, isolates with unknown status still form a bimodal distri-
bution and, hence might consist of at least two subpopulations of phenotypes tolerating
different concentrations of maduranic acid. The same observation is true for closthioamide,
except for a few isolates with known resistance being susceptible at ≤0.125 µg/mL, and
for celastramycin A, only less pronounced. A plausible explanation for this trend towards
higher MIC values for the compounds tested against isolates with known resistance could
be cross-resistance (i.e., possibly due to efflux), mediating higher tolerance towards the
substances tested. This was previously reported for MDR isolates of S. aureus, which were
able to tolerate higher doses of seaweed extract with antimicrobial activity than isolates
with fewer resistance determinants [67]. Isolates with unknown resistance status, thus,
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should consist of (i) so-called wild-type (WT) isolates carrying no resistance determinants
and hence tolerating only lower concentrations of test substances, and (ii) non-WT isolates
that have acquired resistance determinants, hence tolerating higher concentrations [68]. A
deeper analysis of the underlying mechanisms mediating resistance against these natural
products could be helpful in identifying AMR determinants relevant for cross-resistance.
Further investigation is required to determine the resistance profile of those isolates, which
would allow us to clarify whether or not this explanation holds true.

4. Materials and Methods
4.1. Bacterial Isolates

A total of 41 bacterial reference (type and/or control) strains and field isolates from
eight different families representing six phyla (Table 2) were pre-screened to determine
bacterial susceptibility towards eight different natural products (Table 3). The respective
isolates and their AMR profiles are summarized in Supplemental Table S1. Two strains
(E. coli ATCC® 25922 and S. aureus ATCC® 29213), which were being used as controls, were
single representatives of their species. Therefore, they were excluded from evaluating the
activity testing of the included natural products.

Based on the results of the pre-screening, a second round of testing was performed in
which an additional 51 Mannheimia haemolytica and 59 Pasteurella multocida field isolates
were tested. These species included isolates with known resistance phenotypes against
commonly used chemotherapeutic substances (n = 23 and n = 12, respectively), as well as
isolates without information on their resistance profile (“unknown status”) (Supplemental
Table S2). The isolates originated from farm animals (cattle and pigs) with no documented
antibiotic treatment at least four weeks before sampling, and for some with a known
clinical history. After revitalization from the cryo-conservation culture, all isolates, except
the mycoplasma and chlamydia isolates, were at least twice freshly re-streaked on the
respective agar prior to MIC testing.
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Table 2. Bacterial isolates used for pre-screening of the natural products.

Bacterial Species Family Phylum Cellular
Properties Test System Reference No. of Type (T) or

Control (C) Strains 1
No. of

Field Isolates

Brachyspira hyodysenteriae Brachyspiraceae Spirochaetota Gram negative BMD Herbst et al., 2014 [27] - 10

Chlamydia suis Chlamydiaceae Chlamydiota Gram negative BMD
In-house method

(cell culture with BGM
cells, see Section 4.3)

1 (T) 1

Clostridioides difficile Peptostreptococcaceae Bacillota Gram positive,
spore forming AD CLSI M11-A08 - 4

Escherichia coli Enterobacteriaceae Pseudomonadota Gram negative BMD CLSI Vet01 A4 1 (C) -

Mannheimia haemolytica Pasteurellaceae Pseudomonadota Gram negative BMD CLSI Vet01 A4 - 5

Mycobacterium avium ssp. Mycobacteriaceae Actinomycetota Acid-fast bacteria BMD CLSI M24-A02 1 (T), 1 (C) 4

Mycoplasma bovis Mycoplasmataceae Mycoplasmatota Cell-wall free BMD Hannan, 2000 [69] 1 (T) 6

Pasteurella multocida Pasteurellaceae Pseudomonadota Gram negative BMD CLSI Vet01 A4 - 5

Staphylococcus aureus Staphylococcaceae Bacillota Gram positive BMD CLSI Vet01 A4 1 (C) -

Annotations: AD, agar dilution assay; BMD, broth microdilution assay; BGM, buffalo green monkey cells. 1 type strain as stated by the ATCC, control strains are recommended by the
respective CLSI protocol.

Table 3. Summary of natural products and their known characteristics.

Natural Product Origin Structure MW
[g/mol] Production Mode of

Action

Toxicity
CC50 [mg/L]

LD50 [mg/kg]
Reference

Celastramycin A Streptomyces
MaB-QuH-8
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4.2. Natural Products

The natural products to be tested were produced by Leibniz-HKI following published
protocols (Table 3) and available as pure solid powders. Identity and purity were analyzed
by LC–HRMS and HPLC, respectively, prior to dispatch. Stock solutions (10 mg/mL) of the
substances were prepared in dimethyl sulfoxide (DMSO; Sigma-Aldrich, Germany). The
respective working solutions (320 µg/mL) of cervimycin C, cervimycin D, cervimycin K1,
closthioamide, griseochelin, micacocidin, and maduranic acid were prepared by diluting
the respective stock solution 1:31.25 [v/v] in sterile, deionized H2O (diH2O). For celas-
tramycin A, a first 1:10 [v/v] dilution step in diH2O/DMSO (1:1) was necessary, before it
was further diluted 1:3.125 [v/v] in diH2O. Pre-testing of DMSO in the maximum working
concentration used showed no inhibitory effects on the isolates themselves. Prior to their
use, all working solutions were 1:10 [v/v] diluted in the respective test medium. Due to
limited amounts of the natural products and the search for highly potent active ingredients,
the natural products were tested for their antimicrobial activity up to a concentration of
16 µg/mL.

4.3. Determination of Minimal Inhibitory Concentrations (MICs) of the Natural Products

For most bacterial species to be tested, the MIC values were determined using broth
microdilution methodology (Table 2). To this end, CLSI protocols (broth microdilution
dilution and agar dilution assays) were followed as closely as possible [80] with only minor
modifications as specified below. Each test protocol included sterility (medium without
bacteria and natural products) and growth controls (medium with bacteria but without
natural products).

The MIC values for the quality control strains Escherichia (E.) coli strain ATCC 25922
and Staphylococcus (S.) aureus ATCC 29213 were determined following the CLSI protocol
Vet01-A4 [81]. In brief, the control strains were grown on 5% sheep blood agar plates
(35 ◦C, 16–18 h) and 3–5 single colonies were suspended in 5 mL sterile 0.9% NaCl solu-
tion, corresponding to a 0.5 McFarland standard; thereof, 50 µL were diluted in 11 mL
Müller-Hinton broth (MHB; Oxoid, Germany) and served as inoculum containing approx.
5 × 105 cfu/mL. The cfu of the inoculum was controlled by diluting each inoculum 1:1000
in sterile 0.9% NaCl solution and plating 100 µL of the diluted inoculum on a sheep blood
agar plate. After incubation (37 ◦C, 18–24 h), colonies were counted and the cfu in the
inoculum was calculated. The MIC testing was performed in 96-U-well PS-microtiter plates
(Greiner Bio-One, Germany) with 100 µL of the natural products freshly diluted in MHB
and 100 µL of the inoculum. After incubation (35 ◦C, 16–20 h), the wells were checked
visually for bacterial growth and the MIC determined as the lowest concentration of the
natural product that completely inhibited bacterial growth.

MIC testing of Pasteurellaceae was carried out as described above with the following
modifications: the isolates were freshly grown on 5% sheep blood agar plates (37 ◦C,
20–24 h) and 5 single colonies were suspended in 5 mL sterile 0.9% NaCl solution. Thereof,
400 µL were diluted in 11 mL Cation-Adjusted MHB (CAMHB; Oxoid, Germany) and used
as inoculum with approx. 5 × 105 cfu/mL. The cfu counts of the inoculum were controlled
as described above. MIC testing was performed as described above, but with CAMHB
instead of MHB and incubation of the microtiter plates at 37 ◦C for 20–24 h.

Mycobacterium avium subsp. avium (MAA) and subsp. hominissuis (MAH) were tested
following the CLSI protocol M24-A02 [82]. The isolates were grown on Löwenstein–Jensen
agar slants (with glycerol, without pyruvate, Artelt-Enclit, Borna, Germany). Thereof,
colony material was collected and resuspended in 5 mL sterile 0.9% NaCl solution. To
resolve agglomerated bacteria, 3–5 glass beads were added followed by vortexing the
suspension for 10–20 s. Then, 100 µL were transferred to 11 mL CAMHB with 5% oleic
acid–albumin–dextrose–catalase solution (OADC, Sigma-Aldrich, Germany). Inoculation
of the microtiter plates and cfu control of the inoculum on Middlebrook 7H11 agar plates
with OADC (Sigma-Aldrich, Germany) were performed as described above. The incubation
period of the microtiter and agar plates was extended to 7–10 d (35 ◦C).
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The MIC testing of Brachyspira (B.) hyodysenteriae isolates was adapted to the in-house
protocol published by Herbst et al., 2014 [27]. B. hyodysenteriae isolates were grown on
tryptic soy agar plates with 5% sheep blood (TSB) under anaerobic conditions (37 ◦C,
3–5 d). To prepare the inoculum, 5 loops with bacteria were resuspended in 14 mL brain
heart infusion broth supplemented with 20% fetal calf serum (BHIF; Becton Dickinson,
Heidelberg, Germany; Biochrom, Berlin, Germany) to reach 105 cfu/mL. The inoculum was
controlled by plating log10 dilutions on TSB and checking for growth of B. hyodysenteriae
indicated by strong hemolysis. The natural products were diluted in BHIF and 100 µL
per dilution step were dispensed into 96-U-well PS-microtiter plates. After adding 100 µL
of the inoculum, the microtiter plates were incubated (anaerobic, 37 ◦C, 5 d, shaking
[130 rpm]). Using a dark light table with lateral light fall, the MIC was determined as the
macroscopically visible lowest concentration that completely inhibited bacterial growth.

For titration and MIC analyses, Mycoplasma (M.) bovis isolates were grown in commer-
cially available ML10 broth (Mycoplasma Experience, Redhill, UK) without antimicrobial
agents and supplemented with sodium pyruvate (0.5%) and phenol red (0.005%) as de-
scribed by Hannan, 2000 [69]. Test culture batches were prepared for each isolate through
48 h growth in ML10, which were then aliquoted and stored frozen at −80 ◦C. The number
of color-changing units (CCUs) was determined via broth microdilution [83]. The natural
products were diluted in ML10 broth and 100 µL applied to each well on microtiter plates.
The inoculum of 104 CCU/mL was prepared from titrated M. bovis culture batches and
freshly cultured for 2 h at 37 ◦C before 100 µL were applied to each well to give a final
concentration of 5 × 105 CCU/mL. Individual isolates were tested at least twice. Plates
were sealed with a sterile plastic cover, incubated at 37 ◦C, and analyzed after 40–48 h, as
soon as a color shift became evident in the wells lacking any natural products that served
as growth controls. MIC values were determined as the lowest concentration of a natural
product that completely suppressed M. bovis growth. When individual MIC values for
an isolate differed by a maximum factor of two, the higher concentration was recorded,
otherwise, testing was repeated.

Two Chlamydia (C.) suis isolates with known tetracycline resistance (see Supplemental
Table S1) were used to determine the inhibitory effect of the natural products on intracellular
bacteria. The natural products were pre-diluted in Ultra-MDCK medium (Lonza, Basel,
Switzerland) in a final volume of 100 µL per well and applied to microtiter plates. For the
inoculum, 100 µL of a buffalo green monkey (BGM) cell suspension containing 4 × 104 cells
in Ultra-MDCK and chlamydiae adjusted to a multiplicity of infection (MOI) of 0.05 were
added. Plates were centrifuged at 2000× g and 37 ◦C for 1 h and incubated at 37 ◦C,
5% CO2 for 30–32 h. Then, the medium was removed and the cells were fixed with 200 µL
methanol per well overnight and stained using the IMAGEN Chlamydia kit (Oxoid, Wesel,
Germany) according to the manufacturer’s instructions. Fluorescent inclusion forming
units (IFUs) were counted under a fluorescence microscope and the MIC was defined as
the lowest concentration of the natural product preventing the detection of more than
90% of the chlamydial inclusions compared with the drug-free control. All tests were run
in duplicate.

The MIC profiles for Clostridioides (C.) difficile were determined following the Wadsworth
method in document M11-A8 [84] as an agar dilution assay. Briefly, enriched Brucella
agar (Carl Roth, Germany) plates, additionally containing vitamin K [1 µg/mL], haemin
[5 µg/mL], and defibrinated sheep blood [5%] (Oxoid, Germany), were prepared and
supplemented with the natural products in a log2 dilution series ranging from 16 µg/mL
to 0.0675 µg/mL. Assays were performed in Petri dishes or 6-well cell culture plates. The
C. difficile isolates were cultivated on enriched Brucella agar and incubated under anaerobic
conditions (37 ◦C, 48 h). To prepare the suspension used to inoculate the plates, 3 to 7 single
C. difficile colonies were suspended in 5 mL Brucella broth (Carl Roth, Karlsruhe, Germany)
and 1.5 µL of the inoculum (corresponding to 5 × 105 cfu/spot) spotted on enriched
and supplemented Brucella agar plates, as well as on enriched Brucella agar without
supplemented natural products. After the drops had dried, the plates were inverted and
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incubated (anaerobic conditions, 37 ◦C, 42 to 48 h). The MIC was defined as the dilution
step at which a marked reduction in colony growth is macroscopically visible compared
to the control plate without supplemented natural products. The cfu of the inoculum was
controlled each test day by plating 100 µL of a 1:1000 dilution of the inoculum in sterile
0.9% NaCl solution on an enriched Brucella agar plate and colony counting after incubation
(anaerobic conditions, 37 ◦C, 42 to 48 h).

5. Conclusions

The study carried out here shows that natural products still yield interesting and
worthwhile candidates for the development of antibiotically active therapeutics. This study
also shows that it is important that the screening of natural products covers a spectrum
of target pathogens/species as broad and heterogeneous as possible (e.g., Gram-positive,
Gram-negative, cell-wall-free, spore-forming, and acid-fast species and/or intracellular
growth), including field and clinical isolates, in order to be able to fully evaluate the true
potential of the compounds.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/antibiotics13020135/s1, Table S1: Results of pre-screening the natural prod-
ucts against different bacterial species; Table S2: Results of testing additional Mannheimia haemolytica
and Pasteurella multocida isolates. References [85–88] are cited in the supplemenatry materials.
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