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Abstract: Enterobacteriaceae bacteremia, particularly when associated with antimicrobial resistance,
can result in increased mortality, emphasizing the need for timely effective therapy. Clinical risk
prediction models are promising tools, stratifying patients based on their risk of resistance due
to ESBL and carbapenemase-producing Enterobacteriaceae in bloodstream infections (BSIs) and,
thereby, improving therapeutic decisions. This systematic review and meta-analysis synthesized
the literature on the performance of these models. Searches of PubMed and EMBASE led to the
identification of 10 relevant studies with 6106 unique patient encounters. Nine studies concerned
ESBL prediction, and one focused on the prediction of carbapenemases. For the two ESBL model
derivation studies, the discrimination performance showed sensitivities of 53–85% and specificities
of 93–95%. Among the four ESBL model derivation and validation studies, the sensitivities were
43–88%, and the specificities were 77–99%. The sensitivity and specificity for the subsequent external
validation studies were 7–37% and 88–96%, respectively. For the three external validation studies,
only two models were evaluated across multiple studies, with a pooled AUROC of 65–71%, with
one study omitting the sensitivity/specificity. Only two studies measured clinical utility through
hypothetical therapy assessments. Given the limited evidence on their interventional application, it
would be beneficial to further assess these or future models, to better understand their clinical utility
and ensure their safe and impactful implementation.

Keywords: Enterobacteriaceae bacteremia; antimicrobial resistance; ESBL production; carbapenemase
production; risk prediction scoring systems; clinical utility of predictive models; antimicrobial stewardship

1. Introduction

More than 2.8 million antibiotic-resistant infections occur in the United States each
year, and more than 35,000 people die as a result [1,2]. Resistant pathogens of major global
health concern on the CDC’s urgent and serious threat lists include carbapenem-resistant
Enterobacteriaceae (CRE) and extended-spectrum-beta-lactamase-producing Enterobacteri-
aceae (ESBL-E) [1]. The use of broad-spectrum antibiotics has resulted in the development
of resistance in many bacterial pathogens [3]. Thus, the use of broad-spectrum agents,
such as carbapenems, is often avoided when possible [4]. This conundrum of ineffective
antimicrobial medications and resistant microorganisms places a burden on patients and
healthcare providers [5]. Identifying the risk factors for resistant Gram-negative infections
is imperative in guiding appropriate treatment interventions and reducing the utilization of
broad-spectrum antibiotics [6]. Moreover, employing these initiatives to accurately predict
antimicrobial resistance and assign targeted effective treatment is crucial to the recovery of
patients with resistant Gram-negative bloodstream infections (GN-BSIs) [7].

Currently, published models exist that assess clinical risk factors for predicting whether
a patient has a resistant Gram-negative bloodstream infection [8]. These models often
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assess factors such as hospitalization, previous colonization, previous antibiotic therapy,
age, catheter use, indwelling hardware, surgery, etc. [6]. The application of prediction
models can support antimicrobial stewardship efforts by aiding the selection of appropriate
treatments and reducing the selection pressure from antibiotics that leads to resistant
pathogens [6]. The prediction of resistance in these organisms can be enhanced through
evaluation of the performance of published prediction models. This could enhance the
understanding of the clinical performance of these models, and their utility in healthcare
institutions for effective clinical decision-making. A review of the risk factors and scoring
systems used to predict ESBL-E and CRE infections was recently published [8]. However,
systematic evaluations and the potential pooled performance of such tools are lacking.

Given the increasing threat from antibiotic-resistant infections, and the gaps in the
literature regarding the prediction of ESBL-E and CRE bloodstream infections, this diag-
nostic model systematic review aims to evaluate the performance of the available models
in the literature. This could inform healthcare institutions’ decision-making processes
via evaluation of the integration of such models into their clinical procedures to reduce
healthcare costs and improve patient outcomes. Moreover, this study could facilitate the
adoption of high-performing models to further enhance effective clinical decision-making
and antimicrobial stewardship efforts. This diagnostic model systematic review aims to
synthesize the available literature to evaluate the performance and discriminatory capa-
bilities of the published models used in predicting ESBL and carbapenemase-producing
Enterobacteriaceae bloodstream infections.

2. Results
2.1. Study Selection

The literature search resulted in 2279 studies that met our keyword query (Figure 1).
After the removal of duplicates, we searched 1811 studies, and this resulted in five studies
identified for inclusion. Searching the bibliographies of the included studies identified an
additional four studies for inclusion. One additional study was included from a conference
proceeding. In total, data were extracted from 10 studies for analysis, with 6106 unique
patient encounters [9–18].
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2.2. Study and Model Characteristics

The characteristics of the studies included can be found in Table 1. The studies were
primarily conducted in the United States (70%). Nearly all the studies had a retrospective
cohort design (80%), with two retrospective case–control designs, and no prospective
studies. The sample sizes varied, ranging from 145 to 1288 patients. The majority of studies
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(90%) were ESBL models with a resistance incidence ranging from 5.7% to 33.3%, and
a median of 12.7%. A single study was of a CRE model, and did not report resistance
incidence, as it was a case–control study. Among the 10 studies, 19 analyses of models were
evaluated, with four (21.1%) being derivation-based, five (26.3%) being derivation- and
internal-validation-based, and ten (52.6%) being external-validation-based.

Table 1. Study characteristics.

First Author,
Year Country Design Model Type Sample Size Resistance

Type
Resistance
Incidence

Andrews 2023 [9] USA Retrospective
cohort

External validation of
Lee 2017 and
Augustine 2017

356 ESBL 11.5%

Augustine 2017 [10] USA Retrospective
cohort

Derivation and
internal validation 910 ESBL 4.6%

Cwengros 2020 [11] USA Retrospective
cohort

External validation of
Lee 2017 and
Augustine 2017

451 ESBL 16%

Goodman 2016 [12] USA Retrospective
cohort

Derivation and
internal validation 1288 ESBL 15%

Goodman 2019 [13] USA Retrospective
cohort

Derivation and
internal validation 1288 ESBL 15%

Holmgren 2020 [14] Sweden Retrospective
cohort Derivation 625 ESBL 9%

Lee 2017 [15] Taiwan Retrospective
cohort Derivation 1141 ESBL 5.7%

Madrid-Morales
2021 [16] USA Retrospective

cohort

External validation of
Augustine, 2017;
Goodman, 2016 and 2019;
and Tumbarello, 2011

145 ESBL 13.8%

Tumbarello 2011 [17] Italy Retrospective
case–control

Derivation and
external validation 339; 510 ESBL 33.3%; 20%

Weston 2020 [18] USA Retrospective
case–control

Derivation and
internal validation 341 CRE NA

The demographic details across the studies were heterogeneously reported. Patients
predominantly had a median or mean age in the mid-60s, with the female representation
ranging from 45.4% to 56.9% (Supplementary Table S1). The racial and ethnic distributions
demonstrated substantial diversity, with African American individuals constituting up to
72.5% of patients in some cohorts, while, in others, White individuals comprised up to
47.2%, though the majority of the studies did not report race or ethnicity. Diabetes was
consistently highlighted as a significant comorbidity, with prevalence rates as high as 40.1%.
Other notable comorbidities included congestive heart failure (up to 50.2%) and end-stage
renal disease (23.9%). The source of infection was consistently highest for urinary tract
infections, ranging from 31.7% to 58.6%. Although the organisms evaluated varied across
studies, E. coli was the dominant causative organism, observed in proportions ranging
from 56% to 77.2%, followed by K. pneumoniae, with figures fluctuating between 13.5% and
40%, except for the single carbapenem-resistance-prediction study, which focused solely on
K. pneumoniae.

Though the models displayed variations in the risk factors for resistance, certain
factors consistently emerged across studies (Table 2). Regarding demographics, age was
a predictor in two studies. Hospitalization or admission histories were also common
predictors, including prior hospitalizations, recent emergency department visits, and
having received care in high-burden regions or abroad. A variety of medical histories were
frequently used as predictors, including ESBL-E infection or colonization, in addition to
comorbidities or medical exposures, such as COPD, emphysema, ventilator dependence,
and urological diseases, and the presence of chronic indwelling hardware. Procedures or
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interventions were predictors in two studies, and included invasive procedures and GI/GU
procedures. Medication-use history was a consistent predictor with antibiotic exposure,
both in terms of the duration (days or weeks), and with specific mentions of antibiotic
classes, such as β-lactams and fluoroquinolones.

Table 2. Model characteristics.

Study Demographics Hospitalization/
Admission History Medical History Procedure/

Intervention History
Medication Use
History Other

Augustine 2017 [10] - - ESBL-E infection or
colonization GI/GU procedure Number of prior

BL/FQ courses -

Goodman 2016 [12] Age, ≥43 years
Hospitalization in
ESBL high-burden
region

ESBL-E infection or
colonization, chronic
indwelling vascular
hardware

- Days of antibiotic
exposure

Goodman 2019 [13] -

Hospital care
abroad,
prior
hospitalization

COPD, emphysema,
ventilator dependence,
indwelling hardware,
MDRO colonization or
infection

- Weeks of antibiotic
exposure

Source of
infection

Hömgren 2019 [14] - Hospital care
abroad

ESBL-E infection or
colonization - - -

Lee 2017 [15] -
Prior
hospitalization,
recent ED visits

Urological diseases,
diabetes mellitus Invasive procedure Antibiotic exposure Nursing home

residents

Tumbarello 2011 [17] Age, ≥70 years

Recent
hospitalization,
admission from
healthcare

Charlson comorbidity
index, urinary
catheterization

-

Previous therapy
with β-lactams
and/or
fluoroquinolones

-

Weston 2020 [18] - Admitted >3 days
Prior CRE culture, liver
disease, mechanical
ventilation

-
Proton pump
inhibitor, antibiotic
exposure

Admission
from SNF, no
prior culture

NOTE. BL: β-lactams; COPD: chronic obstructive pulmonary disease; CRE: carbapenem-resistant Enterobacte-
riaceae; ED: emergency department; ESBL-E: extended-spectrum β-lactamase–producing Enterobacteriaceae;
FQ: fluoroquinolones; GI: gastrointestinal; GU: genitourinary; MDRO: multidrug-resistant organisms; SNF: skilled
nursing facility.

2.3. Results of Model Performance in Individual and Pooled Studies

Where reported, the discrimination performance based on the sensitivity and speci-
ficity of derivation, internal validation, and external validation studies for ESBL models can
be found in Figure 2. The derivation performance ranged in sensitivity from 53 to 85%, and
in specificity from 93 to 95%, with medians of 55% and 94%, respectively. The derivation
and internal validation performance ranged from 43 to 88% for sensitivity and 77 to 99% for
specificity, with medians of 43% and 90%, respectively. With the exception a single study
that performed derivation and an external validation (Tumbarello; external validation
sensitivity 73%, and specificity 95%), subsequent studies performing external validations
had a performance that ranged from 7 to 37% for sensitivity, and from 88 to 96% for
specificity, with medians of 32% and 90%, respectively. One external validation study
did not report the sensitivity and specificity performances, but did report the AUROCs
for the Augustine, Goodman 2016, Goodman 2019, and Tumbarello models, which were
0.71 (95% CI 0.65–0.78), 0.59 (95% CI 0.52–0.66), 0.74 (95% CI 0.67–0.81), and 0.76 (95% CI
0.69–0.82), respectively. Two models were externally evaluated in more than one study, and
had a pooled discrimination performance, with AUROCs of 0.71 (95% CI 0.66 to 0.75) and
0.65 (95% CI 0.56 to 0.73) (Figure 3). Only three studies reported calibration evaluations, all
reporting an adequate fit either from calibration plots, Hosmer–Lemeshow testing, or both.
No studies published their model equations.
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2.4. Clinical Utility

Only two studies (20%) evaluated the potential therapy impacts of model use. In
Cwengros et al., using the Lee model, 10% were overtreated with ceftriaxone-susceptible
isolates, and 69% were undertreated for resistant ones. Using a severity-of-illness-stratified
Augustine model, Cwengros et al. reflected 12% overtreated, and 63% undertreated. Fi-
nally, using the Augustine model without severity-of-illness stratification, Cwengros et al.
showed results of 11% overtreated and 71% undertreated. Similarly, Andrews et al. ob-
served that 6% of patients with susceptible isolates were overtreated via the Lee model,
and that 93% of resistant isolates were undertreated. Using the Augustine model with-
out severity-of-illness stratification, Andrews et al. noted results of 4% overtreated and
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68% undertreated. Both the study by Cwengros and that by Andrews et al. evaluated the
total carbapenem consumption per 1000 patient days, with similar results.

3. Discussion

Due to the increasing burden of antimicrobial resistant infections, tools are needed to
improve appropriate antimicrobial use, and achieve the antimicrobial stewardship goals
of providing the right drug to the right patient at the right time. In our systematic review
of the literature, we found 10 studies with 19 analyses of various models for ESBL and
carbapenem resistance among Enterobacteriaceae bloodstream infections. While ESBL
derivation studies noted a moderate performance, with the median sensitivity and speci-
ficity of 55% and 94%, subsequent studies with external validations reflected a lower
median sensitivity and specificity of 32% and 90%, respectively. Two ESBL models with
multiple external validations showed a pooled performance with AUROCs of 65% and 71%.
Clinical utility evaluations were limited to two studies that reflected a low overtreatment
in ceftriaxone-susceptible isolates with the use of models, but a substantial (>60%) under-
treatment in ceftriaxone-resistant ones. Given these findings, while some models may limit
overtreatment, there is still a critical need to refine and improve current models, to ad-
dress the substantial risk of undertreatment, ensuring optimal patient care, and advancing
antimicrobial stewardship goals.

Endorsed by Infectious Diseases Society of America guidelines, the local validation of
risk prediction models, and thorough reporting, are paramount to understanding their per-
formance and potential clinical utility [19]. In our review, less than half of the studies were
external validations. Notably, where these validations were performed, they demonstrated
an inferior performance compared to the original studies—a decrease which is often seen
when models undergo external validation [20].

Our understanding of a model’s generalizability and reproducibility is facilitated by
external validation [21]. Specifically, this process can clarify the model’s discrimination (the
ability to correctly classify patients into risk groups) and calibration (the alignment between
the observed vs. predicted risks across predicted risk ranges) [22]. A significant limitation
we observed was that none of the derivation models disclosed their equations, impeding
their use for external calibration assessments by frontline clinicians. These studies opted to
transform the equations into risk scores for easier external application. Yet, this omission
also prohibits the often necessary re-calibration of the risk model’s intercept for differences
in baseline risk, particularly when considering the observed heterogeneity in ESBL rates.
Given such variations in baseline risk and predictor performance, the external application
of models will generally require a model rebuild, rather than reliance on risk scores.

Only three of the studies we analyzed reported calibration performance evaluations, a
key metric that is crucial to understanding how prediction models perform across diverse
risk levels. The nuances of the demographics and health backgrounds in these studies
present a significant variable. For instance, despite differing demographics, such as the
elderly veteran population, in the Madrid-Morales study, its discrimination performance
was unexpectedly comparable to the Cwengros study. Such similarities in discrimination,
despite potential age-related susceptibilities in predicting resistance or varying comorbidi-
ties such as COPD, suggest that, while the discrimination might align, the calibration could
vary significantly, due to differences in the distribution of predictors across studies. In
essence, two models might classify risk similarly (discrimination), but could differ in how
accurately those risk predictions match the actual outcomes (calibration) when applied to
different populations. This underlines the critical importance of calibration evaluations,
which provide insight into how well predictions align with actual outcomes across different
risk strata and varied predictor distributions. Given these observations, the comprehensive
reporting of calibration evaluations becomes paramount for ensuring the robust application
of prediction models across diverse settings and populations.

In our review, only two of the reviewed studies reported methods of sample-size
consideration for their prediction model, and these indicated a planned adherence to
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historical minimal recommendations of 10 events per variable (EPV) for modeling sample
size requirements [23]. Surprisingly, no study undertook formal sample-size calculations
for prediction modeling, and one study did not meet the minimal EPV recommendations.
Given the elements noted above regarding the overall methodological approach of current
studies, we strongly advocate for future studies to adhere to the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) Reporting
Guidelines. Additionally, it is imperative that future studies employ the available tools for
sample size evaluations, and consistently evaluate and report the calibration performance
of their models [24–26].

Clinical utility evaluations of predictive models are important in understanding the
utility of a model beyond its discrimination and calibration performance; however, few
studies in our review evaluated clinical utility [27]. As noted, in the two studies evaluating
clinical utility, only the hypothetical undertreatment, overtreatment, and carbapenem use
per 1000 patient days was evaluated. However, the collaborators of the Augustine study
recently published a separate subsequent study evaluating the implementation of their risk
prediction scoring on patient management [28]. For their implementation, they made the
prediction score and algorithm available in print, on their internal website for providers,
and through a mobile app. They noted a significant decrease in the time taken to administer
appropriate antimicrobial therapy from 78 h to 46 h after the implementation of the risk
prediction score (p = 0.04). This study offers a promising testament to the potential of locally
derived, internally validated, and clinically implemented ESBL bloodstream infection risk
scoring tools.

However, the landscape of resistance prediction is not confined to these tools alone. Of
particular note, genotypic prediction of resistance from diagnostic testing has been shown
to outperform some ESBL risk-prediction models [11]. There are myriad factors to weigh
when selecting a tool for clinical utility and local validation, as delineated elsewhere [8]. In
light of such advancements, institutions should remain adaptive, continuously evaluating
a broad spectrum of tools. These evaluations should align with their unique patient
demographics and institutional needs, and the evolving epidemiology of resistance [29,30].

An additional important consideration in our review is the inclusion of only a single
study focusing on predicting carbapenem resistance in Enterobacteriaceae bloodstream
infections. The limited representation of CRE is noteworthy for several reasons. Firstly,
CRE is an extremely clinically challenging infection to manage, associated with significant
morbidity and mortality [31]. Secondly, CRE detections in bloodstream infections are much
more infrequent in the United States, where the majority (70%) of the models included in
our systematic review were developed, possibly reflecting differences in clinical practice
and research priorities versus countries with higher detection rates. Finally, the singular
representation of CRE in our results may reflect a publication bias or a gap in the existing
research that warrants future studies. However, despite its limited representation, the
inclusion of the CRE prediction model in Enterobacteriaceae bloodstream infections serves
to highlight the current state of the literature on prediction model tools to support patient
management and antimicrobial stewardship, along with the need for additional research in
this area.

There are several limitations to our review. The selection of studies was limited to
studies evaluating risk modeling for ESBL and carbapenem resistance in Enterobacteriaceae
in the bloodstream, which may limit practical applications, as it requires a positive blood
culture and rapid organism identification method, to determine eligibility for the tool and
provide risk calculation before automated susceptibility testing, in order to appropriately
benefit from these approaches [32,33]. Models have been developed elsewhere for general
resistance to empiric therapy for both sepsis and bloodstream infections, and future diag-
nostic prediction model systematic reviews should evaluate the performance of available
models for these clinical scenarios, to inform clinical practice [34,35]. As noted previously
in the discussion, quality indicators for performance, including calibration and the clinical
utility of models, were missing from the majority of studies, limiting the interpretability of
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the performance and useability of the models [36–38]. Additionally, the external validation
studies were limited, further challenging the evaluation of model performance. Future
studies should focus on the external validation of existing models and clinical utility deter-
minations. Similarly, only 30% of the studies took place outside of the United States, which
makes the generalizability or transportability of such approaches and related performance
to non-US countries unclear [39]. Finally, our study was limited to only grey literature
(e.g., conference proceedings) for two leading infectious disease conferences, which may
have led to the omission of relevant research from other conferences, particularly outside
of infectious diseases.

4. Materials and Methods

This systematic review and meta-analysis was reported in accordance with the Trans-
parent Reporting of Multivariable Prediction Models for Individual Prognosis or Di-
agnosis: Checklist for Systematic Reviews and Meta-Analyses (TRIPOD-SRMA) (see
Supplementary Table S2) [40]. This study was not preregistered.

4.1. Study Selection

We performed a literature search using PubMed and EMBASE, using the time period
from each database’s inception to 3 September 2023, and including English-language
studies. A search strategy for keywords related to Gram-negative AMR and prediction
models was employed (Supplementary Table S3). In addition to searching these databases,
we hand-searched infectious disease major conference proceedings (ECCMID and IDWeek)
related to our topic for the last two years, covering the period of 2022–2023, to capture
early-stage data that might still be pending full publication.

The eligible studies included cohort and case–control observational studies evaluating
a population of adult patients (≥18 years old) with Enterobacterales BSI and risk prediction
models, including risk scores. Both the derivation and validation model types were eligible
for inclusion. The outcome of the risk-prediction models was AMR including ESBL and
CRE. The timing for the model included models used at the suspected onset of bloodstream
infection for both community-onset and healthcare-acquired infection. The setting of the
models was for use in hospital-admitted or emergency department patients. Studies with
multivariable models evaluating the association of predictors with AMR, but which did
not attempt to develop the model for prediction (e.g., the predictive performance of the
model was not evaluated), were excluded.

Two reviewers (M.F. and T.T.T.) independently assessed the identified records using the
eligibility criteria above. Duplicates were initially removed, before articles were reviewed.
A first-pass review of titles and abstracts was performed, with selection disagreements
resolved through consensus. A second-pass review of full-text articles was performed,
with the additional step of resolving final discordances though consensus. A bibliography
review of the included articles (i.e., snowballing) was performed to identify additional
articles for inclusion.

4.2. Data Extraction

Extracted data from the final selection of articles were included in the review into a
standardized Microsoft Excel grid, based on guidance from the CHARMS checklist [41]. The
PICO framework (population, index model, comparator model, outcome[s]) information
was extracted for each study, using a standardized form [42]. Additionally, the source of the
data, the sample size, the number of participants with AMR, the handling of missing data,
the selection of predictors, the predictive performance (the overall model fit, discrimination,
and calibration including standard errors or confidence intervals) and, where present,
measures of clinical utility (e.g., net benefit, decision curve analysis) were reviewed. No
authors were contacted for missing data.
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4.3. Statistical Analysis

The study characteristics, including the model performance, were reported with
descriptive statistics, or through figures. Meta-analysis using random effects modeling
was performed for models where a specific model had been externally validated [43]. All
the data analyses, including the meta-analyses, were performed using R version 4.0.1 and
‘metafor’ for analysis [44].

5. Conclusions

In conclusion, our review reveals that a multitude of resistance-in-Enterobacteriaceae
bloodstream prediction models exist in the literature, with a minority of studies concerning
the external validation of existing models. The models showed a moderate discrimination
performance, with a lower performance in external validations. A local external validation
of the performance of the model discrimination and calibration is needed in order to
understand the use of these models in specific settings, along with potential clinical utility
evaluations versus the baseline appropriate prescription in Enterobacteriaceae bacteremia.
Due to the scarcity of reports on the interventional use of these models, further clinical
evaluation is required, to determine their clinical utility and safety. Evaluating these
or newer models will strengthen the assessment of the efficacy of such approaches and
their impact on patient outcomes, thus informing healthcare institutions when it comes
to potentially improving therapy management, reducing healthcare costs, and enhancing
patient outcomes in Enterobacteriaceae bloodstream infections.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12091452/s1, Table S1: Patient characteristics; Table S2:
TRIPOD-SRMA Checklist for Reporting Systematic Reviews of Prediction Model Studies; Table S3:
Keyword search.
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