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Abstract: Waterborne faecal contamination is a major public health concern. The main objectives of
this study were to investigate faecal contamination and Escherichia coli (E. coli) antibiotic resistance
in recreational fresh water from Guadeloupe and to characterise the microbiome and resistome
composition in biofilms from submerged rocks. Significant faecal contamination was observed at
14 freshwater sites. E. coli predominated (62%), followed by Enterobacter cloacae (11%) and Acinetobac-
ter spp. (11%). Of 152 E. coli isolated, none produced extended-spectrum beta-lactamases (ESBLs),
but 7% showed resistance to streptomycin and 4% to tetracycline. Biofilm resistome analysis revealed
clinically significant antibiotic-resistance genes (ARGs), including those coding for resistance to
sulfonamides (sul1), carbapenems (blaKPC), and third-generation cephalosporins (blaCTX-M). Mobile
genetic elements (MGEs) (intI1, intI2, intI3) linked to resistance to aminoglycosides, beta-lactams,
tetracycline, as well as heavy metal resistance determinants (copA, cusF, czcA, merA) conferring resis-
tance to copper, silver, cadmium, and mercury were also detected. Diverse bacterial phyla were found
in biofilm samples, of which Proteobacteria, Bacteroidetes, Planctonomycetes, and Cyanobacteria
were predominant. Despite the frequent presence of E. coli exceeding regulatory standards, the low
levels of antibiotic-resistant bacteria in freshwater and of ARGs and MGEs in associated biofilms
suggest limited antibiotic resistance in Guadeloupean recreational waters.

Keywords: Escherichia coli; resistome; biofilm; river; pollution

1. Introduction

Antibiotics are commonly used in human and veterinary medicine to treat or prevent
bacterial infections [1,2]; however, the over- and inappropriate use of these drugs has led to
a rise in antibiotic resistance in bacteria. Non-antibiotic compounds, such as antibacterial
biocides and heavy metals, can also contribute to the rise in antibiotic resistance through
co-selection mechanisms [3]. Horizontal gene transfer (HGT), facilitated by mobile genetic
elements (MGEs) like integrons, transposons, and plasmids, enables the exchange of
resistance-conferring genes to these elements [4]. Antimicrobial resistance (AMR) is now a
major public health problem worldwide [5–7].

Guadeloupe, a French overseas tropical island in the Caribbean, is a major element
in human migration between Europe, the USA, and other Caribbean islands [8]. With its
high economic level (https://hdr.undp.org, accessed on 9 March 2023), insularity, small
surface area (1436 km2), and small population (375,845 inhabitants in 2023), it is a propitious
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environment for studying reservoirs of antibiotic-resistant isolates and identifying routes
of transmission to the human population.

Data on resistance to antibiotics in Guadeloupe are scarce and recent. The island has
faced the emergence of nosocomial infections associated with carbapenemase-producing
Enterobacteriaceae since 2014 and also a high incidence of nosocomial infections caused
by ESBL-producing Enterobacteriaceae [9–12]. Environmental investigations have focused
on the faecal carriage of ESBL-producing Enterobacteriaceae in domestic animals [13,14],
farm animals [15], and wildlife [16,17] and also on the transmission of clinical strains to the
environment [8,18]. Antibiotic resistance was also studied in effluents from wastewater
treatment plants (WWTP) and in surface waters with or without such discharges [18,19].
Although these studies concluded that there is limited circulation of antibiotic-resistant
bacteria (ARB) between humans and the environment [8,13,16,18], there are still gaps in
understanding the transmission of ARB from the environment to humans.

Guadeloupe, renowned for its beaches and rivers, welcomes large numbers of tourists,
with over 815,000 visitors in 2019 [20], and aquatic recreation plays a central role in tourism.
Monitoring water quality is therefore essential. The Regional Health Agency has mandated
the Pasteur Institute of Guadeloupe to conduct monthly monitoring of the bacteriological
quality of all the beaches and rivers of the archipelago on which aquatic recreation is
practised. Microbiological water quality control is based on the monitoring of faecal
contamination indicators such as E. coli and intestinal enterococci [21]. In 2020, 11% of
Guadeloupe’s recreational waters did not meet the required quality standards (59% of river
monitoring sites), and bathing was prohibited at 3% of the sites [22]. Despite growing
concern about faecal pollution of water in Guadeloupe, data on AMR in recreational areas
that do not receive WWTP discharges are scarce. The only study, conducted in 2016 [19],
revealed limited antibiotic resistance in such water; however, the conclusion was limited to
surface waters and did not address the issue of biofilms.

It is now well established that ARB and their resistance determinants can infiltrate
surface waters [23–26] and biofilms [27–29]. Biofilms can adhere to a variety of surfaces,
including rocks in rivers. Such bacterial communities form a complex extracellular matrix that
confers high resistance to antimicrobial treatment. Previous studies have reported the presence
of ARB in river biofilms, sediments, and the water column along river systems [30–32].

The aim of this exploratory study was to assess the contamination of recreational river
surface water and biofilms by antibiotic-resistant coliforms and broaden the understanding
of antibiotic resistance on the island of Guadeloupe. The main objective was to characterise
antibiotic resistance in 14 rivers known to have poor water quality. In addition, we analysed
the microbiome and resistome of biofilms present on rocks at the bottom of three of the
most polluted rivers. Surface water contamination by faecal coliforms was estimated by
culturing E. coli, and the characterisation of phenotypic resistance was limited to this species.
Unlike enterococci, antibiotic-resistant E. coli can be considered the sentinels of AMR in the
environment [33,34]. The abundance of resistance determinants was assessed by Fluidigm
polymerase chain reaction (PCR) in biofilms, and the microbiome was characterised by
metabarcoding targeting the 16S rRNA gene.

2. Results
2.1. Enumeration of E. coli in Water Samples

E. coli were counted by the “most probable number” (MPN) method. Of 59 river sam-
ples, 48 had an MPN of <100 colony-forming units (CFUs)/100 mL, of which 15 had none.
The lowest value in 11 samples with MPN values > 100 CFU/100 mL was 110 CFU/100 mL
(Grande Rivière du Lamentin) and the highest value was 2508 CFU/100 mL (Corossol).
Only six sites had high levels of faecal bacteria, and no E. coli were found at Sofaïa (Table 1).
During campaign 3, when there was heavy rainfall, E. coli levels were >1000 CFU/100 mL
at only three sites (Table 1).
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Table 1. Numbers of E. coli (most probable number, CFU/100 mL) in river water in Guadeloupe.

Most Probable Number (CFU/100 mL)

Municipality Site Campaign 1 Campaign 2 Campaign 3 Campaign 4 Campaign 5

Deshaies Fond Helliot 30 49 144 77 347

Gourbeyre Bain des Amours 0 15 61 61 30

Gourbeyre Bassin Bleu – 75 61 15 46

Gourbeyre Bain de Dole 46 0 46 30 160

Lamentin Grande Rivière
du Lamentin 110 2213 179 144 127

Petit Bourg Bras David 15 15 1336 15 –

Petit Bourg Cascade aux Ecrevisses 15 15 30 46 61

Petit Bourg Corossol 0 – 2508 0 46

Petit Bourg Diane 15 46 77 77 –

Petit Bourg Duquerry 0 15 15 15 –

St Claude Bain Jaune – – 30 0 0

St Claude Rivière Rouge – 15 94 0 0

St Rose Sofaïa – 0 – 0 0

Vieux Habitants Vallée Verte – 0 1071 0 0

– Not collected.

2.2. Characterisation of Bacterial Isolates from River Water, Antibiotic Susceptibility of E. coli, and
Resistance in Biofilms

Blue colonies were confirmed as E. coli on chromogenic media by matrix-assisted laser
desorption/ionisation mass spectrometry. Other colonies of various colours were selected
randomly for the identification of bacterial diversity in bathing water. During the five
sampling campaigns, 245 bacteria were identified, the most common species being E. coli
(n = 152, 62%), followed by Enterobacter cloacae (n = 25, 11%) and Acinetobacter spp. (n = 25,
11%). Other relevant species (Citrobacter freundii, C. amalonaticus, Klebsiella pneumoniae,
K. variicola, K. oxytoca, K. ascorbata, Aeromonas hydrophila, Ae. enteropelogenes, Ae. jandaei
Pseudomonas putida, Serratia marcescens, Chromobacterium violaceum, Pseudomonas alcalifaciens,
Providencia alcalifaciens, Raoultella ornithinolytica, and Cronobacter spp.) were less abundant.

No E. coli strains were detected in the medium with added third-generation cephalosporin.
None of the 47 E. coli strains tested for antibiotic susceptibility showed resistance, except
for streptomycin (n = 3, 7% resistance) and tetracycline (n = 2, 4% resistance). These results
suggest little bacterial resistance in recreational river waters from Guadeloupe. In order to
confirm these results, we characterised the resistome of biofilms present in the three most
polluted rivers (Corossol, Fond Helliot, and Grande Rivière du Lamentin).

In two campaigns, nine categories of clinical resistance genes associated with strep-
togramin, macrolide, sulfonamide, polymyxin, tetracycline, beta-lactam, aminoglycoside,
quaternary ammonium compounds (QAC), and heavy metal resistance were identified.
In addition, MGEs were present at all three sites (Figure 1a). The relative abundance of
resistance determinants and MGEs differed in the two sampling campaigns, especially
at the Corossol and Fond Helliot sites (Figure 1a). Sulphonamide resistance genes were
more abundant during the first campaign (30 May 2022) (Figure 1a), while beta-lactam,
aminoglycoside, heavy-metal resistance genes, and MGEs were more prevalent in the
second campaign (5 July 2022) (Figure 1a). No major difference was observed between the
two campaigns for the other resistance determinants, with the exception of tetracycline and
QAC resistance genes, which were particularly abundant at the Fond Helliot site during
the second campaign (Figure 1a).
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Figure 1. (a) Normalised relative abundance of antimicrobial classes (antibiotic-resistance gene [ARG]
copies per 16S rRNA gene copy) in six biofilm samples. (b) Heat map of the relative abundance of
the 64 ARGs detected in the six biofilm samples (ARG copy per 16S rRNA gene copy). White bands
represent undetected elements.

A total of 64 subtypes of resistance determinants were identified in the samples
analysed, although in small quantities (Figure 1b). The number of ARG subtypes varied
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from 34 (minimum) to 49 (maximum) per sample (Figure 1b) and the abundance from
3.30 × 10−7 to 3.33 × 10−3 copies/16S rRNA gene. Similar numbers of ARGs and MGE
were detected at all sites. The Fond Helliot site had a higher overall relative abundance
than the other sites on 30 May 2022 (Figure 1b). Overall, the signal intensity of resistance
determinants and MGEs was more pronounced during the first campaign (Figure 1b),
particularly at Grande Rivière du Lamentin and Fond Helliot, while in the second cam-
paign, signal intensity was higher at Corossol. The five most abundant subtypes at all
the sites in both campaigns were the resistance genes sul1, aac(3)-Iid, blaKPC, blaCTX-M, and
blaVIM (Figure 1b), although the abundance of sul1 was greatest at Fond Helliot in the
first campaign. The MGEs identified were inc-P1 plasmid, transposon Tn3 (tnpA), inser-
tion sequences (IS6 family, ISS1, ISS1W), and integrons including intI1, intI2, and intI3
(Figure 1b), some of which were ubiquitous, while others were detected only at certain
sites. Thus, the analysis of biofilm resistomes from the rivers studied indicated only limited
resistance determinants.

2.3. Composition of Bacterial Communities in Biofilms

After quality filtering, 1,039,932 normalised sequences were obtained from six biofilm
samples, i.e., 173,322 sequences per sample. An analysis of the 16S sequencing data in-
dicated the presence of several bacterial communities in river water biofilms. A total of
13,404 amplicon sequence variants was found in the prokaryotic communities. 16S rRNA
gene sequencing showed that these bacterial communities comprised 40 phyla, 99 classes,
223 orders, 320 families, and 740 genera. The bacterial communities in biofilms from the
Corossol, Fond Helliot, and Grande Rivière du Lamentin rivers were similar at the phylum
(Figure 2a) and genus (Figure 2b) levels, despite their geographical separation, although
the relative abundance varied. Proteobacteria (50% of all phyla) were the dominant phylum
in all samples (Figure 2a). The major phyla at other sampling sites or campaigns were Bac-
teroidetes (10% of all phyla), Planctomycetes (9% of all phyla), and Cyanobacteria (8% of all
phyla) (Figure 2a), and the predominant bacterial genera were Rhizobiales, Burkholderiaceae,
Exiguobacterium, and Saprospiraceae, accounting for 3.5–15.1% of all genera (Figure 2b).

Variations in taxonomic relative abundance were observed between the two sampling
campaigns. For example, the relative abundance of the Cyanobacteria and Deinococcus-
Thermus phyla decreased between the first (30 May 2022) and second (5 July 2022) campaign
(35% (sum of relative abundances) vs. 11%, 20% vs. 2%, respectively), while the relative
abundance of Firmicutes increased (3% vs. 35%), especially at the Fond Helliot and Grande
Rivière du Lamentin sites (Figure 2a). At the genus level, Exiguobacterium was more
abundant at both sites during the second sampling campaign (Figure 2b). Truepera and
Deinococcaceae were detected in low proportions during the first sampling campaign and
almost disappeared during the second campaign (Figure 2b). A similar trend was observed
for Saprospiraceae at the Corossol and Grande Rivière du Lamentin sites (Figure 2b). In
contrast, the relative abundance of Rhodobacter increased at all sites, from a total relative
abundance of 6% in the first campaign to 15% in the second (Figure 2b). Geographical
variations were also observed. The Rhizobiales, Burkholderiaceae, and Acidimicrobiia genera
were predominant at the Fond Helliot site (Figure 2b).

2.4. Analysis of Alpha Diversity

Analysis of variance of the Shannon index showed a significant difference in alpha
diversity among the sites (p = 0.03) but not among sampling dates (p = 0.88). In pairwise
comparisons (post hoc Tukey) of similarities, samples from Fond Helliot differed signifi-
cantly from those from Corossol (p = 0.02), while those from Fond Helliot–Grande Rivière
du Lamentin and Grande Rivière du Lamentin–Corossol did not (p = 0.15 and p = 0.14,
respectively). These results indicate variations in the specific richness and equitability of
communities among sites (Figure 3). The Shannon diversity index, calculated for each
sample, confirmed that the Corossol site had the highest bacterial diversity of the three
sites (Figure 3).
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Figure 2. Normalised relative abundance of bacteria at phylum (a) and genus (b) level in six biofilm
samples from the Corossol, Fond Helliot, and Grande Rivière du Lamentin rivers on 30 May 2022
and 5 July 2022. NA means not assigned. For names with NA, the genera have not been identified.
We have referred to the last taxonomic assignment found.
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2.5. Analysis of Beta Diversity

Beta diversity analysis (Figure 4) confirmed the similarity of bacterial composition
among the sites. No significant differences in the structure of the bacterial community were
observed at the different sampling sites (p = 0.70) or between the sampling dates (p = 0.07).
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3. Discussion

This study focused on the presence of total and resistant E. coli in recreational freshwa-
ter unaffected by effluent from wastewater treatment plants, with E. coli being found at least
once at all study sites except one. Of the 14 sites, 11 had E. coli at levels >100 CFU/100 mL,
indicating poor water quality and the presence of faecal pollution. During the third
campaign, increased E. coli levels were found at Bras David, Corossol, and Vallée Verte,
indicating that precipitation contributes to soil leaching, with discharge of bacteria into
aquatic environments [35,36]. These high E. coli loads could be linked to discharges of
wildlife faeces, particularly from birds. A low level of antibiotic resistance was found
in the E. coli isolates studied: no ESBL production was observed and only resistance to
streptomycin and tetracycline was detected, due probably to their extensive use in vet-
erinary medicine [37,38]. The results are in line with previous local data indicating a low
level of antibiotic resistance in areas with no anthropogenic impact [19]. In contrast, in the
Netherlands, ESBL-producing E. coli were detected in surface waters not influenced by
WWTPs in similar concentrations than those under the influence of WWTPs, indicating the
existence of additional ESBL-producing E. coli contamination sources [39].

ARGs were detected in biofilms from all river sites, although at low levels, and
were associated with resistance to several classes of antibiotics. Interestingly, 28 ARG
subtypes were common to all samples, indicating a similar ARG composition. ARGs
were associated with resistance to carbapenem and polymyxin, two clinically relevant
last-line treatments for life-threatening infections [40,41]. Determinants of resistance to
tetracyclines, sulfonamides, beta-lactams, aminoglycosides, and macrolides were also
detected. Interestingly, blaCTX-M was one of the most frequent ARGs detected, although no
bacteria resistant to third-generation cephalosporin were isolated.

The integrons intI1, intI2, and intI3 detected here have previously been described
as having a clinical origin [4,42,43], with IntI1 potentially being used as an indicator of
environmental resistance [44]. These integrons are mainly linked to horizontal gene transfer
among several bacterial species [43]. intI3 was the only integron identified consistently
across all sites and during both sampling periods, and its presence was associated with
the soil and freshwater proteobacterial group [42]. We also identified determinants of
resistance to heavy metals and disinfectants, which can accelerate the spread of ARGs and
antibiotic-resistant bacteria while promoting horizontal gene transfer [45–49]. Although
the sample used in this study was relatively small for a resistome study, our results suggest
that biofilms in these rivers are not sites of permanent ARG accumulation or establishment.
More exhaustive sampling would provide a better understanding of environmental impacts
such as the spatial and temporal extent of waterborne bacteria carrying ARGs. Nevertheless,
our analysis suggests no permanent risk for human health from antibiotic resistance in
Guadeloupe’s recreational waters, including biofilms.

An analysis of the biofilm microbiome characteristics from three freshwater sites
showed that the predominant bacterial phyla at our study sites were Proteobacteria, Bac-
teriodetes, Planctomycetes, and Cyanobacteria, as reported in previous studies but with
different abundances [50–55]. The predominance of Proteobacteria was highlighted in
previous studies investigating surface waters [56–61] and biofilms from various environ-
ments [51,62,63] through 16S rRNA gene analysis. With Proteobacteria considered prolific
surface colonisers [64], previous studies have also revealed their predominance in aquatic
ecosystems, where they influence biogeochemical cycles such as those of carbon and nitro-
gen [55,65–67]. This is in agreement with the large amounts of nutrients in our freshwater
sites, which favour their proliferation. Bacteroidetes have been associated with biopolymer
degradation and contribute to dissolving organic matter [68], while Planctonomycetes have
been associated with ammonium regulation [69]. Cyanobacteria, a group of aquatic and
photosynthetic bacteria, influence the structure and productivity of microbial communi-
ties [70]. The Rhizobiales and Burkholderiales genera were the most abundant, indicating
oligotrophic or mesotrophic conditions [71,72]. The genus Saprospiraceae, which was also
abundant, is commonly associated with wastewater and sewage sludge [73,74]. It is also
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found in various marine and freshwater environments [74], where it can hydrolyse and
use complex organic carbon compounds [75]. Although the residence time of submerged
rocks for river biofilm formation was the same in both sampling campaigns, variations
in the relative abundances of phyla and genera were observed within the same site. The
decrease or increase in intra-river relative abundance of specific taxa between the two
sampling periods suggests a sensitivity to specific environmental parameters. Ecological
interactions, nutrient availability, and local environmental conditions (T ◦C, pH, etc.) are
factors likely to influence this dynamic [54,64,76]. Other studies have indicated that water
flow [77] and oxygenation [78] contribute to the shaping of microbial communities in
biofilms. Combined with temporal heterogeneity, geographic heterogeneity was observed
with genera present in higher proportions at some sites than at others, in agreement with
previous observations [79,80].

Statistical analysis of alpha diversity showed significant differences among sites
(p = 0.03), indicating variations in species richness and equitability. No significant dif-
ference in diversity was observed between sampling dates (p = 0.88), suggesting that
species diversity remained relatively stable during this time; however, a longer study pe-
riod would be necessary to reach conclusions about the stability of the microbiota over time.
Our results on diversity among the sites are in line with those of Zancarini et al. [81], who
observed significant variations in the composition of the microbial community between
collection points up and down a 122 km river. The variations were attributed to differences
in water temperature, with an average difference of 5 ◦C between upstream and down-
stream sites, and also in the geological and hydrological characteristics of the sampling
sites [81]. In our study, no significant difference was found in beta diversity between sites or
sampling dates, although subtle variations in bacterial community structure were observed
between sampling dates (p = 0.07). These observations suggest subtle changes in the compo-
sition of bacterial communities over time, which could be linked to environmental factors
such as water temperature [82–84] or to events that influence the structure of microbial
biofilms in freshwater samples. These results contrast with those of two previous studies, in
which significant differences were observed between sampling sites [81,85] but not between
sampling dates [81], which suggests that the composition of the microbial community is
relatively stable over time but may vary according to the characteristics of each sampling
site [81,84]. Other studies have also shown that the composition of phyla within biofilms
can be influenced by pollution, seasonal variations and the physico-chemical properties of
the water [54,64,76,86]. These observations highlight the sensitivity of biofilm communities
not only to geographical location, and thus the environment, but also to time, particularly
seasons [82,84,87].

4. Materials and Methods
4.1. Sampling of River Water and Biofilms

Five sampling campaigns to collect river water were carried out between March and
June 2022, coinciding with the dry season. Fourteen rivers in seven municipalities were
selected in 2021 on the basis of data from annual monitoring of bathing water quality by the
Regional Health Agency for frequent poor water quality (100 > E. coli CFU/100 mL ≥ 1800).
Water samples were taken approximately 30 cm below the surface in a sterile container,
always at the same GPS point. All the rivers are located on the island of Basse-Terre and are
in the same hydro-ecoregion, a homogeneous zone with respect to geology, climate, and
landscape (Figure 5). Each site was sampled at least three times during the five campaigns.

Two 3-week campaigns to collect biofilms were conducted in May and June 2022. The
three rivers selected because of their average or poor water quality were Grande Rivière
du Lamentin (16.22603◦ N; 61.66128◦ W), Corossol River (16.17071◦ N; 61.68838◦ W), and
Fond Helliot River (16.28408◦ N; 61.79241◦ W).

A total of fifty-nine river water samples and six biofilm samples were taken for
bacteriological analysis. All samples were placed in a refrigerated container (4 ◦C) during
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transport and protected from sunlight until their delivery to the laboratory. The samples
were then kept in a refrigerator at 4 ◦C and analysed within 24 h.
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4.2. Enumeration of Escherichia coli in Water

The MPN of E. coli was determined on MUG microplates (Bio-Rad, Marnes-la-Coquette,
France) according to NF EN ISO 9308-3:1998 [88]. To a tube containing 18 mL of special
microplate diluent, 18 mL of sample was added to obtain a 1:2 dilution. The tube was
vortexed and 2 mL of the suspension was removed and added to another tube containing
18 mL of special microplate diluent to obtain a final dilution of 1:20. For enumeration of
third-generation cephalosporin-resistant E. coli, 1 mL of ceftriaxone antibiotic solution was
added to the dilutions for a final concentration of 4 mg/L.

For each river water sample, a microplate containing dehydrated E. coli-specific culture
medium was halved. The 1:2 dilution was distributed into 64 wells and the 1:20 dilution into
the remaining 32 wells with an eight-channel pipette set at 200 µL. Plates were covered with
sterile adhesive strips and incubated at 44 ◦C for 36–72 h, and the number of positive wells
was converted into the MPN from the MPN table. The values obtained were compared
with the standard threshold values provided in the European Directive of 15 February
2006 (2006/7/EC) [89] and the Public Health Code: Articles L.1332-1 to L.1332-9 and
D.1332-14 [90,91].

4.3. Isolation, Identification, and Susceptibility of E. coli in Water

E. coli strains were isolated by the membrane filtration method as described previ-
ously [19]. Filters and positive wells were inoculated onto chromogenic coliform agar
medium either without antibiotics or supplemented with ceftriaxone at 4 mg/L. After
incubation for 24 h at 37 ◦C, 10 dark blue CFUs (presumptive E. coli onto chromogenic
coliform agar) were plated on non-selective bromo-cresol purple agar. Blue presumed E. coli
colonies were identified by matrix-assisted laser desorption/ionisation mass spectrometry,
and colonies of other colours were selected at random for this exploratory research. After
species confirmation, a maximum of three E. coli colonies was collected from media on
which growth was observed, for a total of 152 E. coli isolates. One strain per sample (n = 47)
from the agars on which bacterial growth had been observed was chosen arbitrarily for anal-
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ysis of antibiotic resistance phenotypes. The disc diffusion technique on Mueller–Hinton
agar was used according to the recommendations of the Antibiogram Committee of the
French Society of Microbiology [92] (http://www.sfm-microbiologie.org, accessed on 18
July 2023).

The strains were tested against a panel of 16 antimicrobial agents corresponding to
those most commonly prescribed in human and veterinary medicine: amikacin (30 µg),
ciprofloxacin (5 µg), amoxicillin/clavulanic acid (20 µg/10 µg), ampicillin (10 µg), cefoxitin
(30 µg), ceftazidime (10 µg), cefotaxime (5 µg), ertapenem (10 µg), fosfomycin (200 µg), gen-
tamicin (10 µg), nalidixic acid (30 µg), streptomycin (10 µg), temocillin (30 µg), tetracycline
(30 µg), ticarcillin (75 µg), and trimethoprim/sulfamethoxazole (25 µg). Growth inhibition
diameters were measured with the Adagio automated system (Bio-Rad). The critical diam-
eter reference proposed by CA-SFM/EUCAST 2021 [92] was used to interpret the diameter
of the zone of inhibition. Isolates that showed a resistant or intermediate phenotype were
classified as resistant strains. E. coli ATCC 25,922 was used as the control strain.

4.4. Biofilm Collection, DNA Extraction, and Resistome Analysis

Five rocks per river site were collected and identified. After sterilisation, the rocks
were placed in a net and deposited in the river at a location with little current. After 21 days
of immersion, to allow for natural biofilm formation with the microbial communities of the
river, the rocks were collected and carefully scraped with a sterile toothbrush, which was
regularly rinsed with a small volume of sterile water [84,85]. The solution obtained was
then centrifuged at 8000× g for 10 min to remove excess water, and the resulting pellet was
stored at −80 ◦C until analysis.

Water samples were collected at the same time as rocks to ensure monitoring of E. coli
contamination rates at the sites.

Bacterial DNA from biofilms was extracted with a NucleoSpin Soil kit (Macherey—Nagel
GmbH & Co. KG, Düren, Germany) according to the manufacturer’s protocol. DNA con-
centrations were measured with the Qubit instrument (Thermo Fisher Scientific, Waltham,
MA USA). Some DNA from each sample was sent to the Biomics Platform C2RT (Institut
Pasteur, Paris, France) for microbial community analysis and the remaining DNA was sent
to the University of Limoges for the analysis of biofilm resistomes. The method used for
resistome analysis was 96.96 BioMark® Dynamic Array for Real-Time PCR (Fluidigm Cor-
poration, San Francisco, CA, USA). Threshold cycle (Ct) values were extracted with BioMark
Real-Time PCR analysis software v1.2.0. Normalised gene abundance was calculated from
16S rRNA gene abundance according to the following formula: 2{−[Ct(RG) − Ct(16S rRNA)]}.

The analytical procedure is described in more detail by Buelow [93,94].

4.5. Molecular Identification of Bacteria by 16S rRNA Gene Sequencing and Metagenomic Analysis

Amplification of the V3–V4 region of the 16S rRNA gene and MiSeq sequencing was
performed by the Biomics platform of the Institut Pasteur Paris, France.

The V3–V4 variable region of the ribosomal DNA coding gene was amplified with
the following prokaryote-specific universal primers: 341F (CCTACGGGNGGCWGCAG)
and 785R (GACTACHVGGGTATCTAATCC) [95]. After Illumina sequencing, the raw data
were cleaned with the “dada2” library [96] for use in R software v4.3.0 [97], which allows
for filtering, merging, clustering, chimera removal, and taxonomy assignment (on the
SILVA database [98]) of the amplicon sequence variants found. Data were analysed with
“ggplot2” [99] and “phyloseq” [100] in order to generate diagrams according to the desired
conditions. Statistical analyses were performed with the “vegan” library [101].

5. Conclusions

In Guadeloupe, rivers not affected by WWTP discharges have relatively low levels of
ARB. Nevertheless, the frequent presence of E. coli in recreational freshwater, sometimes at
concentrations that exceed regulatory standards, raises concern about the health of bathers.
The analysis of bacterial communities at various sites showed similar compositions but dif-

http://www.sfm-microbiologie.org
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ferent abundances, reflecting site-specific environmental conditions. The analysis of biofilm
resistomes revealed traces of MGEs and ARGs, confirming limited antibiotic resistance in
environments that do not receive human discharge, although clinical ARGs were identified.
Better management of hot spots, such as those that receive effluents from WWTPs, tourist
areas, and hospitals, should prevent the contamination of recreational areas by faecal
bacteria and, consequently, help avoid the risk of dissemination of bacterial resistance.
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