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Abstract: The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR)
pathogens in clinical settings and food-producing animals, posing significant challenges to clinical
management and food control. Over the past few decades, the discovery of antimicrobials has
slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne
illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of
effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment
of bacterial infections. The application of antibiotics combined with antibiotic potentiators has
demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the
use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of
MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential
adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary
of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial
activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review
provides insights into current challenges and potential strategies for future advancements in fighting
antibiotic resistance.

Keywords: multidrug efflux pump; antibiotic resistance; efflux pump inhibitor; biofilm formation;
combination therapy

1. Introduction

Since the first discovery of penicillin in 1928, antibiotics have revolutionized modern
medicine for treating bacterial infections in food-producing animals and humans. However,
the overuse and misuse of antibiotics have led to the development of antibiotic resistance
in bacteria, resulting in serious public health problems [1]. The rapid emergence and
dissemination of antibiotic resistance have limited chemotherapeutic options. Furthermore,
the infections caused by multidrug-resistant (MDR) bacteria have increased the risk of
treatment failure due to the lack of effective antibiotics. The antibiotic resistance mecha-
nisms in bacteria include the production of antibiotic-hydrolyzing enzymes, activation of
efflux pumps, modification in targeting sites, reduction in membrane permeability, and
development of alternative metabolic bypass [2]. Among these, the activation of efflux
pumps is one of the major acquired antibiotic resistance mechanisms that can lead to the
development of MDR pathogens [3]. Efflux pumps are bacterial membrane transporters
that facilitate the active translocation of substrates such as antibiotics, dyes, metabolites,
quorum-sensing signals, and virulence factors [4]. Commonly, MDR bacteria possess
multiple efflux pumps to expel antimicrobial agents.

Efflux pumps are capable of recognizing and delivering specific substrates with high
affinity, which can be called substrate specificity [5]. This property enables bacteria to
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utilize their efflux pumps, which can recognize and expel antimicrobial agents, to reduce
the intracellular concentration of drugs and develop antimicrobial resistance. For example,
Staphylococcus aureus can utilize the MepA efflux pump to extrude chlorhexidine, cetrimide,
and dequalinium [6]. Salmonella enteritica can expel norfloxacin, doxorubicin, and acriflavine
by the use of the MdtK efflux pump [7]. Current studies show that many factors can
activate the efflux pumps and facilitate the development of MDR pathogens, such as
environmental signals, regulatory proteins, and multiple efflux-pump-associated gene
mutations. In terms of environmental signals, lincomycin and boric acid have been found
to induce the activation of efflux pumps and promote transiently reduced susceptibility
to antibiotics in Stenotrophomonas maltophilia [8]. The involvement of regulatory proteins,
including RamA, SoxS, and RobA, has also been proven to influence the activation of the
efflux pump in Enterobacter cloacae [9]. Furthermore, the MDR phenotype observed in
Pseudomonas aeruginosa was attributed to the simultaneous overexpression of the efflux-
pump-associated genes, mexA and mexXY [10]. Overall, bacteria can employ multiple
mechanisms to activate the efflux pumps, thereby augmenting their resistance to various
antimicrobial agents. Therefore, there is a strong relation between the activation of efflux
pumps and the formation of MDR pathogens. It may provide a useful therapeutic approach
to overcome antimicrobial resistance by impeding or bypassing the efflux pumps in the
course of their duty.

Alternative methods to bypass the efflux pumps have been used to control MDR
bacterial infections, including antibiotic cycling and antibiotic combinations [11]. Antibiotic
cycling is used to reduce antibiotic resistance and preserve antibiotic activity through se-
quential treatments [12]. However, antibiotic cycling cannot eradicate the MDR pathogens
through the periodic replacement of antibiotics because of the repeated selection pressure
on bacteria and the development of antibiotic resistance [13]. Antibiotic combinations
have also been utilized to overcome antibiotic resistance by combining two or more dif-
ferent classes of antibiotics. Pathogens are required to acquire more than two subsequent
mutations to develop resistance, which can lead to increased fitness costs and decreased
survival rates of MDR bacteria. Nevertheless, mixed antibiotics may exhibit complicated
interactions between antibiotics and unmatched pharmacokinetics, ultimately making it
difficult to predict synergistic antimicrobial effects [14]. Efflux pump inhibitors (EPIs) can
interact with antibiotics and inhibit efflux pumps that maintain a high concentration of an-
tibiotics in bacteria. Specifically, EPIs can disrupt the function of efflux pumps, suppressing
the extrusion of antibiotics and leading to enhanced susceptibility of bacteria to various
antibiotics. Thus, the application of EPIs can be a promising approach to control MDR
bacterial infections.

Currently, EPIs are increasingly used in laboratories to assess compatibility in clinical
applications and understand their mechanism of action. EPIs disrupt the function of
efflux pumps through one or multiple mechanisms. These mechanisms primarily involve
obstructing the energy supply to efflux pump systems, preventing substrates from binding
to active sites of efflux pumps, and downregulating the gene expression of efflux pumps [15].
For example, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) has the ability to disrupt
the proton motive force (PMF) and consequently inhibit the activity of efflux pumps [16].
Moreover, phenylalanyl arginyl β-naphthylamide (PAβN) can function as a competitive
inhibitor of substrate binding, which can impede antibiotic efflux in MDR bacteria [17].
However, the nephrotoxicity of PAβN and the oxidative stress caused by CCCP seem to be
excessively toxic in clinical practice [18,19]. In recent years, numerous natural compounds
have been reported to possess efflux pump inhibitory with less toxicity. Therefore, it may
be applicable to explore natural compounds for the discovery of potential EPIs. This review
discusses the newly identified synthetic and natural EPIs and highlights the possibility of
using EPIs to effectively control MDR pathogens.
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2. Classification of Efflux Pumps and Their Roles in Antibiotic Resistance

Based on the substrate properties, coupling energy, and transporter structures, efflux
pumps have been classified into six families, namely the adenosine–triphosphate (ATP)-
binding cassette superfamily (ABC), the major facilitator superfamily (MFS), the multidrug
and toxic compound extrusion family (MATE), the resistance–nodulation–cell division
superfamily (RND), the small multidrug resistance family (SMR), and the proteobacterial
antimicrobial compound efflux family (PACE) [20–22]. Among these efflux pumps, the ABC
family, classified as primary active transporters, facilitates the movement of antibacterial
agents across the membrane through the acquisition of energy via ATP hydrolysis [23]. In
contrast, the other five families, categorized as secondary active transporters, utilize the
energy stored in ion gradients to expel their substrates [24]. The efflux pumps have been
well developed in various Gram-positive and Gram-negative bacteria [3]. In Gram-positive
bacteria, efflux pumps exhibit as single-component transporters located at the cytoplasmic
membrane. In Gram-negative bacteria, efflux pumps are multiple-component systems,
also known as the trimer, synergistically responsible for the extrusion of antibiotics [25]
(Figure 1 and Table 1).
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Figure 1. The main efflux pump systems in pathogens, including the adenosine–triphosphate (ATP)-
binding cassette superfamily (ABC), the major facilitator superfamily (MFS), the multidrug and toxic
compound extrusion family (MATE), the resistance–nodulation–cell division superfamily (RND),
the small multidrug resistance family (SMR), and the proteobacterial antimicrobial compound ef-
flux family (PACE). The efflux pumps in Gram-negative bacteria comprise the inner membrane
transporters, the periplasmic adapter proteins, and the outer membrane channel proteins. ABC
utilizes energy derived from ATP hydrolysis. The secondary active transporters acquire the en-
ergy stored in ion gradients (H+ or Na+). ADP: adenosine diphosphate; Pi: inorganic phosphate;
EPs: efflux pumps, S: substrate.
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Table 1. Major efflux pumps and corresponding regulators in bacteria.

Efflux Pump Family Efflux Pump
Regulator Strain Substrate Reference

ABC (PATA/B) Streptococcus pneumoniae
Ciprofloxacin, levofloxacin, and

norfloxacin (hydrophilic
fluoroquinolones)

[26]

ABC (MacAB-TolC) BaeSR (−) Escherichia coli
Lipopolysaccharides,

polypeptide virulence factors,
and macrolides

[27,28]

MFS (Tet38) TetR21, MgrA (−) Staphylococcus aureus
Glycerol-3-phosphate,

fosfomycin, tetracycline, and
certain unsaturated fatty acids

[29]

MFS (NorA) NorR (+)
MgrA (−) Staphylococcus aureus

Fluoroquinolones, reserpine,
dyes, pentamidine,

phenothiazines, and omeprazole
[30]

MFS (QacA) QacR (−) Staphylococcus aureus
Bisbiguanides, quaternary

ammonium compounds (QACs),
diamides, and aromatic dyes

[31]

MFS (KpnGH) Klebsiella pneumoniae Detergents, cationic dyes, bile
salts, and antiseptic chemicals [32]

RND (AcrAB-TolC) RamA, AcrR (+)
MarR, SoxR (−) Escherichia coli

Tetracycline, levofloxacin,
chloramphenicol, norfloxacin,

bile salts, organic solvents, fatty
acids, and dyes

[33,34]

RND (MexAB-oprM) BrlR, CpxR (+)
mexR, nalD (−) Pseudomonas aeruginosa

β-lactams, chloramphenicol,
fluoroquinolones, macrolides,

novobiocin, tetracycline,
trimethoprim, detergents,
organic solvents, and dyes

[35,36]

RND (FarE) farR (−) Staphylococcus aureus Linoleic acid, fatty acid, and
rhodomyrtone [37]

RND (AdeABC) AdeRS (−) Acinetobacter baumannii
Aminoglycosides, β-lactams,

chloramphenicol, erythromycin,
tetracyclines, and EtBr

[38,39]

RND (AdeFGH) AdeL (−) Acinetobacter baumannii Clindamycin, fluoroquinolones,
and tigecycline [40]

RND (AdeIJK) AdeN (−) Acinetobacter baumannii

β-lactam, fluoroquinolones,
tetracyclines, tigecycline,
lincosamides, rifampin,

chloramphenicol,
co-trimoxazole, novobiocin, and

fusidic acid

[41]

MATE (PmpM) Pseudomonas aeruginosa

Tetraphenylphosphonium
chloride, acriflavine, EtBr,
benzalkonium chloride,
and fluoroquinolones

[42]

MATE (MepA) mepR (−) Staphylococcus aureus
Tigecycline, hydrophilic
fluoroquinolones, dyes,

and fungicides
[43]

SMR (EmrE) Escherichia coli

Benzalkonium, EtBr,
tetraphenylphosphonium,
methyl viologen, betaine,

and choline

[44]
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Table 1. Cont.

Efflux Pump Family Efflux Pump
Regulator Strain Substrate Reference

SMR (KpnEF) CpxR (+) Klebsiella pneumoniae

Erythromycin, ceftriaxone,
tetracycline, cefepime, rifampin,

SDS, EtBr, chlorhexidine,
benzalkonium chloride,

triclosan, and acriflavine

[45]

SMR (QacC) Staphylococcus aureus
Quaternary ammonium

compound, chlorhexidine,
and EtBr

[46,47]

SMR (EbrAB) Bacillus subtilis
Cationic lipophilic dyes,

including safranin O, pyronine Y,
EtBr, and acriflavine

[48]

PACE (AceI) AceR (+) Acinetobacter baumannii
Proflavine, chlorhexidine,
acriflavine, dequalinium,

and benzalkonium
[49]

ABC: adenosine–triphosphate (ATP)-binding cassette superfamily; MFS: major facilitator superfamily; MATE: mul-
tidrug and toxic compound extrusion family; RND: resistance–nodulation–cell division superfamily; SMR: small
multidrug resistance family; PACE: proteobacterial antimicrobial compound efflux family; EtBr: ethidium bromide.

The ABC superfamily is composed of three main categories: importers responsible for
transporting amino acids, metals, ions, and other substances; exporters that facilitate the
extrusion of toxins, antibiotic agents, and polysaccharides; and a final type that participates
in DNA repair or translation [50]. Many ABC efflux pumps have been described as
multidrug transporters such as MacAB-TolC in Escherichia coli, LmrA in Lactococcus lactis,
EfrAB in Enterococcus faecalis, and PATA/B in Streptococcus pneumoniae. These efflux pumps
can transport macrolides, lincosamides, hydrophilic fluoroquinolones, aminoglycosides,
chloramphenicol, and disinfectants across the membrane [51].

The MFS efflux pumps constitute the most extensive secondary transporter family, en-
compassing over 10,000 sequenced members. These efflux pumps mainly transport sugars
while some MFS transporters also participate in the efflux of drugs, thus potentiating an-
tibiotic resistance [52]. These transporters are widely expressed in various MDR pathogens,
specifically in Gram-positive bacteria. MFS efflux pumps such as NorA and Tet38 in
Staphylococcus aureus, LmrP in L. lactis, and KpnGH in Klebsiella pneumoniae have been well
characterized to mediate the resistance to fluoroquinolones, tetracyclines, streptogramins,
macrolides, lincosamides, and detergents [53].

The MATE transporters are mainly classified into three distinct types, namely NorM,
DNA damage-inducible protein F (DinF), and eukaryotic subfamilies [54]. NorM is capa-
ble of mitigating oxidative stress damage by exporting intracellular reactive oxygen [55],
while DinF can effectively reverse susceptibility to moxifloxacin, ciprofloxacin, and lev-
ofloxacin [56]. The most common MATE transporters include PmpM in P. aeruginosa, and
MepA and NorM in S. aureus [57]. Unlike other secondary active transporters, MATE efflux
pumps can utilize Na+ and H+ as the driving force to confer resistance to various substrates
such as tigecycline, hydrophilic fluoroquinolones, dyes, and fungicides [43].

The RND efflux pumps comprise inner membrane transporters, periplasmic adapter
proteins, and outer membrane channel proteins [58]. Specifically, the substrates in the
cytoplasm can be located and transported to the periplasmic space or the outer leaflet of the
cell membrane, intercepted by periplasmic adapter proteins, and ultimately expelled to the
exterior through the channel proteins [51]. RND superfamily members are the predominant
transporters in Gram-negative bacteria and exhibit a broad substrate spectrum. RND
transporters include AcrAB-TolC in E. coli, MexAB-oprM in P. aeruginosa, and AdeABC,
AdeFGH, and AdeIJK in A. baumannii [49], which are extensively involved in the extrusion
of various substances such as chloramphenicol, fluoroquinolones, novobiocin, tetracycline,
organic solvents, and dyes [33,36]. Other RND efflux pumps have also been described in
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Gram-positive bacteria such as FarE, identified in S. aureus, which confers resistance to
linoleic acid, fatty acid, and rhodomyrtone [37].

The SMR transporters are the smallest MDR efflux pumps and are mainly categorized
into two physiological subtypes: (i) guanidinium exporter involved in the allocation of
bacterial metabolites and (ii) quaternary ammonium compound representative subtype
responsible for the extrusion of toxic compounds [51]. It has been elaborated that both
subtypes work separately and do not interfere with each other [59]. Several SMR proteins
have been identified in many pathogens and can endow with resistance to a broad range of
antibiotics. For example, the most investigated EmrE pump in E. coli can confer resistance
to various quaternary cation compounds and osmoprotectants [44]. Other transporters
such as KpnEF in K. pneumoniae, QacC in S. aureus, and EbrAB in Bacillus subtilis have also
been elaborated to alleviate susceptibility to various cationic lipophilic dyes and multiple
antibiotics [45,48].

The PACE family is the recently discovered transport protein known as Acinetobacter
chlorhexidine efflux protein I (AceI) from A. baumannii [60]. This efflux pump is primar-
ily classified into two clades: the chlorhexidine-responsive clade and the chlorhexidine-
unresponsive clade [22,61]. The chlorhexidine-responsive clade can utilize the electrochem-
ical proton gradient as the primary energy source to expel substrates such as proflavine,
chlorhexidine, acriflavine, dequalinium, and benzalkonium [62]. Many other homologous
domain proteins of AceI have been unveiled in distinct pathogens including K. pneumoniae,
P. aeruginosa, Enterobacter, and Burkholderia [63]. Recently, a new PACE transporter has
also been identified as PA2889 in P. aeruginosa, which is capable of expelling chlorhexidine
through the cell membrane [64].

3. Efflux-Pump-Mediated Biofilm Formation

Biofilms are known as the stable aggregation of bacteria encapsulated in the extracellu-
lar polymeric substances (EPSs), attached to abiotic and biotic surfaces [65]. In comparison
with planktonic cells, biofilm cells can exhibit enhanced tolerance to antibiotic treatments,
which may result from the diminished permeability of antibiotics to EPS matrix, reduced
growth rate of biofilm bacteria, exchange of plasmids containing multidrug-resistant genes,
and regulation of quorum signals [66,67]. Much evidence has been presented that ef-
flux pumps are inextricably linked to dynamic biofilm formation. The suppression of
efflux pumps such as acrB, emrE, and mdtE can inhibit biofilm formation in E. coli [68].
In S. aureus, the mdeA, norB, and norC genes were overexpressed in the process of biofilm
formation [69]. Specifically, efflux pumps can mediate the mass transport of EPSs and the
signaling molecules of the quorum sensing (QS) system to directly affect biofilm formation.
In addition, efflux pumps can indirectly influence biofilm formation by regulating the
expression of biofilm-associated genes [70] (Table 2).

Table 2. Potential efflux pumps involved in biofilm formation.

Biofilm Factor Strain Efflux Pump Target Component Function Reference

EPS matrix Escherichia coli MFS (SetB) Glucose EPS matrix synthesis [71]
E. coli ABC (YhdX) L-amino acids Biofilm stability [72]
E. coli MFS (AraJ) Arabinose Bacterial aggregation [65]

QS signals Pseudomonas
aeruginosa

RND
(MexAB-OprM)

N-3-oxododecanoyl-l-
homoserine lactone Biofilm formation [73]

Staphylococcus
aureus ABC (MsrA) agrA and sarA Biofilm formation [74]

P. aeruginosa RND
(MexEF-OprN)

4-hydroxy-2-
heptylquinoline

(HHQ)

Quorum sensing
quencher [75]
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Table 2. Cont.

Biofilm Factor Strain Efflux Pump Target Component Function Reference

Biofilm-associated
genes

Listeria
monocytogenes ABC (Lm.G_1771) SrtA, Dlt, and GntR Biofilm-associated gene

suppression [76]

Enterobacteriaceae RND (AdeABC,
AdeIJK) csuA/B, csuC, and fimA

Adhesion and
colonization
interruption

[77]

Acinetobacter
baumannii RND (AdeG) abaI AHL synthesis and

transport [78]

Salmonella
typhimurium

RND
(AcrAB-TolC) curli Curli expression [21]

EPS: extracellular polymeric substance; QS: quorum sensing; AHL: N-acyl homoserine lactones; ABC: adenosine–
triphosphate (ATP)-binding cassette superfamily; MFS: major facilitator superfamily; MATE: multidrug and
toxic compound extrusion family; RND: resistance–nodulation–cell division superfamily; SMR: small multidrug
resistance family; PACE: proteobacterial antimicrobial compound efflux family.

EPSs mainly include polysaccharides, nucleic acids, lipids, and proteins, which con-
tribute to the structural integrity of biofilms, effective adhesion to surfaces, and decreased
diffusion of antimicrobials [65]. In addition, the EPS matrix plays an important role in
storing metabolic substances and providing nutrients and energy for bacterial biofilms [79].
Efflux pumps are responsible for the transport of EPSs to facilitate biofilm formation. For
instance, the upregulated MFS pump SetB in E. coli has been proven to extrude glucose to
facilitate the synthesis of the EPS matrix [71]. The ABC pump YhdX can transport L-amino
acids to the biofilm matrix, which will promote biofilm stability through electrostatic in-
teractions with other molecules [72]. It has been reported that the MFS pump AraJ is in
charge of the efflux of arabinose which can accelerate the aggregation of bacteria and the
process of biofilm formation [65].

QS is an intercellular communication mechanism that allows bacteria to recognize
the extracellular autoinducers (AIs) and regulate their gene expression in response to the
changed environmental conditions [70]. At present, QS signals are divided into three
types, namely autoinducing peptide (AIP) in Gram-positive bacteria, N-acyl homoserine
lactones (AHLs) in Gram-negative bacteria, and autoinducer-2 (AI-2) in both Gram-positive
and Gram-negative bacteria [66,80]. The participation of the QS system is crucial to the
formation and maturation of biofilm formation in various pathogens. In S. aureus, AIP
signals such as Agr are capable of regulating the dispersion of biofilm and the spread of
biofilm-related infections [81]. The bacterial twitching motility and biofilm attachment have
been reported to be influenced by AHL systems, which promote the integrity and stability
of biofilm formation [82]. Furthermore, the AI-2 signals such as QseBC can upregulate
the expression of biofilm-related genes such as bcsA, fliC, fimA, and motA to promote
biofilm formation in E. coli [83]. Efflux pumps play a crucial role in the transport of QS
signals to regulate biofilm formation. For example, MexAB-OprM, as the main efflux
pump in P. aeruginosa, can transport N-3-oxododecanoyl-l-homoserine lactone out of the
membrane and facilitate biofilm formation [73]. The downregulation of MsrA mediated
by EPIs decreased the transcription levels of QS signals such as agrA and sarA and then
inhibited the formation of biofilm [74]. Moreover, Lsr ABC transporters can deliver AI-2
signals and result in enhanced bacterial aggregation and adhesion [84]. Notably, previous
studies reported that the overexpression of efflux pumps may inhibit the growth of biofilm
in some cases. The concentration of QS signals in P. aeruginosa can be reduced by the
overexpression of MexEF-OprN, resulting in diminished quorum response and impaired
biofilm formation [75]. In Acinetobacter baumannii, the decreased formation of biofilm was
observed due to the overexpression of the AdeABC, AdeFGH, and AdeIJK transporters [77].
Hence, it may be a promising strategy to investigate the regulation of QS systems mediated
by efflux pumps and prevent the formation and diffusion of biofilm cells.

Many studies have identified the adherence-associated genes, which are closely rel-
evant to biofilm formation in distinct aspects. In S. aureus, icaABC and icaR are mainly
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involved in the synthesis of capsular polysaccharide/adhesion (PS/A) and polysaccha-
ride intercellular adhesin (PIA), which are essential to the production of biofilm [85].
In K. pneumoniae, the mrkA, mrkD, and fimH genes were observed to encode the multiple
types of fimbrial adhesion involved in biofilm formation [86]. In recent years, efflux pumps
have been demonstrated to be intimately linked to the expression of biofilm-associated
genes. In Listeria monocytogenes, a new ABC transporter encoded by the lm.G_1771 gene
can negatively regulate the genes related to biofilm formation such as cell surface anchor
proteins (SrtA), cell surface proteins (Dlt), and transcriptional regulators (GntR) [76]. The
csuA/B, csuC, and fimA genes have been recognized as the biofilm-associated genes that are
responsible for adhesion, colonization, and microcolony formation [77]. These genes were
reported to be downregulated in the mutants overexpressing the efflux genes, including
adeABC and adeIJK, resulting in diminished biofilm formation. Furthermore, it has been
documented that the consistent upregulation of adeG and abaI encoding AHL synthases
accelerated the synthesis and transport of AHLs, leading to the most extensive biofilm
induction in A. baumannii [78].

Overall, efflux pumps are closely involved in the process of biofilm formation, in-
cluding the production and transport of EPSs, the regulation and transport of QS signals,
and the regulation of biofilm-related genes. The EPSs and QS signals delivered by efflux
pumps result in the accelerated aggregation of bacteria, augmented synthesis of EPSs, and
enhanced integrity of biofilm. Moreover, the suppression of biofilm-related genes mediated
by efflux pumps influences the attachment and formation of biofilm (Figure 2). Notably,
the effects of efflux pumps on biofilm are variable depending on the different stages and
parts [87]. As an illustration, the internal biofilm cells may be inclined to overexpress the
efflux pumps associated with the extrusion of secondary metabolites, while the external
bacteria may tend to activate the transporters involved in the resistance to antimicrobial
agents. Therefore, it is crucial to thoroughly investigate the function and substrate spectrum
of efflux pumps in biofilm formation and avoid the accidental induction of biofilm resulting
from the misuse of EPIs and antimicrobial agents.
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in biofilm formation (A), efflux pumps and QS signals involved in biofilm formation (B), and efflux
pumps and biofilm-associated genes (C). AHLs, N-acyl homoserine lactones; AI-2, autoinducer-2;
AIP, autoinducing peptide.
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4. EPIs as a Promising Strategy to Combat Antimicrobial Resistance

EPIs can inhibit the function of efflux pumps through distinct mechanisms, reducing
antibiotic resistance [5]. In light of the crucial role of efflux pumps in antibiotic resistance,
the development of EPIs seems to be a promising and practical strategy for controlling
MDR bacteria. Many studies have documented that the combination of EPIs and antibiotics
effectively prevented the extrusion of antibiotics by efflux pumps and enhanced antimi-
crobial activity. For example, D13-9001 and MBX2319, as synthetic EPIs, can interact with
MexAB-OprM and AcrAB-TolC, resulting in the increased accumulation of antibiotics in
pathogens [88,89]. In addition, EPIs are able to eliminate the biofilm formation mediated
by efflux pumps and decrease the antibiotic tolerance of biofilms. The addition of PAβN
or thioridazine distinctly decreased biofilm formation by up to 80% [90]. However, the
application of EPIs to prevent antibiotic resistance is still at an initial stage, which requires
further study to identify successful EPIs for clinical utilization and animal-producing
food products.

5. Sustainability Criteria for EPIs

The EPI-associated compounds have been discovered to effectively inhibit efflux
pumps in bacteria. Major criteria should be met for these compounds that can be considered
excellent EPIs, including (1) broad-spectrum activity of EPIs against various efflux pumps,
(2) no side effects and bioavailability for clinical use, (3) specific EPIs against efflux pump
activity, (4) non-substrates to the binding sites of efflux pumps, and (5) prevention of
antibiotic resistance development (Figure 3).
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Many traditional EPIs have been extensively investigated to suppress antimicrobial
resistance and restore antibiotic activity against pathogens. MBX2319 is a synthetic pyra-
zolopyridine capable of decreasing by 8-fold the MIC of ciprofloxacin, levofloxacin, and
piperacillin against E. coli [89]. Similarly, it has been reported that piperine can restore the
susceptibility of S. aureus to ciprofloxacin and lead to a 4-fold reduction in MIC [91]. Many
compounds such as flavonoids and phenothiazines exhibited inhibitory effects on efflux
pumps and antimicrobial activity [92–94]. However, the antimicrobial activity of EPIs is
associated with the development of resistance. Therefore, EPIs with non-antimicrobial
activity may show a long drug lifecycle in utilization. For instance, the 1,8-naphthyridines
involved in the inhibition of efflux pumps have no antibacterial activity, resulting in a de-
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crease in developing resistance to EPIs in bacteria [95]. Despite many compounds capable
of enhancing antibiotic activity, it is still crucial to confirm the compounds mainly targeting
the efflux pumps rather than other side mechanisms. PAβN is a broad-spectrum EPI that
can induce an 8-fold decrease in the MIC of levofloxacin against P. aeruginosa, while a
64-fold reduction in MIC can be observed in P. aeruginosa overexpressing MexAB-OprM
transporters [17]. It has been documented that NSC 60339 potentiated novobiocin and
erythromycin in E. coli, but exhibited no effect on these antibiotics in E. coli lacking efflux
pumps [96]. In contrast, three compounds, NSC56410, NSC 260594, and NSC 26980, can
intensify antibiotics without the suppression of efflux transporters. The efflux-independent
manners may imply the presence of other mechanisms that potentiate antibiotic activ-
ity against bacteria, while different mechanisms may exhibit latent off-target effects and
induce cytotoxicity.

The current EPIs can be primarily classified into two types, including competitive sub-
strate inhibitors and non-competitive substrate inhibitors. A study reported that geraniol
can competitively bind to the AcrAB-TolC efflux pump and restore antibiotic susceptibility
against A. baumannii, E. coli, E. aerogenes, and P. aeruginosa [97]. As a protoberberine alka-
loid, columbamine has been demonstrated to interfere with ATP synthesis and impact the
formation of proton electrochemical gradients, thereby impairing the transport of efflux
pumps [98]. In general, competitive EPIs are substrates for the target transporters, which
can induce the overexpression of efflux pumps and ultimately cause loss of inhibitory ac-
tivity. Gram-negative bacteria are surrounded by the outer membrane which can function
as a selective permeation barrier and protect bacteria from antimicrobial agents such as
vancomycin, geranylamine, and MBX-4191 [30,99]. Antibiotic resistance in Gram-negative
bacteria can be reversed by the EPIs which are capable of overcoming the outer membrane
barrier. Previous studies have demonstrated that PAβN and polyamino-isoprene deriva-
tives permeabilized bacterial membranes and inhibited the efflux pump, thus augmenting
the accumulation of antibiotics in pathogens [100,101]. Nevertheless, some EPIs enter
the outer membrane by impairing rather than penetrating the outer membrane proteins,
resulting in the over-augmented permeability of the membrane. The increased permeability
of bacterial membrane can not only enable the increased influx of antibiotics but also be
sufficient to induce bacterial lysis [99], indicating the potential off-target effects and cyto-
toxicity in clinical application. Therefore, the exploration of EPIs that can penetrate rather
than impair the bacterial membrane may offer less cytotoxicity and have broad application
prospects in controlling antibiotic resistance.

6. Conventional and Synthetic EPIs

It has been documented that conventional EPIs can impede the function of efflux
pumps by various mechanisms and restore the efficacy of antimicrobial agents. Many
synthetic EPIs have been identified and extensively investigated, such as PAβN, CCCP, 1-
(1-Naphthylmethyl)-piperazine (NMP), and MBX2319 (Table 3). As a peptidomimetic com-
pound, PAβN has been demonstrated to inhibit diverse efflux transporters and augment
the efficacy of antibiotics such as macrolides, fluoroquinolones, and oxazolidinones [102].
Several mechanisms were involved in the inhibitory effects, including the competitive
inhibition of antibiotics [103,104], the downregulation of efflux-related genes [105], and
the adjustment of membrane permeability [101]. However, PAβN was associated with
cytotoxicity towards mammalian cells, which limited its potential for clinical use. CCCP
has been characterized as a broad-spectrum efflux inhibitor that suppresses the activity
of most efflux pumps by interfering with ATP synthesis and electrochemical gradients
based on PMF [106]. Previous studies reported that CCCP potentiated the antimicrobial
activity of imipenem and cefepime against clinical strains of A. baumannii [107]. Addition-
ally, CCCP can also induce metabolically inactive cells, leading to synergistic effects with
antibiotics [108]. Notably, cellular toxicity was described in many studies, which limited
the development for clinical application.



Antibiotics 2023, 12, 1417 11 of 25

Table 3. Synthetic and natural efflux pump inhibitors (EPIs).

Origin Efflux Pump Inhibitor Chemical Structure Target Strain and Effective Substrate Mechanism Reference

Synthetic EPIs PAβN
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Origin Efflux Pump Inhibitor Chemical Structure Target Strain and Effective Substrate Mechanism Reference
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proton gradients 

and interaction with 
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P. aeruginosa—imipenem 
Downregulation of 
efflux-related genes [125] 
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MRSA—norfloxacin 
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E. coli, P. aeruginosa, and K. 
pneumoniae—streptomycin, 
erythromycin, norfloxacin, 
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Interference with 
ATP synthesis and 
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[127] 

S. saprophyticus—EtBr Interference with ATP synthesis [74]

Origanum vulgare L. EO S. aureus—tetracycline Downregulation of efflux-related genes [113]

C. ambrosioides L. EO MRSA—tetracycline and
ethidium bromide

Disruption of the proton transport and
adjustment of membrane permeability [114]

Thymol and carvacrol Gram-negative bacteria—tetracycline
and benzalkonium chloride

Impairment of membrane integrity
and induction of ion leakage [115–117]

Salvia fruticosa EO S. aureus—tetracycline Downregulation of efflux-related genes [118]
Origanum Majorana L. EO S. aureus and E. coli—EtBr Not mentioned [119]

Nigella sativa EO MRSA—tetracycline, ciprofloxacin,
and EtBr Downregulation of efflux-related genes [120]

Cuminum cyminum L. EO S. aureus—EtBr Induction of conformational changes
in efflux pump structures [121]
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S. aureus—norfloxacin

Interference with proton gradients and
interaction with efflux pump proteins [122–124]

Berberine

Antibiotics 2023, 12, x FOR PEER REVIEW 13 of 25 
 

 9.  

 

S. saprophyticus—EtBr 
Interference with 

ATP synthesis [74] 

 10.  

 

B. subtilis—tetracycline 

S. aureus—norfloxacin 

Interference with 
proton gradients 

and interaction with 
efflux pump pro-

teins 

[122–124] 

 11.  

 

P. aeruginosa—imipenem 
Downregulation of 
efflux-related genes [125] 

 12.  

 

MRSA—norfloxacin 
Downregulation of 
efflux-related genes [126] 

 13.  

 

E. coli, P. aeruginosa, and K. 
pneumoniae—streptomycin, 
erythromycin, norfloxacin, 
ampicillin, ciprofloxacin, 

doxycycline, and chloram-
phenicol 

Interference with 
ATP synthesis and 

generation of proton 
electrochemical gra-

dients 

[98] 

 14.  

 

S. aureus—ciprofloxacin, 
EtBr 

Docking to the ac-
tive site 

[127] 

P. aeruginosa—imipenem Downregulation of efflux-related genes [125]

Jatrorrhizine

Antibiotics 2023, 12, x FOR PEER REVIEW 13 of 25 
 

 9.  

 

S. saprophyticus—EtBr 
Interference with 

ATP synthesis [74] 

 10.  

 

B. subtilis—tetracycline 

S. aureus—norfloxacin 

Interference with 
proton gradients 

and interaction with 
efflux pump pro-

teins 

[122–124] 

 11.  

 

P. aeruginosa—imipenem 
Downregulation of 
efflux-related genes [125] 

 12.  

 

MRSA—norfloxacin 
Downregulation of 
efflux-related genes [126] 

 13.  

 

E. coli, P. aeruginosa, and K. 
pneumoniae—streptomycin, 
erythromycin, norfloxacin, 
ampicillin, ciprofloxacin, 

doxycycline, and chloram-
phenicol 

Interference with 
ATP synthesis and 

generation of proton 
electrochemical gra-

dients 

[98] 

 14.  

 

S. aureus—ciprofloxacin, 
EtBr 

Docking to the ac-
tive site 

[127] 

MRSA—norfloxacin Downregulation of efflux-related genes [126]

Columbamine

Antibiotics 2023, 12, x FOR PEER REVIEW 13 of 25 
 

 9.  

 

S. saprophyticus—EtBr 
Interference with 

ATP synthesis [74] 

 10.  

 

B. subtilis—tetracycline 

S. aureus—norfloxacin 

Interference with 
proton gradients 

and interaction with 
efflux pump pro-

teins 

[122–124] 

 11.  

 

P. aeruginosa—imipenem 
Downregulation of 
efflux-related genes [125] 

 12.  

 

MRSA—norfloxacin 
Downregulation of 
efflux-related genes [126] 

 13.  

 

E. coli, P. aeruginosa, and K. 
pneumoniae—streptomycin, 
erythromycin, norfloxacin, 
ampicillin, ciprofloxacin, 

doxycycline, and chloram-
phenicol 

Interference with 
ATP synthesis and 

generation of proton 
electrochemical gra-

dients 

[98] 

 14.  

 

S. aureus—ciprofloxacin, 
EtBr 

Docking to the ac-
tive site 

[127] 
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As one of the main aryl piperazine compounds, NMP can effectively reverse antibiotic
resistance in E. coli and increase their susceptibility to fluoroquinolones [109]. Evidence
showed that NMP was capable of restoring the substrate activity of RND transporters
via interference with the functional assembly of efflux pumps [30,89]. Due to their sim-
ilarity to serotonin agonists, arylpiperazine compounds may be harmful to mammalian
cells. MBX2319 is a synthetic pyrazolopyridine that can augment the efficacy of various
antibiotics such as ciprofloxacin, levofloxacin, benzoxicillin, and chloramphenicol against
bacteria [136]. A study reported that MBX2319 decreased the MIC of levofloxacin by
4 times in E. coli, resulting from the competitive inhibition and blockage of access to the
substrate binding sites [110]. In addition, MBX2319 did not exhibit bactericidal activity
and only combat bacteria expressing efflux pumps. Nonetheless, the cytotoxicity to cells
observed in research made it unsuitable for EPI in the clinic [136]. Currently, the extensive
cytotoxicity of conventional EPIs impedes their clinical applications and makes them suited
for research purposes in the laboratory only. Therefore, it is urgent to explore novel and
safe EPIs from various sources in response to growing antibiotic resistance.

7. Discovery of Novel Natural EPIs

In general, most plants can generate certain beneficial molecules to protect them-
selves against invasive bacteria. These compounds mainly include flavonoids, essential
oils, and alkaloids, which have been identified as potential EPIs (Table 3). Flavonoid
compounds are derived from plant extracts and widely distributed throughout the leaves,
flowers, roots, and fruits of various plant species. These compounds are renowned for
their diverse biological properties, including anticancer, antioxidant, antimicrobial, an-
tiallergic, and anti-inflammatory activities [137–139]. According to the relevant reports,
certain flavonoid compounds have exhibited effectiveness in inhibiting efflux pump activity
and enhancing the efficacy of antibiotics. As an illustration, the isoflavone biochanin A
exhibited inhibitory activity towards the extrusion of EtBr facilitated by efflux pumps in
Mycobacterium smegmatis [140]. Similarly, silybin suppressed the expression of NorA (36%)
and qacA/B (49%) in methicillin-resistant S. aureus (MRSA), reinstating the susceptibility
of MRSA to antibiotics [111]. In addition, boeravinone B has also been demonstrated
to enhance the efficacy of ciprofloxacin on S. aureus and inhibit biofilm formation [112].
Previous studies have elucidated that related mechanisms of flavonoids are involved in the
inhibition of efflux pumps. These mechanisms mainly include gene expression regulation,
energy support impediment, and cell membrane damage induction. For instance, curcumin,
derived from the rhizome of turmeric, can effectively reverse the TetK overexpression in
E. coli and restore tetracycline activity [93]. Likewise, luteolin is capable of inhibiting MsrA
efflux pumps by simultaneously decreasing msrA gene expression and blocking energy
acquisition [54]. Baicalin derived from the roots of Scutellaria baicalensis Georgi can interfere
with ATP synthesis involved in the MsrA function and regulate the biofilm formation and
agr system [74]. In addition, owing to the lipophilic property of bacterial membranes, the
lipophilic or hydrophobic flavonoid compounds can readily invade the bacterial mem-
branes, leading to membrane damage, disruption of PMF, and the hampered activity of
efflux pumps [141,142]. Thus, flavonoid compounds may hold promise as potential EPIs
in combination with antibiotics for the treatment of bacterial infections. Additionally, it
has also been observed that many flavonoid compounds exhibit low or no toxicity when
compared to other existing EPIs [54,143].

As plant secondary metabolites, essential oils exhibit numerous pharmacological
properties, including anti-inflammatory, anti-cancer, insecticidal, and antimicrobial ef-
fects [144,145]. Recent studies have demonstrated that essential oils can inhibit efflux
pumps in MDR pathogens and potentiate antibiotic efficacy. For example, Cirino et al. [113]
reported that Origanum vulgare L. essential oil effectively inhibits TetK efflux proteins
and enhances the activity of tetracycline against S. aureus [113]. Origanum Majorana L.
essential oil can effectively inhibit the activity of efflux pumps and biofilm formation in
S. aureus and E. coli [119]. The essential oil derived from Nigella sativa can significantly
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reduce the MIC of antibiotics and inhibit the biofilm formation by S. aureus [120]. Similarly,
Cuminum cyminum L. essential oil has been demonstrated to inhibit the NorA activity, QS
system, and production of PIA involved in biofilm formation [121]. Furthermore, certain
essential oils have been shown to possess direct antibacterial properties. A study evalu-
ated 20 natural essential oils and documented their potent antibacterial activity against
Streptococcus mutans [146]. Previous studies have documented that essential oils exhibit the
capability to augment membrane permeability, disrupt cell membranes, and decrease ATP
synthesis, thereby enabling the inhibition of efflux pump function and the accumulation of
antibiotics [147,148]. Hydrophobic essential oils such as tea tree oil, thymol, and carvacrol
can impair the integrity of the cell membrane, resulting in significant ion leakage and the
suppression of efflux activity [115,116]. Mustard and oregano can disturb the equilibrium
between extracellular and intracellular ATP by disintegrating the cell membrane, ultimately
resulting in decreased ATP utilization and efflux activity [149,150]. Significantly, essential
oils possess inhibitory effects against pathogens and are less prone to developing resistance
due to their complex composition [151,152]. Nevertheless, the toxicity of essential oils is
due to the presence of various constituents. Additionally, the stability of essential oils may
be affected by environmental factors, leading to potential decomposition [153].

Alkaloids are regarded as crucial therapeutic agents for human health. They have
been discovered in diverse natural sources and offer a wide range of pharmacological bene-
fits, including the antioxidant properties of CZK and Berberine [154,155], the anticancer
effects of meleagrin and oxaline [156], and the hypolipidemic effects of jatrorrhizine and
palmatine [157,158]. Currently, several studies have explored the antimicrobial impact of
alkaloids on bacteria. As an early natural EPI, reserpine was extracted from the roots of
Rauwolfia vomitoria or Rauvolfia serpentina. Studies have shown that reserpine can target
various efflux pumps, including BmrA, NorA, TetK, and PatA/B, as well as augment antibi-
otic activity [159]. Specifically, reserpine is capable of decreasing the efflux of tetracycline
in B. subtilis through the interaction with Bmr transporters [123]. It can also interfere with
the PMF and disrupt the NorA in S. aureus, resulting in diminished antibiotic resistance to
norfloxacin [124]. Notably, the induction of neurotoxicity has been verified in reserpine,
which may be more appropriate for inhibition research instead of clinical utilization. In
addition, tomatidine has demonstrated anti-virulence properties in S. aureus and the ca-
pacity to enhance the activity of aminoglycoside antibiotics [160]. Capsaicin is capable
of suppressing the activity of the NorA pump and the invasiveness of S. aureus [127].
Plant-derived alkaloids have been found to exert inhibitory effects on bacteria through
a variety of direct and indirect mechanisms. These mechanisms include the induction
of bacterial death by causing intracellular content leakage [161], targeting protein kinase
enzymes [162], and inducing DNA damage [163]. Alkaloids have also been identified as
EPIs that regulate gene expression and maintain antibiotic concentration. As an illustration,
jatrorrhizine can effectively reduce the expression of NorA at the mRNA level and impede
the antibiotic resistance of MRSA [126]. Moreover, columbamine, a protoberberine alkaloid,
has demonstrated the capacity to interfere with ATP synthesis and impact the formation of
proton electrochemical gradients [98]. Nevertheless, there is insufficient literature available
currently on this topic, as many experiments solely describe the inhibition of efflux pumps
by alkaloids without illuminating the precise mechanisms involved.

In addition to these EPIs derived from plants, recent years have witnessed the emer-
gence of additional microbial-derived extracts that exhibit comparable inhibition of efflux
systems. For instance, venturicidin A extracted from soil Actinomycetes has been found
to impede ATP synthesis, disrupt proton gradients, and subsequently lead to the accu-
mulation of antibiotics in MRSA, P. aeruginosa, and Enterococcus [130,131]. EA-371α and
EA-371δ are the fermentation extracts generated by Streptomyces MF-EA-371-NS1. They
possess the ability to downregulate the gene expression of MexAB-OprM of P. aeruginosa
PAM1032 [132]. Similarly, microbe-derived 2-(2-Aminophenyl) indole (RP2) and ethyl
4-bromopyrrole-2-carboxylate (RP1) have been demonstrated to effectively interact with
efflux transporters and reverse the bacterial resistance to multiple antibiotics [133,134].
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These two compounds can also exhibit great post-antibiotic effects (PAEs) and minimal
cytotoxicity and side effects, showing great promise as EPIs in application [133,134]. Hence,
numerous additional origins of EPIs such as natural extracts warrant further investigation.
Regarding these novel EPIs, many advantages have been identified in utilization such as
lower cytotoxicity, enriched inhibition mechanisms, less development of EPI resistance,
and distinct inhibitory efficacy.

In summary, the non-competitive inhibitory mechanisms of EPIs can be primarily
divided into five different types: (i) blocking the synthesis and support of ATP; (ii) disrupt-
ing the ion gradients and PMF; (iii) impairing the membrane integrity; (iv) damaging the
assembly of efflux pumps; (v) suppressing the expression of efflux genes (Figure 4). As
previously mentioned, EPIs should refrain from becoming the substrates of efflux systems
owing to the further evolution of drug resistance. Except for the competitive inhibition, the
above five non-competitive inhibitory mechanisms exhibit great promise to develop into
the excellent direction of EPIs. In addition, there are still several additional aspects meriting
attention, including the appropriate pharmacokinetic profile, the lowest possible toxicity
index, relative stability in utilization, and sufficient commercial value. Therefore, despite
the achievement of massive progress in EPI research, the clinical translational research of
EPIs still requires overcoming various challenges.

Antibiotics 2023, 12, x FOR PEER REVIEW 17 of 24 
 

utilization such as lower cytotoxicity, enriched inhibition mechanisms, less development 
of EPI resistance, and distinct inhibitory efficacy. 

In summary, the non-competitive inhibitory mechanisms of EPIs can be primarily 
divided into five different types: (i) blocking the synthesis and support of ATP; (ii) dis-
rupting the ion gradients and PMF; (iii) impairing the membrane integrity; (iv) damaging 
the assembly of efflux pumps; (v) suppressing the expression of efflux genes (Figure 4). 
As previously mentioned, EPIs should refrain from becoming the substrates of efflux sys-
tems owing to the further evolution of drug resistance. Except for the competitive inhibi-
tion, the above five non-competitive inhibitory mechanisms exhibit great promise to de-
velop into the excellent direction of EPIs. In addition, there are still several additional as-
pects meriting attention, including the appropriate pharmacokinetic profile, the lowest 
possible toxicity index, relative stability in utilization, and sufficient commercial value. 
Therefore, despite the achievement of massive progress in EPI research, the clinical trans-
lational research of EPIs still requires overcoming various challenges. 

 
Figure 4. Inhibitory mechanisms of EPIs. 1: Blockage of adenosine triphosphate (ATP) synthesis to 
inhibit efflux. 2: Disruption of proton motive force (PMF) to suppress transport. 3: Increased con-
centration of intracellular antibiotics mediated by impairing the integrity of cell membrane. 4: Tar-
geting the functional assembly of efflux pumps to suppress efflux. 5: Downregulating the expression 
of efflux genes to modulate functional efflux. ΔpH: transmembranepH gradient; Δψ: electrical mem-
brane potential component. 

8. Concluding Remarks 
In conclusion, the emergence of MDR pathogens has imposed mounting challenges 

on contemporary clinical environments. Antibiotic resistance mechanisms such as efflux 
pumps pose significant obstacles to developing novel antibiotics and their alternatives. 
Fortunately, the application of EPIs in combination with antibiotics has partially reduced 
the burden of antibiotic resistance. As a crucial source of bioactive molecules, natural 
plants have great promise for the discovery and development of a variety of effective EPIs. 
These EPIs have been demonstrated to exhibit multiple mechanisms, lower cytotoxicity, 
and less off-target effects in utilization. Many studies have been conducted to evaluate the 
efficacy of natural EPIs. However, the clinical results are still insufficient and require more 
verification. Notably, it seems to be a good alternative to develop natural EPIs instead of 
designing new antibiotics, which can be more economical and time-saving at a commer-
cial level. However, it may also take a lot of sunk costs to find suitable EPIs for improving 
the clinical applicability of such EPIs. Additionally, the application of combination ther-
apy has presented new challenges in this field. It is essential to manage and design appro-
priate treatment options to control antibiotic-resistant bacteria. Present studies have re-
vealed that MDR pathogens can utilize compensatory mechanisms to counteract the inhi-
bition of antibiotic potentiators. These mechanisms in question mainly manifest as the 

Figure 4. Inhibitory mechanisms of EPIs. 1: Blockage of adenosine triphosphate (ATP) synthesis
to inhibit efflux. 2: Disruption of proton motive force (PMF) to suppress transport. 3: Increased
concentration of intracellular antibiotics mediated by impairing the integrity of cell membrane.
4: Targeting the functional assembly of efflux pumps to suppress efflux. 5: Downregulating
the expression of efflux genes to modulate functional efflux. ∆pH: transmembranepH gradient;
∆ψ: electrical membrane potential component.

8. Concluding Remarks

In conclusion, the emergence of MDR pathogens has imposed mounting challenges
on contemporary clinical environments. Antibiotic resistance mechanisms such as efflux
pumps pose significant obstacles to developing novel antibiotics and their alternatives.
Fortunately, the application of EPIs in combination with antibiotics has partially reduced
the burden of antibiotic resistance. As a crucial source of bioactive molecules, natural
plants have great promise for the discovery and development of a variety of effective EPIs.
These EPIs have been demonstrated to exhibit multiple mechanisms, lower cytotoxicity,
and less off-target effects in utilization. Many studies have been conducted to evaluate the
efficacy of natural EPIs. However, the clinical results are still insufficient and require more
verification. Notably, it seems to be a good alternative to develop natural EPIs instead of
designing new antibiotics, which can be more economical and time-saving at a commercial
level. However, it may also take a lot of sunk costs to find suitable EPIs for improving the
clinical applicability of such EPIs. Additionally, the application of combination therapy has
presented new challenges in this field. It is essential to manage and design appropriate
treatment options to control antibiotic-resistant bacteria. Present studies have revealed
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that MDR pathogens can utilize compensatory mechanisms to counteract the inhibition
of antibiotic potentiators. These mechanisms in question mainly manifest as the relatively
stable antibiotic resistance reinforced by other known or unknown efflux pumps under
combination treatments, resulting in incomplete inhibition and facilitating the emergence of
multidrug resistance in bacteria. Consequently, it is crucial to undertake a comprehensive
investigation of the structural and functional properties of EPIs for effectively controlling
MDR pathogens. Moreover, a multitude of EPIs have demonstrated inhibitory efficacy
towards antibiotic resistance of pathogens, although only one has received clinical approval.
Hence, further comprehensive and in-depth research is necessary to facilitate their clinical
transformation and utilization in the future in light of the intricate mechanisms, cytotoxi-
city, and pharmacokinetics of EPIs. The utilization of a combination therapy comprising
antibacterial agents and EPIs has the potential to extend the lifespan of current agents and
enhance their efficacy in addressing the challenges posed by the post-antibiotic era.
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