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Abstract: Enterococcus faecalis, a leading multi-resistant nosocomial pathogen, is also the most fre-
quently retrieved species from persistently infected dental root canals, suggesting that the oral cavity
is a possible reservoir for resistant strains. However, antimicrobial susceptibility testing (AST) for
oral enterococci remains scarce. Here, we examined the AST profiles of 37 E. faecalis strains, including
thirty-four endodontic isolates, two vanA-type vancomycin-resistant isolates, and the reference
strain ATCC-29212. Using Etest gradient strips and established EUCAST standards, we determined
minimum inhibitory concentrations (MICs) for amoxicillin, vancomycin, clindamycin, tigecycline,
linezolid, and daptomycin. Results revealed that most endodontic isolates were susceptible to amoxi-
cillin and vancomycin, with varying levels of intrinsic resistance to clindamycin. Isolates exceeding
the clindamycin MIC of the ATCC-29212 strain were further tested against last-resort antibiotics, with
7/27 exhibiting MICs matching the susceptibility breakpoint for tigecycline, and 1/27 reaching that
of linezolid. Both vanA isolates confirmed vancomycin resistance and demonstrated resistance to
tigecycline. In conclusion, while most endodontic isolates remained susceptible to first-line antibi-
otics, several displayed marked intrinsic clindamycin resistance, and MICs matched tigecycline’s
breakpoint. The discovery of tigecycline resistance in vanA isolates highlights the propensity of
clinical clone clusters to acquire multidrug resistance. Our results emphasize the importance of
implementing AST strategies in dental practices for continued resistance surveillance.

Keywords: Enterococcus faecalis; antimicrobial susceptibility testing; antibiotic resistance; endodontic
infections; vancomycin-resistant enterococci; tigecycline-resistant VRE

1. Introduction

Enterococcus faecalis is a Gram-positive facultatively anaerobic coccus that naturally
inhabits the gastrointestinal tracts of humans, dogs, cats, poultry, and a variety of insects,
and can thrive in environments tainted by human and animal fecal matter [1]. The species is
sturdy, metabolically versatile, and has evolved to sustain harsh conditions, including high
salt concentrations, varying temperatures (from 10 to >45 ◦C), and high pH or oxidative
stresses [2–5]. Moreover, E. faecalis is inherently resistant to several antibiotics such as
clindamycin, metronidazole, or aminoglycosides [6]. Such resilience endows E. faecalis
with a remarkable opportunistic pathogenic potential; the genus represents the third most
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frequently identified pathogen in healthcare-associated infections and is the second leading
cause of septicemia in intensive care units [7,8].

Apart from its involvement in nosocomial infections, E. faecalis is also found in the
oral microbiome. However, because it is often reported in low abundances in community
profiling studies [9,10], its ecological role and potential pathogenicity remain incompletely
understood. Various reports suggest the species to be allochthonous to the oral micro-
biome, possibly foodborne via dairy consumption [11–13]. Conversely, other reports have
consistently associated E. faecalis with oral diseases, especially endodontic infections, sug-
gesting a causal contribution of the species [14]. Indeed, whereas endodontic infections
are polymicrobial in nature, E. faecalis is one of the most frequently detected species in
dental root canals with post-treatment apical periodontitis [15–17]. Notably, several mi-
crobial profiling studies have reported remarkably high relative abundances of E. faecalis
in these infected canals, possibly constituting anywhere from 14% to 99% of the infecting
communities [18–20].

The occurrence of E. faecalis within infected roots appears significantly associated with
the presence of periapical lesions, thereby increasing the odds of local and systemic infec-
tious exacerbations of these teeth [21,22]. Whereas such infections are likely to require local
and/or systemic antimicrobial therapy, only limited data on antimicrobial susceptibility
testing (AST) are available for enterococcal endodontic isolates, even when considering
commonly employed antibiotics in dental medicine [23–26]. The paucity of AST data is
even more pronounced for more recent antibiotics, such as tigecycline, linezolid, or dapto-
mycin. Gathering such data is of increasing relevance due to the rise in E. faecalis isolates
exhibiting resistance against these last-resort antibiotics [27,28]. Box 1 presents several
key concepts that are integral to understanding antimicrobial susceptibility testing out-
comes. Additionally, the prominent presence of E. faecalis within root canals also prompts
the question of the oral cavity potentially serving as a reservoir for resistant E. faecalis
isolates [22,29]. Given E. faecalis’ unique ability to acquire and disseminate determinants
of antibiotic resistance [30], the presence of resistant isolates in polymicrobial ecosystems,
such as the oral cavity, could contribute to enriching the pool of latent antibiotic resistance
genes present within the oral microbiome [31].

Therefore, in this report, we aimed to screen the antibiotic susceptibility profiles of
various endodontic E. faecalis isolates. More specifically, we employed Etest strips to deter-
mine the minimum inhibitory concentration (MIC) values of six antibiotics. These included
commonly used antibiotics in dental medicine, such as amoxicillin and clindamycin, as
well as antibiotics whose resistance acquisition is linked with increased morbidity and
mortality, namely vancomycin, tigecycline, linezolid, and daptomycin.

Box 1. Key concepts to understand antimicrobial susceptibility testing (AST).

The minimum inhibitory concentration (MIC) represents the lowest concentration of an an-
tibiotic necessary to inhibit the growth of a specific microorganism [32]. By determining a MIC
value, microbiologists assess the potency of an antibiotic against a particular bacterial taxon, which
is paramount to devising effective antimicrobial therapies [33].

The epidemiological cut-off (ECOFF) is an essential parameter used in AST. A MIC distribution
is initially acquired from several isolates of the same bacterial taxon exposed to one particular
antibiotic. A typical distribution plots increasing concentrations of that antibiotic on the x-axis
against the number of tested isolates on the y-axis. The ECOFF then designates the upper limit of
this MIC distribution. ECOFF determination assumes that no acquired or mutational resistance
mechanisms are present. Essentially, the ECOFF value determines the threshold between wild type
susceptible strains and those with acquired resistance [34]. ECOFFs are statistically determined
from collated data derived from thousands of AST distributions [35]. The European Committee
on Antimicrobial Susceptibility Testing (EUCAST) mostly relies on statistical programs—such as
ECOFFinder—to determine an ECOFF value [36]. The use of ECOFFs is crucial for monitoring the
development of new resistances and setting clinical breakpoints [37].
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Box 1. Cont.

A breakpoint is a set MIC value that categorizes bacterial isolates into three categories: “S—
susceptible”, “I—Susceptible, yet increased exposure required”, and “R—resistant” [38]. If the
MIC for a bacterial isolate is lower than the breakpoint, the taxon is considered susceptible to the
antibiotic, which is, therefore, likely to be used effectively. If the MIC is higher, the bacterium is
deemed resistant. Breakpoints are determined by expert committees, such as the EUCAST, that
comprehensively integrate multiple datasets, including pharmacokinetics and pharmacodynamics,
clinical efficacy, toxicity and dosages, MIC distributions, and the prevalence of resistance mech-
anisms [39]. Breakpoints are regularly reviewed and updated to provide critical guidance for
therapeutic decisions.

2. Results
2.1. AST Outcomes for Amoxicillin, Vancomycin, and Clindamycin

Figure 1 presents MIC values for three antibiotics—amoxicillin, vancomycin, and
clindamycin—tested on thirty-seven E. faecalis strains. In the case of amoxicillin (Figure 1A
and Supplementary Table S1), the reference strain ATCC 29212 and the two vanA isolates
(labeled A1 and A2) exhibited susceptible MIC values ranging between 0.75 and 1 µg/mL,
i.e., below the 4 µg/mL breakpoint. Similarly, all 34 endodontic isolates demonstrated MIC
values falling within the susceptibility range. The observed MIC values spanned a modest
range, with a minimum of 0.5 µg/mL and a maximum of 2 µg/mL.

For vancomycin (Figure 1B), the ATCC 29212 strain displayed a MIC value predictably
within the ECOFF range of the species (3 µg/mL), while the two resistant vanA isolates
largely exceeded the susceptibility breakpoint of 4 µg/mL, each displaying a MIC of
256 µg/mL. Similar to the reference ATCC 29212, the majority of endodontic isolates exhib-
ited values within the ECOFF range, but UmID23 and UmID56 reached the susceptibility
breakpoint and were categorized as “I—Susceptible, Increased exposure”.
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Figure 1. AST values of thirty-seven E. faecalis strains for three frequently prescribed antibiotics. 
Histograms show the MIC values expressed in µg/mL (y-axis) in each strain of E. faecalis tested (x-
axis). Amoxicillin is shown in (A), vancomycin is shown in (B), and clindamycin is shown in (C). 
MICs for vancomycin and clindamycin are displayed on a split y-axis that covers values from 0 to 4 
µg/mL on its lower segment and from 150 to 256 µg/mL on its upper segment. For each antibiotic, 
the dotted line represents the MIC susceptibility breakpoint (S≤; R>). No MIC susceptibility break-
point is provided for clindamycin because E. faecalis is considered intrinsically resistant to lincosa-
mides. *: MIC susceptibility breakpoint values were extracted from the EUCAST table v_13.1 
(https://www.eucast.org/clinical_breakpoints) (URL accessed on Nov. 30 2023). Above bars: R 
marks resistant MICs and I indicates MICs that reach the clinical breakpoint that could be consid-
ered “I—Susceptible, Increased exposure”. 

2.2. AST Outcomes in E. faecalis Isolates with High Clindamycin Intrinsic Resistance 
Figure 2 displays the AST outcomes for tigecycline, linezolid, and daptomycin. In the 

case of tigecycline, whose breakpoint for E. faecalis is 0.25 µg/mL, the reference strain 
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Figure 1. AST values of thirty-seven E. faecalis strains for three frequently prescribed antibiotics.
Histograms show the MIC values expressed in µg/mL (y-axis) in each strain of E. faecalis tested
(x-axis). Amoxicillin is shown in (A), vancomycin is shown in (B), and clindamycin is shown
in (C). MICs for vancomycin and clindamycin are displayed on a split y-axis that covers values
from 0 to 4 µg/mL on its lower segment and from 150 to 256 µg/mL on its upper segment. For
each antibiotic, the dotted line represents the MIC susceptibility breakpoint (S≤; R>). No MIC
susceptibility breakpoint is provided for clindamycin because E. faecalis is considered intrinsically
resistant to lincosamides. *: MIC susceptibility breakpoint values were extracted from the EUCAST
table v_13.1 (https://www.eucast.org/clinical_breakpoints) (URL accessed on 30 November 2023).
Above bars: R marks resistant MICs and I indicates MICs that reach the clinical breakpoint that could
be considered “I—Susceptible, Increased exposure”.

Because clindamycin ranks among the most frequently prescribed antibiotics for
odontogenic infections, we deemed valuable to assess AST outcomes in our E. faecalis
collection, despite its intrinsic resistance. The reference ATCC 29212 strain displayed a MIC
of 6 µg/mL (Figure 1C). Nine endodontic isolates exhibited MIC values below the ATCC
29212 reference. Among these, two isolates—UmID37 and UmID55—exhibited MICs of 2
and 1.5 µg/mL, respectively, indicative of low-level intrinsic resistance. Conversely, the
remaining 27 isolates—which included the two vanA carriers—exhibited high-level intrinsic
resistance, with MICs ranging from 8 to a substantial 256 µg/mL. Because clindamycin
resistance in E. faecalis may encompass various distinct mechanisms, some of which could
potentially bestow cross-resistance to critical last-resort antibiotics, such as linezolid [40–42],
we conducted additional AST assays on these 27 isolates that exhibited high-level intrinsic
resistance. These 27 isolates were subjected to AST assessments using tigecycline, linezolid,
and daptomycin, all of which are considered last-resort antibiotics for treating enterococcal
infections [28].

2.2. AST Outcomes in E. faecalis Isolates with High Clindamycin Intrinsic Resistance

Figure 2 displays the AST outcomes for tigecycline, linezolid, and daptomycin. In the
case of tigecycline, whose breakpoint for E. faecalis is 0.25 µg/mL, the reference strain ATCC
29212 exhibited a susceptible MIC value at 0.19 µg/mL. Similarly, most endodontic isolates
(20/27) demonstrated susceptibility to tigecycline, with MIC values substantially below the
susceptibility breakpoint (0.25 µg/mL) (Figure 2A). In contrast, seven endodontic isolates
showed MIC values borderline with the susceptibility breakpoint, and were, therefore,
categorized as “I—Susceptible, Increased exposure”. Most notably, the two vanA carrier
isolates displayed MIC values of 0.38 µg/mL, i.e., above the MIC breakpoint, thereby
demonstrating tigecycline resistance.

https://www.eucast.org/clinical_breakpoints
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 Figure 2. Tigecycline, linezolid, and daptomycin AST values for E. faecalis strains with high
intrinsic resistance to clindamycin. Histograms show the MIC values expressed in µg/mL (y-axis)
of each strain of E. faecalis tested (x-axis). Tigecycline is shown (A), linezolid is shown in (B), and
daptomycin is shown in (C). For each antibiotic, the dotted line represents the MIC susceptibility
breakpoint (S≤; R>). The E. faecalis’ ECOFF is provided for daptomycin instead of a MIC breakpoint.
This is because the EUCAST Steering Committee currently considers that there is insufficient evidence
to determine a breakpoint for daptomycin [43]. *: MIC susceptibility breakpoint values were extracted
from the EUCAST table v_13.1 (https://www.eucast.org/clinical_breakpoints) (URL accessed on 30
November 2023). #: The daptomycin ECOFF value was extracted from (https://www.eucast.org/
mic_and_zone_distributions_and_ecoffs/new_and_revised_ecoffs) (URL accessed on 30 November
2023). Above bars: R marks resistant MICs and I indicates MICs that reach the clinical breakpoint
that could be considered “I—Susceptible, Increased exposure”.

https://www.eucast.org/clinical_breakpoints
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In the case of linezolid, the reference strain ATCC 29212 exhibited a MIC of 2 µg/mL,
i.e., below the 4 µg/mL breakpoint. Nearly all endodontic isolates displayed similarly
susceptible MIC values, showing closely comparable MICs with minor variation between
different isolates; the lowest MIC observed was 1.5 µg/mL, while the highest reached
3 µg/mL (Figure 2B). Only one endodontic isolate—UmID51—demonstrated a MIC value
that matched the susceptibility breakpoint (4 µg/mL), leading to its classification as “I—
Susceptible, Increased exposure”.

For daptomycin, the reference strain ATCC 29212, along with the two vanA carriers
and all endodontic isolates, demonstrated MIC values that fell within the typical epidemio-
logical range for the species (Figure 2C) and below the 4 µg/mL breakpoint. We note that
the EUCAST Steering Committee has acknowledged the absence of sufficient evidence to
clearly define a susceptibility breakpoint for this antibiotic. Therefore, we displayed the
ECOFF value as a provisional reference point for our observations.

3. Discussion

This study assessed the AST outcomes of a collection of endodontic E. faecalis isolates
to three first-line antibiotics—amoxicillin, vancomycin, and clindamycin—and extended
this assessment in highly resistant clindamycin isolates to three last-resort antibiotics—
tigecycline, linezolid, and daptomycin. Our results demonstrate that most E. faecalis
endodontic isolates are susceptible to amoxicillin and vancomycin but demonstrated varied
levels of resistance to clindamycin. Among those isolates that showed high clindamycin
resistance, several displayed borderline MIC values to the susceptibility breakpoints for
tigecycline and linezolid. Notably, the two vanA carrier isolates phenotypically confirmed
high-level vancomycin resistance and demonstrated tigecycline resistance. The mode of
action of all antibiotics investigated herein against E. faecalis is didactically depicted in
Figure 3.
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Figure 3. Mode of action of the antibiotics assessed against E. faecalis. The scheme illustrates the
distinct antibacterial mechanisms of the antibiotics assessed in this study. Antibiotics are didactically
divided into those that inhibit the synthesis of the peptidoglycan layers (in orange on the left), those
that affect the fluidity and function of the cell membrane (in pale pink on the bottom), and those that
inhibit ribosomal assembly and elongation of the peptide chain (in yellow on the right). Amoxicillin
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exerts its antimicrobial effect by binding to and inhibiting PBP4, whose role is to polymerize (transg-
lycosylation) and cross-link (transpeptidation) glycan strands between them to produce a functional
peptidoglycan wall [44]. Vancomycin elicits its effect by binding to D-ala-D-ala terminal moieties
of the UDP-MurNac pentapeptide, thereby inhibiting its transpeptidation within the peptidoglycan
polymer [27]. Daptomycin is a cyclic lipopeptide that partitions into the cytoplasmic membrane at
specific sites enriched with phosphatidyl and diphosphatidyl glycerols, resulting in alterations to the
membrane fluidity and disruptions of anchorage sites for membrane-bound enzymes and cytoplasmic
leakage [27,45,46]. Tigecycline binds reversibly to the H34 helical region of the 30S ribosomal subunit
and inhibits the incorporation of amino acid residues into the peptide chain [47]. Linezolid binds to
the 23S ribosomal RNA of the 50S subunit and prevents the formation of a functional 70S initiation
complex, thereby inhibiting mRNA translation [48]. Clindamycin binds to the 23S portion of the 50S
ribosomal subunit and prevents the elongation of the polypeptide chain, thereby hindering protein
synthesis [41]. D-ala: D-alanine; UDP-MurNac: uridine diphosphate N-acetylmuramic acid; PBP4:
penicillin-binding protein 4. This figure was designed using BioRender.com’s web interface.

The importance of AST screening in endodontic isolates of E. faecalis is manifold. As a
member of the microbiota found in recalcitrant endodontic infections, the species may be
responsible for infectious exacerbations that invade the neighboring tissues [49]. Whereas
the endodontic debridement of such infections is fundamental, successful management
frequently incorporates systemic antibiotherapy [50]. Indeed, exacerbated endodontic
infections constitute one main cause of dental emergencies [51], pose a risk of expansion to
adjacent facial spaces [50], and account for nearly 7000 hospitalizations annually in the US
alone [52]. Beyond its role in endodontic infections, monitoring the AST profiles of oral E.
faecalis may help understand the transmission of resistant isolates. Evidence shows that
the oral cavity is likely the primary entry point for acquiring resistant E. faecalis strains,
which may subsequently establish themselves in the gut microbiota [30,53]. This dynamic
holds significant implications, as these “gut” isolates were identified as the main culprits
for bacteremias and endocarditis via translocation to the bloodstream or urinary tracts
and catheter infections through fecal contamination [30]. Altogether, these observations
exemplify how the oral cavity may serve as a dissemination route for resistant taxa and
highlight the importance of AST monitoring of oral species [29,31].

Amoxicillin is frequently the first choice for treating bacterial infections in the oral
cavity due to its broad spectrum activity against typical oral pathogens and its favorable
pharmacokinetics [54,55]. The most frequent resistance mechanism in E. faecalis involves
mutations that simultaneously alter PBP4′s affinity for amoxicillin and overexpress the
modified enzyme [56,57]. In this study, our AST outcomes showed that all tested strains
were susceptible to amoxicillin and displayed minimal variations between them. Our obser-
vations align with previous studies that report a majority of E. faecalis isolates worldwide to
be susceptible to β-lactams, such as ampicillin and amoxicillin [23–26,58,59]. One plausible
explanation for such broad susceptibility may be that the induction of resistance imposes a
fitness cost deemed “too-high-to-bear”. This is supported by evidence that shows mutated
PBP4 variants to be less stable than their native counterparts [60].

Our vancomycin AST outcomes revealed that most strains, including the reference
ATCC 29212, fell within the ECOFF range of the species. We confirmed, nonetheless,
phenotypical vancomycin resistance in the two vanA isolates. This observation is consistent
with previous findings by our group, which highlighted both the presence and functional
transcription of vanA operons in these strains [61]. VanA-mediated vancomycin resistance
relies on the substitution of D-ala terminal moieties in the UDP-MurNac pentapeptide
with D-lactate, which exhibit up to 1000-fold less affinity to vancomycin. Notably, within
the endodontic collection examined in this study, two endodontic isolates—UmID23 and
UmID56—displayed MIC values that matched the EUCAST susceptibility breakpoint.
This suggests that effective inactivation of these strains may necessitate elevated clinical
concentrations of vancomycin, although strict resistance could not be identified.
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In this study, our E. faecalis collection was also subjected to AST for clindamycin.
Despite the intrinsic resistance of E. faecalis to lincosamides, we deemed these AST assess-
ments to be valuable since clindamycin ranks as the second most prescribed antibiotic
in dental medicine, often preferred in cases of hypersensitivity to penicillins [55]. This
means that clindamycin is often employed to treat polymicrobial oral infections, possi-
bly leading to the suboptimal exposure of E. faecalis cells, which would then be prone to
overtake the infected site. In the present study, the reference strain ATCC 29212 yielded a
MIC of 6 µg/mL, which may be didactically viewed as a “benchmark intrinsic resistance”.
Nine endodontic isolates of our collection exhibited MIC values below that “benchmark”,
among which UmID37 and UmID55 displayed remarkably low-level intrinsic resistance,
with MICs of 2 and 1.5 µg/mL, respectively, approaching those of taxonomically related,
clindamycin-susceptible taxa. For context, the EUCAST reports MIC susceptibility break-
points of 0.25 µg/mL for Staphylococcus aureus and 0.5 µg/mL for streptococci A, B, C, and
G. In contrast, 25 of our isolates displayed MICs above the ATCC 29212 “benchmark”,
ranging from 8 to over 256 µg/mL. Such a broad spectrum of AST outcomes is consis-
tent with previously reported phenotypical variations in clindamycin resistance [24,25,62].
Indeed, whereas clindamycin resistance in E. faecalis is predominantly attributed to the
lsa gene, which encodes an ABC efflux pump on the core genome, evidence has shown
variability in pump activity, and in rare cases, even a lack of functionality [24]. Worth noting
is that although clindamycin resistance in E. faecalis could also result from the transferable
cfr gene (chloramphenicol–florfenicol resistance), which methylates the 23S rRNA, this
would confer cross-resistance to linezolid [40,42]. As all isolates in our collection were
linezolid-susceptible, our findings suggest an absence of a functional cfr gene, although
this was not genetically validated in the current study.

Our AST assessments also included tigecycline, a last-resort glycylcycline that dis-
plays a 20-fold higher affinity for the 30S ribosomal subunit than tetracycline [40,63].
Initial surveillance post-tigecycline introduction indicated an absence of resistance in E. fae-
calis [64]. In the current study, most of our endodontic isolates demonstrated susceptibility
to tigecycline. However, our AST outcomes also revealed that the two vanA carrier isolates
displayed resistant MICs of 0.38 µg/mL, surpassing the established 0.25 µg/mL EUCAST
breakpoint. Although tigecycline resistance is infrequent, with a prevalence of 0.3–0.4% of
E. faecalis isolates, our findings are noteworthy as they add up to a gradually rising trend
of resistance [28,65,66]. Alarmingly, tigecycline resistance seems to preferentially emerge
in vanA carrier isolates, which inherently resist teicoplanin [67]. Our findings align with
another report that identified an outbreak of tigecycline resistance in a hospital-derived
clonal cluster of vanA isolates [68]. Taken together, these results add to the growing body
of evidence suggesting an association between the vanA operon and resistance to multiple
antibiotics, underscoring the challenge of managing infections with multi-resistant strains.
It is relevant to mention that the exact mechanism driving tigecycline resistance in E. faecalis
remains only partially resolved. Current understanding points toward the up-regulation
of the TetL efflux pump and the TetM ribosomal protection protein. Moreover, muta-
tions in the rpsJ gene, which encodes a ribosomal structural protein, have been observed
post-tigecycline exposure [68,69].

It is worth mentioning that whereas our endodontic E. faecalis collection is descriptive
of the circulating isolates prevailing at the time of their collection (2000–2014), there is
evidence showing the evolution of AST profiles and the acquisition of new resistance
genes over time [70]. Although this may be perceived as a limitation of the study, it is
worth emphasizing that this 15-year timeframe is likely stretched enough to capture a
representative landscape of the resistances prevalent in E. faecalis endodontic isolates at that
time. This is supported by comparisons with analogous studies of the same period, which
reveal notable similarities between our AST profiles and those of other oral isolates from
Brazil, Finland, Lithuania, and the Netherlands. Specifically, when comparing identical
antibiotics across studies, one observes consistent susceptibility to amoxicillin and a similar
distribution of the lsa gene, conferring clindamycin resistance [23–26,62]. This knowledge
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enables the future targeted exploration of clinically relevant genes to better understand
their dissemination pathways and decipher the molecular mechanisms driving resistance,
particularly when these remain elusive, such as for tigecycline. Finally, depositing AST
profiles spanning 2000-14 remains crucial to allow comparisons with more contemporary
isolates, offering valuable insights into the dynamics of resistance dissemination among
clinical clusters and across various geographical localizations [71,72].

Culture-based AST, as employed in this study, remains a mainstay in clinical microbi-
ology due to its proven efficacy for phenotypic characterization, established standards, and
relative ease of use. Yet, it carries inherent limitations that are exposed in several clinical
situations, some of which are especially relevant to our study and the oral ecosystem. No-
tably, phenotypic approaches do not inform on potentially carried resistance genes that are
not expressed. Typically, certain vanA carrier enterococci were shown to exhibit phenotypic
susceptibility to vancomycin while retaining the ability to revert to a vancomycin-resistance
phenotype, designated as vancomycin-variable enterococci—VVE [73]. Also, outcomes of
phenotypic AST are highly dependent on specific growth requirements and are, therefore,
likely to miss not readily culturable taxa in a sample, such as commonly found in the oral
microbiome or polymicrobial infections. Finally, because culture-based methods require
the growth of bacteria, they may sometimes extend beyond 72 h. Such a time-consuming
approach may cause serious setbacks when rapid guidance for antibiotherapy is required.

To conclude, our findings demonstrate that while the majority of our endodontic
collection remained susceptible to first-line antibiotics, such as amoxicillin and vancomycin,
several isolates exhibited marked intrinsic resistance to clindamycin and MIC values
that matched the breakpoints of last-resort antibiotics, such as tigecycline. The emerging
tigecycline resistance in vanA isolates emphasizes the association between the presence
of vanA operons and the acquisition of other resistance genes. Collectively, these results
underline the importance of continued resistance surveillance. They also highlight the
value of implementing rapid and accurate AST strategies in dental clinical settings. Doing
so may not only enhance patient care but also help monitor the transmission of antibiotic
resistance genes in hospital settings.

4. Materials and Methods
4.1. Bacterial Strains and Isolates

In this study, a total of 37 strains of E. faecalis were included. The strain ATCC 29212
served as the reference strain, and two vanA-type vancomycin-resistant clinical isolates (la-
beled A1 and A2) were used as comparison strains. The vancomycin-resistant isolates were
obtained from the Laboratory of Clinical Bacteriology at Karolinska Hospital in Huddinge,
Stockholm, Sweden. Additionally, we investigated the antibiotic susceptibility of 34 en-
dodontic isolates obtained from infected dental root canals. These endodontic isolates were
acquired between the years 2000 and 2014 by the Laboratory of Clinical Oral Microbiology
of the Department of Odontology, Umeå University, Sweden. These isolates were collected,
de-identified, and detached from any clinical metadata with the aim of constituting the
clinical isolate library of the Department. The absence of metadata and anonymization of
the collection process prevent the isolates from being traced back to individual patients.
These isolates are employed for educational and research purposes only.

Isolates were selected following previously described procedures [5]. Briefly, endodontic
samples were collected from post-treatment infected dental root canals, where an endodontic
retreatment was indicated. Endodontic samples were plated onto bile/esculin/sodium azide
agar plates specifically formulated for the isolation of group D streptococci. Esculetin-
positive colonies (black colonies ensuing from esculin hydrolysis) underwent gram stain-
ing and microscopic examination. From these, only Gram-positive diplococci were fur-
ther subjected to biochemical assays. Specifically, E. faecalis cells were selected based
on their pyroglutamyl aminopeptidase (PYR) and leucine aminopeptidase (LAP) activi-
ties using methy-lumbelliferyl-associated substrates. PYR/LAP-positive isolates, which
were taxonomically classified as E. faecalis, were further validated using species-specific
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quantitative PCR with the primers F: 5′- CCGAGTGCTTGCACTCAATTGG-3′ and R: 5′-
CTCTTATGCCATGCGGCATAAAC-3′, which amplify a 138 bp amplicon on the 16S rRNA
gene [74]. The isolates were stored in 20% skimmed milk at −80 ◦C.

For the current investigations, all E. faecalis strains and isolates were routinely cul-
tured onto Müller–Hinton fastidious (MH-F) agar plates containing 5% defibrinated horse
blood and 20 mg/L β-nicotinamide adenine dinucleotide (β-NAD) (Karolinska University
Laboratory, Huddinge, Stockholm, Sweden) at 35 ◦C. MH-F agars supplemented with
vancomycin (6 µg/mL) were used to maintain the two vancomycin-resistant isolates A1
and A2.

4.2. In Vitro Antimicrobial Susceptibility Testing

E. faecalis cells were inoculated from frozen stocks onto MH-F agar plates and incubated
overnight at 35 ◦C. Inocula were prepared by picking colonies from overnight agar cultures
and suspending them in 1 mL of phosphate-buffered saline (PBS). For standardization and
culture quality purposes, only agars that were 2 to 4 passages old were used to generate
the inocula to be tested. Several morphologically similar colonies were collected to avoid
atypical variants. The bacterial density of the suspension was spectrophotometrically
adjusted to OD600 nm 0.2 (equivalent 0.5 McFarland, approx. 1.5 × 108 CFU/mL) (UV-1800
spectrophotometer, Shimadzu, Kyoto, Japan) and homogenously plated onto MH-F agars
using sterile cotton swabs.

The minimum inhibitory concentration (MIC) of several antibiotics was screened
using Etest gradient strips (bioMérieux Sweden AB, Askim, Sweden). Antibiotic molecules
included amoxicillin, clindamycin, vancomycin, tigecycline, linezolid, and daptomycin.
The Etest strips were applied immediately after inoculation on MH-F agars, and the plates
were incubated at 35 ◦C for 20 h (with a 24 h incubation specifically for vancomycin strips
to detect resistance in inducible vanA carrier strains). Results were interpreted using the
publicly available breakpoint tables on EUCAST website (www.eucast.org) (URL accessed
on 30 November 2023). Specifically, E. faecalis isolates were categorized as “S—Susceptible”
when their MIC was within the range of the EUCAST’s ECOFF. Isolates were categorized as
“I—Susceptible, Increased exposure” when their MIC was equal to the EUCAST breakpoint,
which would translate into a high likelihood of therapeutic success if the concentration of
the antibiotic was adjusted. Finally, isolates were categorized as “R—Resistant” when their
MIC was higher than the EUCAST breakpoint.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/antibiotics13010018/s1, Table S1: MIC values of six antibi-
otics against various E. faecalis isolates.
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