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Abstract: Antimicrobial resistance (AMR) is an emerging public health threat and is one of the One
Health priorities for humans, animals, and environmental health. Red foxes (Vulpes vulpes) are a
widespread predator species with great ecological significance, and they may serve as a sentinel of
antimicrobial resistance in the general environment. The present study was carried out to detect
antimicrobial resistance, antimicrobial resistance genes, and genetic diversity in faecal isolates of red
foxes (Vulpes vulpes). In total, 34 Enterococcus isolates, including E. faecium (n = 17), E. faecalis (n = 12),
E. durans (n = 3), and E. hirae (n = 2), were isolated. Antimicrobial resistance to 12 antimicrobial
agents was detected with EUVENC panels using the minimum inhibitory concentration (MIC). The
presence of antimicrobial resistance genes (ARGs) was determined using whole-genome sequencing
(WGS). Resistance to tetracycline (6/34), erythromycin (3/34), ciprofloxacin (2/34), tigecycline (2/34),
and daptomycin (2/34) was identified in 44% (15/34) of Enterococcus isolates, while all the isolates
were found to be susceptible to ampicillin, chloramphenicol, gentamicin, linezolid, teicoplanin, and
vancomycin. No multi-resistant Enterococcus spp. were detected. A total of 12 ARGs were identified in
Enterococcus spp., with the presence of at least 1 ARG in every isolate. The identified ARGs encoded
resistance to aminoglycosides (aac(6′)-I, ant(6)-Ia, aac(6′)-Iih and spw), tetracyclines (tet(M), tet(L)
and tet(S)), and macrolide–lincosamide–streptogramin AB (lnu(B,G), lsa(A,E), and msr(C)), and their
presence was associated with phenotypical resistance. Core genome multilocus sequence typing
(cgMLST) revealed the high diversity of E. faecalis and E. faecium isolates, even within the same
geographical area. The distribution of resistant Enterococcus spp. in wild foxes in Latvia highlights
the importance of a One Health approach in tackling AMR.
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1. Introduction

Enterococci are commensal bacteria of the intestines of humans and warm-blooded
animals that may enter the general environment, where they may survive for a prolonged
time period [1,2]. Enterococci may withstand environmental stressors and inhabit different
ecological niches; hence, microorganisms have been isolated from a variety of sources,
including aquatic and terrestrial vegetation, fresh and marine waters, sediment and soil,
insects and arachnoids, fish, and foods [3–8]. Enterococci and E. coli are well-recognized
faecal pollution indicators and have been isolated from waters contaminated with faecal
waste and sewage. The detection of enterococci and E. coli has been suggested for the
evaluation of drinking water [9].

In humans, enterococci are known as opportunistic pathogens, with E. faecalis and
E. faecium being most frequently isolated in cases of hospital-acquired infections, and they
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are associated with high mortality rates in Europe [10,11]. The treatment of infections
caused by Enterococcus species is challenging due to their intrinsic resistance to various
antimicrobial agents, including cephalosporins, sulphonamides, and aminoglycosides [12].
The ability of Enterococcus spp. to acquire additional resistance via, e.g., mobile genetic
elements or sporadic chromosomal mutations, raises concerns about the available thera-
peutical options for the treatment of enterococcal infections [12,13]. Vancomycin-resistant
E. faecium (VRE) isolates have been recognized as high-priority pathogens by the World
Health Organization, for which new antibiotics are urgently needed, and the increasing
prevalence of VRE has been reported in hospitals in Europe [14,15].

The rise in antimicrobial resistance (AMR) in Enterococcus isolates of clinical, animal,
and food origins has been widely recognized [16,17]. There is growing evidence that
the environment has become an important reservoir of AMR due to contamination from
clinical settings and agroecosystems. The One Health approach, which aims to interlink
human, animal, and environmental health, recognizes that the transmission of antimicrobial
agents, resistant microorganisms, and antimicrobial resistance genes (ARGs) facilitates
the spread of AMR, with commensal microorganisms playing an important role [18,19].
Commensal microorganisms—E. coli and Enterococcus spp.—have been used as indicators of
antimicrobial resistance due to their abundance in polluted environments, associations with
the intestinal tract, and the easiness of isolation [20]. The ability of these microorganisms to
develop and acquire AMR as a result of selective pressure, clonal spread, the dissemination
of genetic elements (e.g., plasmids), and co-selection has made them suitable for the long-
term monitoring of AMR trends [21]. The detection of AMR in E. coli and Enterococcus has
been established as part of an AMR surveillance programme in humans, animals, and food
of animal origin [22].

The environmental dispersion of antimicrobial agents via agri-food systems may facil-
itate the spread of ARGs, as suggested by the discovery of a close phylogenetic relationship
between vancomycin-resistant E. faecium (VRE) swine faecal isolates and surface water iso-
lates from Switzerland [23,24]. Despite AMR patterns in Enterococcus spp. from clinical and
animal production sectors being reported to share sector-specific antibiotic-consumption-
related traits, resistant enterococci may serve as vectors for the further dissemination of
AMR in the human–animal–environment interface [23,24].

Antimicrobial resistance in Enterococcus spp. has been targeted, mainly in productive
animals and products of animal origin, to monitor Enterococcus spp. antimicrobial resistance
trends, but data on the prevalence of resistant enterococci in other animals are largely
missing [25,26]. In recent years, wildlife has been reported as a source of multidrug-
resistant (MDR) Enterococcus spp. [27]. It has been suggested that wildlife could serve as
important sentinels of antimicrobial resistance in the environment because their habitats
have not been directly exposed to antimicrobial agents, and the presence of AMR-associated
indicators such as ARGs has been linked to a spillover from human and agricultural
settings [28]. Hence, the occurrence of resistant and MDR strains may indicate the current
AMR distribution trends in the environment [29].

Carnivorous species have been reported as being more likely to carry resistant microor-
ganisms [30]. The red fox (Vulpes vulpes) is a generalist predator with a wide geographic
distribution in Europe, including Latvia [31]. Red foxes are characterized by broad dietary
spectra and an ability to adapt to different ecological environments, even in proximity to
human habitats. Despite the importance of red foxes to the control of the wildlife pop-
ulation, the role of these foxes in the spread of human and animal pathogens has been
recorded [32]. Red foxes have been associated with carrying MDR bacteria due to their for-
aging behaviour, where they may acquire resistant microorganisms or ARGs from human
and animal waste [33]. Since data on antimicrobial resistance in wildlife, including wild
carnivores, are missing, the aim of the present study was to detect antimicrobial resistance,
resistance genes, and genetic diversity among Enterococcus spp. isolates from red foxes
(Vulpes vulpes).
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2. Results
2.1. Antimicrobial Resistance in Enterococcus Isolates

Altogether, 34 Enterococcus isolates were obtained, which were represented by
E. faecium (n = 17), E. faecalis (n = 12), E. durans (n = 3), and E. hirae (n = 2).

Antimicrobial resistance was identified in 44% (15/34) of the Enterococcus spp. using
the minimum inhibitory concentration (MIC) detection method. The highest antimicrobial
resistance rates were to tetracycline (18%, 6/34), erythromycin (9%, 3/34), ciprofloxacin
(6%, 2/34), tigecycline (6%, 2/34), and daptomycin (6%, 2/34). No isolates were resistant to
ampicillin, chloramphenicol, gentamicin, linezolid, teicoplanin, or vancomycin. E. faecium
exhibited resistance to five out of the twelve antimicrobial agents tested, with 10 out the
17 isolates (59%) being resistant to at least one antimicrobial agent. The lowest rates of
antimicrobial resistance were recorded for E. faecalis, with one out of twelve strains (8%)
being resistant to tetracycline (Table 1).

Table 1. Antimicrobial resistance in Enterococcus isolates (n = 34) from foxes.

Antimicrobial
Agent

Range of
Concentrations

(µg/mL)
E. faecalis (n = 12) E. faecium (n = 17) E. durans (n = 3) E. hirae (n = 2)

Resistance
Threshold

(µg/mL)

No. of Resistant Isolates (%)

Ampicillin 0.5–64 0 (0) 0 (0) 0 (0) 0 (0) >4

Chloramphenicol 4–128 0 (0) 0 (0) 0 (0) 0 (0) >32

Ciprofloxacin 0.12–16 0 (0) 2 (12) 0 (0) 0 (0) >4

Daptomycin 0.25–32 0 (0) 1 (6) 0 (0) 1 (50) >4

Erythromycin 1–128 0 (0) 3 (18) 0 (0) 0 (0) >4

Gentamicin 8–1024 0 (0) 0 (0) 0 (0) 0 (0) >32

Linezolid 0.5–64 0 (0) 0 (0) 0 (0) 0 (0) >4

Quinupristin/
dalfopristin 0.5–64 NA 1 (6) NA NA E. faecalis: NA,

E. faecium: >4

Teicoplanin 0.5–64 0 (0) 0 (0) 0 (0) 0 (0) >2

Tetracycline 1–128 1 (8) 4 (24) 1 (33) 0 (0) >4

Tigecycline 0.03–4 0 (0) 0 (0) 1 (33) 1 (50) >0.25

Vancomycin 1–128 0 (0) 0 (0) 0 (0) 0 (0) >4

NA—not established according to the EUCAST.

2.2. Distribution of Antimicrobial Resistance Genes (ARGs) in Enterococcus Isolates

A total of 12 ARGs in 32 Enterococcus isolates were identified, and ARGs encoding
resistance to aminoglycosides, tetracyclines, and macrolide–lincosamide–streptogramin AB
were detected. Two out of the thirty-four Enterococcus isolates were excluded from further
analysis due to low coverage (<30%, 30266 E. hirae) or a failure to meet the identification
threshold (>90% of target genes, 3802 E. faecalis).

At least one ARG was present in every Enterococcus isolate. ARGs were most frequently
identified in E. faecium (ten ARGs), while only one ARG was found in E. hirae. Among
the ARGs, the aminoglycoside-resistant determinant aac(6′)-I (59%, 20/32) was the most
abundant. tet(M) (13%, 4/32) and msr(C) (53%, 17/32) were the most frequently identified
tetracycline- and macrolide-resistant determinants (Table 2). The ARGs exhibited by E. fae-
cium were the ant(6)-Ia gene responsible for high-level streptomycin resistance (12%, 2/17);
the tetracycline-resistance-encoding tet(M) (18%, 3/17); tet(L) (6%, 1/17); lsa(E) (6%, 1/17)
of the efflux pump ABC superfamily, conferring resistance to macrolides, lincosamides,
and streptogramins A; and lincosamide-resistant genes lnu(B) (6%, 1/17) and lnu(G) (6%,
1/17). E. durans shared only the aminoglycoside-resistant genes aac(6′)-I (6%, 1/17) and
aac(6′)-Iih (6%, 1/17).
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Table 2. Distribution of resistance genes in Enterococcus isolates (n = 32) from red foxes.

Enterococcus
Species

Aminoglycosides Tetracyclines Macrolide–Lincosamide–Streptogramin AB

aac(6′)-I aac(6′)-Iih ant(6)-Ia spw tet(M) tet(L) tet(S) lsa(A) lsa(E) msr(C) lnu(B) lnu(G)

No. of Isolates (%)

E. faecalis
(n = 12) 1 (8) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (8) 11(92) 0 (0) 1 (8) 0 (0) 0 (0)

E. faecium
(n = 17) 16 (94) 0 (0) 2 (12) 1(6) 3 (18) 1 (6) 0 (0) 1 (6) 1 (6) 16 (94) 1 (6) 1 (6)

E. durans
(n = 3) 2 (66) 1 (33) 0 (0) 0 (0) 1 (33) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

E. hirae
(n = 2) 1 (50) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Total 20 (63) 1 (3) 2 (6) 1(3) 4 (13) 1 (3) 1 (3) 12(34) 1 (3) 17 (53) 1 (3) 1 (3)

All the Enterococcus isolates with at least one identified type of phenotypic resistance
shared at least one virulence gene, and the number of ARGs in phenotypically resistant
isolates ranged from one (three isolates) to eight (one isolate). Phenotypic resistance to
quinupristin/dalfopristin was associated with the presence of the lsa(A) gene. Phenotypic
resistance to tetracycline was confirmed with the presence of tet(M) in three E. faecium
isolates, tet(M) and tet(L) simultaneously in one E. faecium isolate, and tet(S) in one E.
faecalis isolate. High-level tetracycline resistance (MIC ≥ 128) was identified in two E.
faecalis isolates. The tet genes were not identified in tetracycline-susceptible and tigecycline-
resistant isolates (Table 3). Specific genes encoding daptomycin and ciprofloxacin resistance
were not identified. In every phenotypically resistant isolate, with the exception of E. faecalis
(429441), the presence of aac(6′)-I, encoding resistance to aminoglycosides, was found.

Table 3. Association of Enterococcus spp. resistance phenotypes with the presence of ARGs.

Isolate Identified Phenotypic Resistance Identified Antimicrobial Resistance Genes

429441 E. faecium Q/D8 lsa(A)
429441 E. faecalis TET64 aac(6′)-I, tet(S), msr(C)
433771 E. faecium TET64 aac(6′)-I, msr(C), lnu(G), tet(M)

3808 E. faecium ERY8 aac(6′)-I, msr(C)
426383 E. faecium TET64 aac(6′)-I, msr(C), tet(M)

428642/1 E. faecium DAP8 aac(6′)-I, msr(C)
426804 E. faecium CIP8 aac(6′)-I, msr(C)
428644 E. faecium CIP8 aac(6′)-I, msr(C)

427166/2 E. durans TET64 aac(6′)-Iih, tet(M)
23152 E. faecium ERY8 aac(6′)-I, msr(C)
2123 E. faecium TET128 ant(6)-Ia, aac(6′)-I, lnu(B), lsa(E), msr(C), tet(L), tet(M), spw

424211/2 E. faecium TET>128, ERY64 aac(6′)-I, msr(C)
424365 E. hirae TIG0.5 aac(6′)-I

421603/1 E. durans TIG1 aac(6′)-I

CIP—ciprofloxacin, TET—tetracycline, ERY—erythromycin, DAP—daptomycin, TIG—tigecycline, Q/D—
quinupristin/dalfopristin.

2.3. Genetic Diversity in Enterococcus Isolates

Since there was a sufficient number of E. faecalis and E. faecium isolates, genetic diver-
sity was explored using a core genome multilocus sequence typing (cgMLST) approach.
For both species, no apparent clustering was observed (Figures 1 and 2). Even within
the same geographic region (municipality), the cgMLST genotypes were highly diverse,
especially in the case of E. faecalis, where over 50% of the cgMLST genes showed different
alleles between any of the isolates when compared. However, there were at least some
seemingly more closely related isolates among E. faecium (isolates 2124 and 429-441 differed
in 137/1423 alleles, while the largest difference in this dataset was between isolates 428-644
and 424-211/2, differing in 1251/1423 alleles). Two E. faecium isolates from the Tukuma
and Ventspils municipalities, which are geographically more distant from the other regions,
also appeared to be more genetically distant from the other regions’ isolates (Figure 2).
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3. Discussion

E. faecalis, E. faecium, E. durans, and E. hirae were the main species isolated, which
corresponds to previous findings on the faecal microbiota of red foxes, wild canids, and fe-
lids [34,35]. Higher isolation frequencies of E. faecium may be related to feeding behaviours,
as E. faecium was more frequently carried by carnivores [36].

The percentage of identified Enterococcus spp. isolates that were resistant to at least
one antimicrobial agent was lower than 73% in Portugal [37] and Italy, where 35% of all
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isolates were susceptible to all the tested antimicrobial agents [38]. In the present study,
no MDR isolates were found that resulted in a conflicting finding with those of previous
authors, who reported the prevalence of MDR in Enterococcus from 3% in red foxes in
Portugal [37] to 63% in wild Pampas foxes (Lycalopex gymnocercus) in Brazil [35]. Almost
every Enterococcus isolate from wildlife carnivores shares the MDR patterns identified
for wildlife carnivores in Poland [29]. It has been suggested that the proximity of foxes
to human habitats, rural colonization, and the urbanization of foxes sharing the same
habitat as humans may promote the distribution of antimicrobial resistance and infectious
agents [37,39]. In the present study, the samples mostly originated from remote areas with
a low population density; thus, limited access to antimicrobial exposure may have reduced
the ability of the faecal microbiota to develop antimicrobial resistance [40].

The identified high rates of antimicrobial resistance in Enterococcus spp. to tetracycline,
erythromycin, and ciprofloxacin were in agreement with the findings of previous research
on Carnivora [36–38]. Resistance to tetracyclines and ciprofloxacin in Enterococcus spp. was
found in isolates from wild Pampas foxes, as well as Geoffroy’s cats in Brazil and red foxes
in Portugal [34,35]. The AMR patterns of Enterococcus spp. isolates from wild animals may
resemble domestic animal, food, and clinical isolates [38,41], and they were found to be
in line with antimicrobial consumption data from productive animals in Latvia [42]. The
antimicrobial resistance of E. faecium in calves against quinupristin/dalfopristin has been
reported in Latvia [43].

Resistance to glycopeptides (vancomycin and daptomycin) and other last-resort an-
timicrobial agents was not identified in the present study, with the exception of tigecycline
resistance in the E. hirae and E. durans isolates. Enterococcus spp. share intrinsic resis-
tance to different classes of antibiotics, including cephalosporins, aminoglycosides, and
trimethoprim–sulfamethoxazole [23]. Resistance to first-line antibiotics such as ampicillin
and quinolones has been reported in clinical isolates. Acquired resistance to the glycopep-
tide vancomycin in E. faecalis and E. faecium significantly limits the choice of antimicrobial
agents available for the treatment of vancomycin-resistant Enterococcus infections [8]. Oxazo-
lidinones (linezolid), novel tetracyclines (tigecycline), and lipopeptides (daptomycin) may
be used for the treatment of vancomycin-resistant Enterococcus infections [44]. Therefore,
the monitoring of antimicrobial resistance to critically important antimicrobial agents in E.
faecalis and E. faecium is important for tracking the dissemination of antimicrobial resistance
in human and animal populations. Despite E. hirae and E. durans representing a low clini-
cal significance, the identification of tigecycline-resistant Enterococcus spp. is concerning,
considering the ability of Enterococcus to recruit antimicrobial resistance determinants.

Resistance to vancomycin was not identified in the present study. An increasing
number of vancomycin-resistant enterococci have been identified in domestic animals
and wildlife. In Portugal, 13.5% of the Enterococcus spp. isolates from red foxes exhibited
phenotypical resistance to vancomycin, as confirmed by the presence of the van(A) and
van(C-1) genes, while in Italy, high-level vancomycin resistance (MIC ≥ 1024 mg/mL) was
not associated with the presence of genetic determinants [38,45]. Resistance as high as
41% was identified in wild birds in Italy [46]. A high prevalence of vancomycin-resistant
Enterococcus spp. in the wildlife in Poland could be explained by possible interactions
between different ecosystems [25,47].

Almost all of the Enterococcus isolates shared ARGs that confer resistance to amino-
glycosides. Enterococcus spp. intrinsically exbibit low-level resistance to aminoglycosides,
with aac(6′)-I enzymes being important for amikacin resistance [48]. Our findings on the
widespread occurrence of the aac(6′) gene in E. faecium genomes are in agreement with those
of Zaheer et al. [23]. aac(6′)-Ii-like genes specific to E. hirae and E. durans, which confer resis-
tance to the synergy of the association of penicillin and tobramycin, were identified in the
present study [49]. The genes conferring resistance to gentamicin include aph(2′)-Ib, aph(2′)-
Ic, aph(2′′)-Id, and the high-level gentamicin-resistance (HLGR) gene aac(6′)-Ie-aph(2”)-Ia
which inactivates all aminoglycosides with the exception of streptomycin. Genes with
high-level resistance to streptomycin and kanamycin have not been identified, in contrast to
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previous studies indicating an overall low spread of ARGs in the environment and wildlife
in Latvia [29,34,50,51].

tet(M) was the predominant gene in our study among tetracycline-resistant isolates,
and was among the most frequently identified genes conferring resistance to tetracy-
clines [52]. tet(M) was among the most abundant ARGs in red foxes in Spain and other
carnivores—otters (Lutra lutra) in Portugal, racoon dogs (Nyctereutes procyonoides Gray,
1834), American minks (Neovison vison Schreber, 1777), and beech martens (Martes foina)
in Poland [29,37,50]. Two E. faecalis isolates showed high-level resistance to tetracyclines,
with a MIC ≥ 128, and one isolate with resistance to tetracycline was associated with the
presence of the high-level streptomycin resistance gene ant(6)-Ia and the tet(M) and tet(L)
genes. The tet(M) gene confers antimicrobial resistance via ribosomal protection, while
tet(L) mediates the efflux of tetracycline from cells [53]. The tet(M) gene was associated
with conjugative transposons of the Tn916/Tn1545 family which facilitate the conjugation
process via horizontal ARG transfer. Tn916/Tn1545 transposon can promote the transfer
of tetM, ermB, aph(3′′)-IIIa, or other transposons or plasmids to ensure horizontal gene
transfer [54]. Thus, the presence of high-level Enterococcus resistance isolates in red foxes
may indicate the opportunity for ARG dissemination in wildlife via AMR transfer from
highly populated areas to remote locations, with further spread in wild animals and transfer
to human habitats. This demonstrates the need to develop a comprehensive understand-
ing of AMR dissemination in wildlife in order to implement a One Health approach for
tackling AMR.

While traditional tetracycline determinants such as tet(M) and tet(L) have been associ-
ated with the increased transcription and expansion of gene copy numbers in tigecycline-
resistant phenotypes [55,56], the determinants of resistance to tetracycline in tigecycline-
resistant E. hirae and E. durans isolates were not identified in our study.

msr(C) was most abundant in E. faecium isolates (94%), and it is thought to be species-
specific. The msrA,B,C genes were found in both erythromycin-resistant and -susceptible
isolates [38]. The mrs(C) gene of E. faecium may encode the efflux pump of macrolides [57],
and it was identified in all the erythromycin-resistant isolates in the present study. The
lsa(E) and msr(C) genes are reported to be important for lincosamine, streptogramin A,
and macrolide resistance, with the lsa genes involved in the development of resistance
to clindamycin, lincosamides, and dalfopristin [58]. The lnu(B) gene confers resistance to
lincosamides only, and Nowakiewicz et al. have suggested its circulation between farm
animals and wildlife [59].

The investigated isolates of E. faecalis and E. faecium were highly diverse, as assessed
using cgMLST typing, and the high diversity of Enterococcus isolates from environmental
and animal sources has been reported previously [60]. This indicates the absence of the
clonal distribution of Enterococcus strains among the fox population in the observed geo-
graphical region. The genotypes between and within municipalities were highly variable
in most cases. The only case indicating the possibility of a common genetic background in-
volved E. faecium isolates 428-644 and 426-804, both coming from the Rezekne municipality
and displaying resistance against ciprofloxacin. Still, they were separated by a significant
353-allele difference based on their cgMLST genotypes. However, continued monitoring
with more dense sampling would be beneficial for assessing the distribution of genetic
diversity among resistant Enterococcus species in wild carnivore populations.

The present study reveals the distribution of resistant Enterococcus isolates in areas
largely untouched by human activities and agricultural practices, which may have an
impact on Enterococcus antimicrobial resistance rates. This study was limited by the avail-
ability of animals from a single geographic area, which is the subject of a national rabies
vaccination monitoring program. Further studies including other carnivorous species are
intended for the purpose of obtaining a comprehensive overview of the dissemination of
antimicrobial resistance in the environment.
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4. Materials and Methods
4.1. Samples and Sampling

Altogether, 32 dead red foxes (Vulpes vulpes) were delivered to the reference laboratory
to monitor the efficiency of a peroral rabies vaccination program in wildlife [61,62]. Red
foxes were collected from 25 parishes, with one to three foxes per parish (Table S1). The
caecum of each fox was aseptically removed during a necropsy. The external surface of
the caecum was disinfected with 70% ethanol and left for 5 min. Then, the caecum was
aseptically incised and 1 g of the content of the caecum was collected.

4.2. Microbiological Testing of Samples

An amount of 1 g of the caecal content was transferred into 9 mL of the azide dex-
trose broth (Biolife, Milan, Italy) and incubated for 24 h at 37 ◦C. A loop of the enriched
suspension was streaked onto Slanetz and Bartley agar (Biolife, Italy) and incubated for
44 ± 4 h at 44 ± 1 ◦C. After incubation, colonies with a typical red, maroon, or pink colour
were subcultured on blood agar (Biolife, Italy) with the addition of 5% defibrinated horse
blood (TCS Biosciences Ltd., Buckingham, UK) for 24 h at 37 ◦C. Enterococcus spp. were con-
firmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOFF, Bruker, Bremen, Germany).

4.3. Detection of Antimicrobial Resistance in Enterococcus spp. Isolates

Antimicrobial resistance was detected with the microbroth dilution method using
EUVENC test panels (ThermoFisher Scientific, East Grinstead, West Sussex, UK), which are
used by the European Union (EU) for the surveillance of AMR in Enterococcus spp. The in-
vestigated isolates were suspended in saline (0.5 McFarland) and transferred into 11 mL of
cation-adjusted Mueller–Hinton (MH) broth (Thermo Fisher Scientific, Landsmeer, Nether-
lands). The test panels were inoculated with the bacterial suspension in MH broth and
incubated at 37 ◦C for 24 h. In the EUVSEC test panel, the following antimicrobial agents
were included (in µg/mL): ampicillin (0.5–64), chloramphenicol (4–128), ciprofloxacin
(0.12–16), daptomycin (0.25–32), erythromycin (1–128), gentamicin (8–1024), linezolid
(0.5–64), quinupristin/dalfopristin (0.5–64), teicoplanin (0.5–64), tetracycline (1–128), tige-
cycline (0.03–4), and vancomycin (1–128). The resistance thresholds were determined in
accordance with the EUCAST [63].

4.4. DNA Extraction and Whole-Genome Sequencing (WGS)

Prior to DNA extraction, the bacterial cultures were grown on blood agar (Biolife
Italiana, Monza, Italy). For the DNA extraction, the commercially available kit “NucleoSpin
Tissue” (Macherey-Nagel, Düren, Germany) was used. Since enterococci are Gram-positive
bacteria, a protocol for hard-to-lyse bacteria was used. The protocol included an additional
lysozyme step to hydrolyse the peptidoglycan glycosidic bonds in order to obtain better-
quality DNA; after that, the standard protocol nr.5 was followed. The purity of the samples
was assessed using a NanoDrop spectrophotometer and the quantity was measured using
a Qubit fluorometer (both ThermoFisher Scientific, Landsmeer, The Netherlands).

To prepare the libraries for the whole-genome sequencing, an Illumina DNA prep
(Illumina, San Diego, CA, USA) library preparation kit was used by following the provided
instructions. For a sample quality assessment before pooling, the gel capillary electrophore-
sis (QIAxcel Advanced Instrument, QIAGEN, Venlo, Limburg, The Netherlands) was used
with a high-resolution cartridge and a 50–1500 bp size marker.

The library was sequenced using the Illumina MiSeq next-generation sequencing
system (Illumina, San Diego, CA, USA).

4.5. Genome Assembly, Detection of Antimicrobial Resistance Genes (ARGs) and Core Genome
MLST (cgMLST)

The raw reads were assembled and antimicrobial resistance was identified using
an in-house pipeline written in Snakemake (v7.32.3) [64]. First, the quality of the raw
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reads (and later, the trimmed reads) was assessed with FastQC (v0.12.1) [65]. Then, the
raw reads were trimmed using Trimmomatic (v0.39) [66] with the following settings:
2:30:9 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:33. The assemblies
were created using SPAdes (v3.15.5), with the option of using careful and paired reads
as the input [67]. Afterwards, QUAST (v5.2.0) was used to assess the quality of the
assemblies [68]. Then, the assemblies were indexed as references and the raw reads
were aligned to them using bwa-mem2 (v2.2.1) [69]. The resulting bam files were sorted
and indexed with SAMtools (v1.179) [70]. QualiMap (v2.2.2-dev) was used to assess the
coverage [71]. Due to the low coverage (<30), two samples were excluded from further
analyses (30266 and 427166). The contamination or misidentification of Enterococcus species
was detected using Kraken 2 (v2.1.3) with the Standard-16 database (v3/14/2023) on the
raw reads [72]. MultiQC (v1.14) was used to compile a report on these different statistics
to make it easier to assess the different aspects of quality [73]. Finally, on the assemblies,
we also ran AMRFinderPlus (3.11.2) [74] with the database version 2023-08-08.2 to detect
ARGs (Supplementary Material Table S2). All of the aforementioned computations were
performed on the high-performance computing centre cluster at Riga Technical University.

Afterwards, to allow the cgMLST to be determined and to create a minimum spanning
tree (MST), the assembled genomes were imported into Ridom SeqSphere+ (v9.0.10) (Ridom,
Muenster, Germany) [75]. We determined the cgMLST and created an MST based on the
previously existing schemes for E. faecium and E. faecalis (available at https://cgmlst.org,
accessed on 13 November 2023). One sample (3802) did not reach the threshold of >90% tar-
get genes, and therefore it was excluded from the MST. The MST was created in GrapeTree
(v1.5.0) using the MSTreeV2 algorithm (https://genome.cshlp.org/content/28/9/1395,
accessed on 10 December 2023).

5. Conclusions

The present study shows the presence of resistant Enterococcus species in red foxes
in sparsely populated areas without direct anthropogenic effects. The identification of
antimicrobial resistance and antimicrobial resistance determinants in Enterococcus species
isolated from wild carnivores may be the result of environmental contamination and
indirect contact with humans and agricultural animals, since wild predators are at the
top of the food chain. The presence of resistant enterococci in red foxes highlights the
importance of a One Health approach in tackling antimicrobial resistance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics13020114/s1, Table S1: Isolates included in the
present study; Table S2: ARGs targeted according to AMRFinderPlus (3.11.2), with the database
version 2023-08-08.2.
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38. Dec, M.; Stępień-Pyśniak, D.; Gnat, S.; Fratini, F.; Urban-Chmiel, R.; Cerri, R.; Winiarczyk, S.; Turchi, B. Antibiotic susceptibility
and virulence genes in Enterococcus isolates from wild mammals living in Tuscany, Italy. Microb. Drug Resist. 2020, 26, 505–519.
[CrossRef] [PubMed]
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