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Abstract: Background: Although ceftazidime/avibactam (CAZ/AVI) has become an important op-
tion for treating adults and children, no data or recommendations exist for neonates. We report
a neonatal sepsis case due to CAZ/AVI-resistant blaKPC-2-harboring Klebsiella pneumoniae carrying
blaVEB-25 and the use of a customized active surveillance program in conjunction with enhanced infec-
tion control measures. Methods: The index case was an extremely premature neonate hospitalized for
110 days that had been previously treated with multiple antibiotics. Customized molecular surveil-
lance was implemented at hospital level and enhanced infection control measures were taken for
early recognition and prevention of outbreak. Detection and identification of blaVEB-25 was performed
using next-generation sequencing. Results: This was the first case of a bloodstream infection caused
by KPC-producing K. pneumoniae that was resistant to CAZ/AVI without the presence of a metalo-β-
lactamase in the multiplex PCR platform in a neonate. All 36 additional patients tested (12 in the same
NICU and 24 from other hospital departments) carried wild-type blaVEB-1 but they did not harbor
blaVEB-25. Conclusion: The emergence of blaVEB-25 is signal for the horizontal transfer of plasmids at
hospital facilities and it is of greatest concern for maintaining a sharp vigilance for the surveillance of
novel resistance mechanisms. Molecular diagnostics can guide appropriate antimicrobial therapy
and the early implementation of infection control measures against antimicrobial resistance.

Keywords: multidrug resistance; Gram-negative bacteria; Enterobacterales; carbapenemases; blaVEB-25

carbapenemase; neonatal intensive care unit

1. Introduction

Antimicrobial resistance (AMR) is a public health threat facing humanity as it tests
the resilience of health systems worldwide [1,2]. Various genetic elements are associated
with the development of resistance because they manage via complex pathways to be
transmitted between bacteria [3]. In addition, other practices such as delayed and/or
incorrect diagnosis and the prescription of broad-spectrum antibiotics reinforce the problem
of AMR [4]. Advances and innovations in the whole genome sequencing method and the
bioinformatics revolution contribute to the immediate detection of the causes of resistance
and the taking of timely and effective control measures [5].

A decisive factor in the development of AMR in healthcare facilities and especially in
the intensive care units (ICU) of hospitals is the spread of multiresistant Gram-negative
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bacteria. Enterobacterales are the most important, among which Klebsiella pneumoniae is the
main representative. K. pneumoniae is the second most common Gram-negative opportunis-
tic pathogen and one of the most prevalent causes of community- and hospital-acquired
infections [6]. It is responsible for health-care-associated pneumonia [7] and bacterial
neonatal sepsis in low- and middle-income countries [8]. A serious public health threat
is the emergence and dissemination of carbapenem-resistant K. pneumoniae (CRKP) that
is associated with high morbidity and mortality, increased medical costs, and prolonged
hospital stay [9]. In addition, CRKP infections affect disability-adjusted life years (DALYs)
per 100,000 population with a median value in the European Union of 11.5 years, while
for these infections treatment options are limited [10,11]. CRKP isolates have a variety of
mechanisms, which may confer resistance to virtually all available β-lactam antibacterial
drugs, including carbapenems. The main resistance molecular mechanism is the production
of a range of carbapenemases, including KPC, NDM, VIM, and OXA-48-like carbapene-
mases [12,13]. KPC-producing CRKP strains display the most extensive global distribution
and represent a significant challenge due to their limited therapeutic options [14].

A novel β-lactam/β-lactamase inhibitor (BL/BLIs) combination is effective against
strains of non-metallo-β lactamase producing Enterobacterales (Ambler class A, class C, and
some class D β-lactamases) [15,16]. Ceftazidime/avibactam (CAZ/AVI) [17] has become
an important first-line option for treating adult and pediatric (>3 months of age) patients
with serious infections caused by carbapenem-resistant organisms, but not yet for neonates
(IDSA) [18]. It is indicated for the treatment of complicated intra-abdominal and urinary
tract infections, and infections caused by carbapenem-resistant Enterobacterales (CRE) or
carbapenem-resistant Pseudomonas aeruginosa, in patients with limited or no other treatment
options [19].

Although KPC-producing Enterobacterales strains are generally considered susceptible
to CAZ/AVI, isolates resistant to this antimicrobial agent have been documented without
the evidence of metallo-β-lactamases [20]. In 2018, a rapid risk assessment conducted by
ECDC identified CAZ/AVI resistance in CRE as a public health threat that merits careful
monitoring [21]. CAZ/AVI resistance mechanisms include the increased expression of
the blaKPC gene product (acquisition of resistance was mostly associated with isolates
harboring the substitution D179Y in blaKPC-3 or in blaKPC-2) [22,23], the presence of other
genetic determinants of resistance against ESBL-producing Enterobacterales (SHV-, CTX-M-,
or VEB-type β-lactamases) [24,25], changes in cell permeability (i.e., non-functional porins-
OmpK35, OmpK36, and OmpK37) [26], and the expression of efflux pumps [27].

VEB-type β-lactamases (Vietnamese extended-spectrum β-lactamase) are a group
of Ambler class A enzymes inhibited by avibactam. blaVEB-25 differs from blaVEB-1 by a
missense mutation (substitution of lysine with arginine at position 237 -K234R) [28], which
compromises the inhibitory efficiency of avibactam [29].

Herein, we report a successful treatment of bloodstream infection associated with
CAZ/AVI-resistant blaKPC-2-producing K. pneumoniae carrying blaVEB-25 in a preterm neonate
hospitalized in the neonatal intensive care unit (NICU) of a tertiary hospital and the use of
a customized active surveillance program in conjunction with infection control measures
for the early recognition and prevention of an outbreak.

2. Results
2.1. Index Case

The index case was the first neonate of a twin pregnancy born to a 33-year-old healthy
primigravida at gestational age of 25w+5d (birth weight = 850 gr, appropriate for a ges-
tational age neonate) due to the premature rapture of membranes and the onset of labor.
Postnatally, the patient presented respiratory distress syndrome, patent ductus arterio-
sus, severe bronchopulmonary dysplasia and need for prolonged mechanical ventilation,
posthemorrhagic ventricular dilation, gastro-oesophageal reflux disease, retinopathy of
prematurity, and episodes of late onset sepsis (LOS). The first LOS occurred on the fourth
day of life due to carbapenem-resistant Acinetobacter baumannii, which was successfully
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treated. The patient was colonized with carbapenem-resistant A. baumannii and Providencia
stuartii between Day 4 and 25, respectively. During that time, the neonate had been ex-
posed to multiple antibiotic regimens for prolonged time periods, including meropenem,
aminoglycosides, colistin, tigecycline, and CAZ/AVI due to episodes of suspected LOS and
colonization by CR Gram-negative bacteria.

At Day 108, the neonate was on nasal continuous positive airway pressure due to
chronic lung disease, and presented with fever and impaired peripheral perfusion. Empiric
antibiotic treatment with colistin (300,000 IU/kg/day every 8 h), tigecycline (2 mg/kg/day
every 12 h) and daptomycin (10 mg/kg/day once daily) was immediately initiated for
suspected sepsis and due to the previous administration of multiple antimicrobial regimens.
Blood culture was positive for a Gram-negative rod within 24 h since the onset of symptoms.
A multiplex PCR platform (Biofire® FilmArray®, Biomeriuex, Marcy-l’Étoile, France) was
used within an hour from positive blood culture. A blaKPC producing K. pneumoniae was
detected and CAZ/AVI at a reduced dose of 31 mg/kg/d every 8 h was added to the
antimicrobial regimen in attendance of the Antimicrobial Susceptibility Testing (AST).

During the first 48 h of this sepsis episode, the neonate deteriorated, requiring mechan-
ical ventilation and possessing high inflammatory indices (max CRP value of 394 mg/L)
and thrombocytopenia. At Day 110, the AST displayed a high level of resistance to al-
most all antimicrobial agents, including piperacillin/tazobactam, cefepime, cefoxitin, cef-
tazidime, ceftriaxone, imipenem, meropenem (MIC ≥ 16 mg/L), amikacin, gentamicin,
ampicillin/sulbactam, aztreonam, ciprofloxacin, levofloxacin, fosfomycin, and trimetho-
prim/sulfamethoxazole. It was also resistant to novel agents, like ceftolozane/tazobactam
and CAZ/AVI, while it was only susceptible to tigecycline and colistin. The isolate dis-
played a positive phenyl boronic acid phenotypic test and the lateral flow immunoassay,
and the PCR method confirmed that the isolate carried blaKPC.

A favorable clinical and microbiological response was documented including defer-
vescence and a decrease in CRP within 48–72 h, the first negative blood culture within
4 days, and the discontinuation of invasive mechanical ventilation within 8 days of colistin
and tigecycline initiation. The administration of both daptomycin and CAZ/AVI was
discontinued, whereas ciprofloxacin was empirically added four days after the first positive
blood culture for a total of 13 days. The neonate was successfully treated with colistin and
tigecycline for a total of 18 days.

NGS Report

A variety of genes conferring resistance to antimicrobial agents and heavy metals, as
well as genes related to virulence, capsule, and efflux, and regulator systems were detected
(Table 1). Only one serine-carbapenemase was detected, which was the blaKPC-2 gene and
belonged to ST35. Another five β-lactamases (blaSHV-33, blaTEM-1B, blaVEB-25, blaDHA-1, and
blaOXA-10) were co-detected, including the blaVEB-25. The co-production of blaKPC-2 and
blaVEB-25 in K. pneumoniae has been associated with CAZ/AVI resistance in the absence of
metallo-β-lactamase [24].

Table 1. Genetic characteristics of the neonatal blood K. pneumoniae isolate of the study via NGS.

Strain ID A1746/22

Date of isolation 25 February 2022

Biological sample Blood

MLST 35

Plasmids IncC, IncR, IncFIA(HI1), IncFIB(K),
IncFIB(pKPHS1), IncFIB(pQil), IncFII(K)
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Table 1. Cont.

Strain ID A1746/22

Antibiotic Resistance

β-lactamases SHV-33, TEM-1B, VEB-25, DHA-1, OXA-10
Carbapenemases KPC-2
Aminoglycosides ant(2′′)-Ia, aph(3′′)-Ib, aph(6)-Id, rmtB, aadA1

Quinolone qnrB4, oqxA, oqxB
Fosfomycin fosA
Sulfonamide sul1, sul2

Phenicol catA1, cmlA1
Tetracycline tet(A), tet(G)

Resistance to Heavy Metals merC, merP, merT, silR

Virulence kfuA, mrkA, mrkF, mrkH, mrkl, ybtE, ybtQ,
ybtT, ybtX

Capsule wzi

Efflux and Regulator
Systems

acrR, envR, fis, marA, marR, oqxR, rob, sdiA,
soxR, soxS, ramA, ramR, rarA

2.2. Molecular and Phenotypic Surveillance within the NICU and the Hospital

Thirteen K. pneumoniae strains were isolated from stool samples of neonates hospi-
talized in the NICU within a period of 3 months upon the recognition of the index case.
Among these isolates, only the index case was blaVEB-25 positive (Figure 1A), confirming
the NGS result. Based on the AST results, 24 additional carbapenem-resistant K. pneumoniae
strains collected from various hospital sites were also analyzed with targeted PCR; even
though they contained blaVEB-1, they did not harbor blaVEB-25 (Figure 1B).
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Figure 1. Agarose gel electrophoresis profile of the blaVEB-25 variant. Panel (A) shows the blaVEB-25

positive variant, whereas panel (B) shows the 642 bp amplified products of blaVEB-25-negative
carbapenem-resistant K. pneumoniae strains. The amplified products of 1070 bp and 642 bp were
produced using the external VEBcas-F/VEBcas-B (lane 2) and internal VEB-F/VEB-B primer pairs
(lane 3). The amplified product containing the entire gene (1070 bp) was used to deduce the nucleotide
sequence. The 100 bp DNA ladder with reference bands ranging from 100 bp to 1500 bp is indicated
in lane 1.
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Based on the AST results of the 24 carbapenem-resistant K. pneumoniae strains col-
lected from various hospital sites, half were characterized as pan-drug-resistant [PDR,
non-susceptibility to all agents in all antimicrobial categories (i.e., bacterial isolates are not
susceptible to any clinically available drug)], and the other half as extensively drug resistant
[XDR, non-susceptibility to at least one agent in all but two or fewer antimicrobial cate-
gories (i.e., bacterial isolates remain susceptible to only one or two antimicrobial categories)].
Therefore, all 24 CRKP isolates displayed high levels of resistance to almost all antimi-
crobials including imipenem (MIC ≥ 16 mg/L), meropenem (MIC ≥ 16 mg/L), amikacin
(MIC ≥ 16 mg/L), gentamicin (MIC ≥ 16 mg/L), ampicillin/sulbactam (MIC ≥ 32 mg/L),
piperacillin/tazobactam (MIC ≥ 128 mg/L), aztreonam (MIC ≥ 64 mg/L), cefepime
(MIC ≥ 64 mg/L), cefoxitin (MIC ≥ 64 mg/L), ceftazidime (MIC ≥ 64 mg/L), ceftriax-
one (MIC ≥ 64 mg/L), ciprofloxacin (MIC ≥ 4 mg/L), levofloxacin (MIC ≥ 8 mg/L),
fosfomycin (MIC ≥ 256 mg/L), and trimethoprim/sulfamethoxazole (MIC ≥ 320 mg/L).
These isolates were also analyzed with targeted PCR; even though they contained blaVEB-1,
they did not harbor blaVEB-25.

2.3. Overall Assessment

This index case was the last neonate that was infected with A. baumannii and colonized
by P. stuartii within the NICU after the implementation of enhanced infection control
measures targeting these two pathogens. Upon the recognition of the first K. pneumoniae
producing blaKPC-2 and blaVEB-25 and a combination of intensified and targeted infection
control actions in the unit, there were no other cases within the NICU for the next 6 months.

3. Discussion

We report a neonatal case of a bloodstream infection caused by a K. pneumoniae
strain co-producing blaKPC-2 and blaVEB-25 β-lactamases and emphasize the use of precise
medicine to customize infection control measures. Treatment options for infections caused
by carbapenem-resistant bacteria are extremely limited in neonates. The “off label” use of
either “last-line” antimicrobial agents (such as polymyxins and tigecycline) or the currently
available newer β-lactam/β-lactam inhibitor combinations, such as CAZ/AVI, meropenem-
vaborbactam, and imipenem-cilastatin-relebactam that are not yet licensed for neonates, for
the empirical treatment of neonatal sepsis in areas endemic for CRKP is still questionable
due to limited pharmacokinetic data and local epidemiology of resistant genes [30].

One of the mechanisms that confers resistance to CAZ/AVI is the new blaKPC variants
that are constantly appearing worldwide. Very recently, Shi et al. reported multiple novel
variants in a K. pneumoniae strain carrying blaKPC-2 from two separate patients during their
exposure to CAZ/AVI. In one patient, the blaKPC-2 mutated to blaKPC-35, blaKPC-78, and
blaKPC-33 during the same period, while in the other patient it mutated to blaKPC-79 and
blaKPC-76, thus enhancing the level of resistance [31]. ST258 K. pneumoniae is considered the
most frequent type in the majority of blaKPC-associated infections resistant to CAZ/AVI [32].

The blaKPC-2-harboring K. pneumoniae isolated in our study belonged to Sequence
Type ST35. To the best of our knowledge, this is the first report of ST35 CRKP bearing
both blaKPC-2 and blaVEB-25 that confers resistance to CAZ/AVI. Findlay et al. identified
two isolates as belonging to Sequence Types ST147 and ST258, harboring blaVEB-25 on the
plasmid, that confer resistance to CAZ/AVI [33].

To date, there are three reports of CAZ/AVI-resistant KPC-producing K. pneumoniae
emergence in Greece, all in adults (six infected and five colonized patients) [24,34,35].
Notably, the first CAZ/AVI-resistant clinical isolate was detected in Greece before the
introduction of CAZ/AVI in clinical practice. The resistance was due to the existence of
blaKPC-23 (variant differed from blaKPC-3 by one -V240A, and from blaKPC-2 by two amino
acid substitutions -V240A and H274Y) [34]. CAZ/AVI resistance due to the harboring of
blaVEB-25 has been reported in two additional cases (one isolate from blood and one from the
lower respiratory tract) from patients without prior CAZ/AVI exposure [35]. Eight more
CAZ/AVI-resistant CRKP isolates were detected in patients not previously exposed to
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CAZ/AVI (two patients with catheter-related bloodstream infections, one with ventilator-
associated pneumonia, and five with colonization); the resistance was conferred by the
harboring blaVEB-25 and blaVEB-14 [24]. After intense epidemiological and microbiological
surveillance in our NICU, as well as in pediatric and adult departments within our general
hospital (especially pediatric and adult intensive care units), we could not find the source
of this resistant organism. However, our index patient had been previously exposed to
multiple courses of antimicrobial agents, including CAZ/AVI, and also had gut colonization
with XDR Gram-negative bacteria, such as A. baumannii and P. stuartii.

This was the first premature neonate presenting with sepsis due to CAZ/AVI-resistant
blaKPC-2-harboring K. pneumoniae carrying the blaVEB-25 that was successfully treated with
non-conventional “off-label” antimicrobial agents. Currently, available diagnostic platforms
detect the presence of the most prevalent carbapenemases, such as KPC, VIM, NDM,
and OXA. Neonatologists and infectious disease specialists should be cautious when
interpreting the results from these molecular platforms for decision making in empiric
and targeted treatment for neonatal sepsis. The mechanism of resistance, especially for
the newer β-lactam/β-lactamase inhibitors, may differ in times and in different parts of
the world and even within the same institution [36]. In addition, various mechanisms
of CAZ/AVI resistance emphasize the need for the surveillance of CAZ/AVI-resistant
pathogens, as well as for its judicious use.

4. Materials and Methods
4.1. Risk Assessment and Bundle of Actions Taken after Index Case

This was the first case of a bloodstream infection caused by KPC-producing K. pneu-
moniae that was resistant to CAZ/AVI without the presence of metalo-β-lactamase in the
multiplex PCR platform in a neonate. The bundle of actions implemented is summarized
in Figure 2 and included: (1) enhanced infection control measures including strict isolation
of the case index; (2) continuation of active surveillance for CRE and tests for CAZ/AVI
susceptibility reported for all isolates recovered from surveillance; (3) application of next-
generation sequencing (NGS) and molecular testing for the index case to identify probable
mechanism(s) of CAZ/AVI resistance; (4) targeted PCR analysis in all CRE isolates from
all neonates in the ICU, independently to CAZ/AVI susceptibility; and (5) targeted PCR
analysis specifically for CAZ/AVI-R isolates from other departments of the hospital to
identify potential sources and/or burden of a potential outbreak.
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4.1.1. Infection Control Measures

The NICU was already on strict infection control measures, including the cohorting
of all neonates colonized/infected with an XDR A. baumannii strain. Upon recognition of
this index case, extra measures were taken: isolation of index case, dedicated nurse for all
shifts, universal application of contact precautions, written reports of active surveillance,
and daily audits by infection control team (with a dedicated infection control nurse and a
dedicated pediatric infectious disease specialist).

4.1.2. Active Surveillance

Already in place with twice weekly colonization cultures. Specifically, stool samples
were taken from the neonates on the NICU and cultured on MacConkey agar plates
supplemented with 1 mg/L meropenem. AST was applied to all isolates as written in
Section 4.2, including CAZ/AVI susceptibility. Active surveillance included not only gut
and pharyngeal colonization but also environmental cultures.

4.2. Microbiological Methods, Antimicrobial Susceptibility Testing, and Phenotypic Analysis

CRKP was identified with a VITEK 2 automated system (Biomeriuex, Marcy-l’Étoile,
France) using the GN ID according to the manufacturer’s instructions. The AST of K. pneu-
moniae was performed using the AST 376 and XN10 cards; the interpretation of results was
according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST)
breakpoints of January 2022. Susceptibility testing to CAZ/AVI was performed using MIC
test strips (Liofilchem srl, Roseto, Italy), while susceptibility testing to colistin was per-
formed using the broth microdilution method (Liofilchem srl, Roseto degli Abruzzi, Italy).
Tigecycline was evaluated using the susceptibility breakpoints approved by the US Food
and Drug Administration (MIC ≤ 2 mg/L for susceptibility and ≥8 mg/L for resistance).

The isolate was phenotypically tested for KPC and metallo-β-lactamase (MBL) produc-
tion using phenylboronic acid and ethylenediaminetetraacetic acid. Carbapenemase genes
blaKPC, blaNDM, blaOXA-48-like, blaIMP, and blaVIM were screened with a multiplex lateral flow
immunoassay (NG-Test CARBA 5, NG Biotech, Guipry, France). The detection limits using
purified recombinant enzymes for NDM, KPC, IMP, VIM, and OXA-48-like were 150, 600,
200, 300, and 300 pg/mL, respectively.

4.3. Next-Generation Sequencing (NGS)

DNA was extracted using the DNA extraction kit (Qiagen, Hilden, Germany). The
Qubit double-strand DNA HS assay kit (Q32851, Life Technologies Corporation, Grand
Island, NY, USA) was used for measuring the dsDNA concentration. All procedures re-
garding shearing, purification, ligation, barcoding, size selection, library amplification
and quantitation, emulsion PCR, and enrichment were conducted according to the man-
ufacturer’s guidelines. After template enrichment, sequencing was performed on an Ion
PGM™ semiconductor sequencer using a Hi-Q View Sequencing Kit and a 316 Chip V2
BC (Thermo Fisher Scientific, Waltham, MA, USA). The sequence reads were de novo
assembled and annotated using Geneious Prime version 2021.2.1. The sequence of the K.
pneumoniae NTUH-K2044 strain (Accession number NC-012731) was used as reference.

4.4. MLST and Detection of Antimicrobial Resistance Genes and Plasmids

MLST and antimicrobial resistance genes and plasmids were identified using the
online databases at the Center for Genomic Epidemiology (MLST-2.0, Resfinder 4.1 and
Plasmid finder) [37–44] and the Comprehensive Antibiotic Resistance Database (CARD)
Bait Capture Platform 1.0.0 [https://card.mcmaster.ca/ (accessed on 4 August 2023)]. Genes
related to virulence, resistance to heavy metals, efflux, regulator systems, and capsules
were detected using the Institut Pasteur website on K. pneumoniae [https://bigsdb.pasteur.
fr/klebsiella/ (accessed on 4 August 2023)].

https://card.mcmaster.ca/
https://bigsdb.pasteur.fr/klebsiella/
https://bigsdb.pasteur.fr/klebsiella/
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4.5. Targeted PCR Analysis

Molecular surveillance at the NICU and hospital level: After the recognition of the
existence of blaVEB-25 as the mechanism of CAZ/AVI resistance in KPC K. pneumoniae,
targeted PCR protocol was initiated to investigate transmission within the NICU, but
also to other carbapenem-resistant K. pneumoniae isolated from other pediatric and adult
departments in the hospital (particularly, pediatric and adult intensive care units). A total
of 37 K. pneumoniae strains were tested for the presence of blaVEB-1. Thirteen of them were
isolated from stool samples collected from neonates in the NICU where the blaVEB-25 index
case was identified, and twenty-four strains were isolated from different clinical sources
(blood, urine, tracheal aspirate, trauma, and central venous catheter) collected from several
departments of the hospital to investigate potential sites of outbreak. Plasmid DNA was
extracted using the alkaline lysis method, as described previously (H.C.Birnboim and
J.Doly NAR 7: 1513-1523, 1979). For PCR amplification, VEB-F (5′-CGA CTT CCA TTT CCC
GAT GC-3′) and VEB-B (5′-GGA CTC TGC AAC AAA TAC GC-3′) primers were used as
diagnostic primers to amplify a 642 bp internal VEB-1 DNA segment, whereas the external
primers VEBcas-F (5′-GTT AGC GGT AAT TTA ACC AGA TAG-3′) and VEBcas-B (5′-CGG
TTT GGG CTA TGG GCA G-3′) were used to amplify the entire gene for DNA sequencing.
For each PCR reaction, 50–70 ng of K. pneumoniae plasmid DNA was used in a standard
PCR reaction using Kapa Hi Fi DNA polymerase (KAPA Biosystems) with the following
amplification program: 1 cycle of 95 ◦C 3 min, 35 cycles of 20 s at 94 ◦C, 30 s at 55 ◦C,
30 s at 72 ◦C, and a final extension step of 1 min at 72 ◦C. The PCR products were Sanger
sequenced. Nucleotide sequence analysis and pairwise alignments were performed using
the National Center of Biotechnology Information website [https://www.ncbi.nlm.nih.gov
accessed on 4 August 2023)].

5. Conclusions

Applying next-generation sequencing technology is crucial for guiding the prediction
of underlying resistance mechanisms facilitating the study of the evolution and molec-
ular epidemiology of multidrug-resistant pathogens, especially in endemic areas. The
emergence of blaVEB-25 is a warning for the horizontal transfer of plasmids at hospital
facilities, and it is of greatest concern for maintaining a sharp vigilance for the surveillance
of novel resistance mechanisms. The use of molecular diagnostics may guide appropriate
antimicrobial therapy and the early implementation of strict infection control measures,
and therefore could play an important role in the fight against antimicrobial resistance.
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