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Abstract: Bacterial infections have attracted the attention of researchers in recent decades, especially
due to the special problems they have faced, such as their increasing diversity and resistance to
antibiotic treatment. The emergence and development of the SARS-CoV-2 infection stimulated
even more research to find new structures with antimicrobial and antiviral properties. Among
the heterocyclic compounds with remarkable therapeutic properties, benzimidazoles, and triazoles
stand out, possessing antimicrobial, antiviral, antitumor, anti-Alzheimer, anti-inflammatory, analgesic,
antidiabetic, or anti-ulcer activities. In addition, the literature of the last decade reports benzimidazole-
triazole hybrids with improved biological properties compared to the properties of simple mono-
heterocyclic compounds. This review aims to provide an update on the synthesis methods of
these hybrids, along with their antimicrobial and antiviral activities, as well as the structure–activity
relationship reported in the literature. It was found that the presence of certain groups grafted onto the
benzimidazole and/or triazole nuclei (-F, -Cl, -Br, -CF3, -NO2, -CN, -CHO, -OH, OCH3, COOCH3),
as well as the presence of some heterocycles (pyridine, pyrimidine, thiazole, indole, isoxazole,
thiadiazole, coumarin) increases the antimicrobial activity of benzimidazole-triazole hybrids. Also,
the presence of the oxygen or sulfur atom in the bridge connecting the benzimidazole and triazole
rings generally increases the antimicrobial activity of the hybrids. The literature mentions only
benzimidazole-1,2,3-triazole hybrids with antiviral properties. Both for antimicrobial and antiviral
hybrids, the presence of an additional triazole ring increases their biological activity, which is in
agreement with the three-dimensional binding mode of compounds. This review summarizes
the advances of benzimidazole triazole derivatives as potential antimicrobial and antiviral agents
covering articles published from 2000 to 2023.
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1. Introduction

Heterocyclic compounds have a central place in medicinal chemistry, being used as
therapeutic agents to treat most diseases [1–3]. Among these heterocycles, benzimidazole
stands out, as a purine-analog pharmacophore, with a very diverse therapeutic activity.
The very broad spectrum of biological activities it treats include antimicrobial [4–8], antivi-
ral [9,10], antihistamine [11,12], anticonvulsant [3,13], antitumor [14–16], proton pump in-
hibitors [17], antiparasitic [16,18,19], anti-inflammatory [20–22], or antihypertensive [23,24]
activities. Some benzimidazoles are efficient agents in Diabetes mellitus [25–27], while
astemizole compounds possess anti-prion activity to treat Creutzfeldt-Jakob disease [5,28].
The literature also reports anti-Alzheimer [29,30], psychoactive, anxiolytic, analgesic [31,32],
and anticoagulant properties [33,34] of benzimidazole derivatives.

Additionally, triazole compounds possess a diversity of biological activities as an-
timicrobial [35–38], antitubercular [39,40], potential inhibitors of SARS-CoV-2 [41–43],
antiviral [43,44], anti-inflammatory [45,46],antitumor [47–50], antihypertensive [50], an-
tioxidant [47,51,52], and antiepileptic [53,54]. Pharmacological applications of triazoles
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refer to their activity as α-glucosidase inhibitors [55,56], analgesics [50,57], anticonvul-
sants [53,58], and antimalarial agents [57,59]. Triazole derivatives are efficient in the treat-
ment of Alzheimer’s disease [60,61] and are very effective neuroprotective agents [62,63].

The successive events that occurred from the spring of 2020 until now, regarding the
emergence and development of the COVID-19 pandemic, have led the scientific world to
investigate more closely the possibility of treating this infectious disease with various an-
tiviral [64–66], antimicrobial [67], immunomodulatory [68] or anti-inflammatory [69] drugs,
therefore, the discovery of new molecules with simple or hybrid structures, which meet the
requirements of the treatment of this condition is absolutely necessary and constitutes the
engine for the development of new effective therapeutic agents.

Why did I choose the study of benzimidazole-triazole compounds? Classical drugs
containing benzimidazole and triazole rings recommend these heterocycles as essential in
building new target compounds with antimicrobial, antiviral, antiparasitic, etc. properties
(Figure 1). In addition, the literature mentions a series of benzimidazole-triazole hybrids
with remarkable antimicrobial properties, and antiviral activities, including new anti-SARS-
CoV-2 agents [70–74], with particular importance in the context of the recent pandemic,
which led to the study of synthesis methods, antimicrobial properties, structure–property
relationships, and their biological activities.

Antibiotics 2023, 12, x FOR PEER REVIEW 2 of 42 
 

their activity as α-glucosidase inhibitors [55,56], analgesics [50,57], anticonvulsants 

[53,58], and antimalarial agents [57,59]. Triazole derivatives are efficient in the treatment 

of Alzheimer’s disease [60,61] and are very effective neuroprotective agents [62,63]. 

The successive events that occurred from the spring of 2020 until now, regarding the 

emergence and development of the COVID-19 pandemic, have led the scientific world to 

investigate more closely the possibility of treating this infectious disease with various an-

tiviral [64–66], antimicrobial [67], immunomodulatory [68] or anti-inflammatory [69] 

drugs, therefore, the discovery of new molecules with simple or hybrid structures, which 

meet the requirements of the treatment of this condition is absolutely necessary and con-

stitutes the engine for the development of new effective therapeutic agents. 

Why did I choose the study of benzimidazole-triazole compounds? Classical drugs 

containing benzimidazole and triazole rings recommend these heterocycles as essential in 

building new target compounds with antimicrobial, antiviral, antiparasitic, etc. properties 

(Figure 1). In addition, the literature mentions a series of benzimidazole-triazole hybrids 

with remarkable antimicrobial properties, and antiviral activities, including new anti-

SARS-COV-2 agents [70–74], with particular importance in the context of the recent pan-

demic, which led to the study of synthesis methods, antimicrobial properties, structure–

property relationships, and their biological activities. 

 

Figure 1. Chemical structures of some benzimidazole, 1,2,3-triazole, and 1,2,4-triazole-based mar-

keted drugs. 

Therefore, this review aims to provide an update on the synthesis methods of the 

benzimidazole-triazole hybrids, along with their antimicrobial and antiviral activities, as 

well as the structure–activity relationship and DFT studies reported in the literature. The 

advantages of the study of benzimidazole-triazole hybrid compounds refer to a wider 

range of antimicrobial activities, compared to simple precursor heterocycles, to their bet-

ter minimum inhibitory concentrations compared to simple component heterocycles, as 

well as to the need to hire specialized personnel to carry out this research. 

N

N

NH
O

O

O H
N

N

H
N

NH
O

O Thiabendazole
(Anthelmintic)

  Benomyl
(Antifungal)

Carbendazim
 (Antifungal)

N

N

NH

O
HO

HO

OH

Cl

Cl

Maribavir
(Antiviral)

N

N

NH2

Enviradine
(Antiviral)

S
O

O

N

H
N

H
N

N

N

N    Ridinazole
(Antibacterial)

S

NS

H
N

N

N

N
H

O

H2N

OH

  Cefatrizine
 (Antibiotic)

N

S

O

H

O
HO

N

N

N

OO

 Tazobactam
  (Antibiotic)

F

N
H

N
N

HN

N

O

O

N
H

O

 Radezolid
(Antibiotic)

F

F

HO

N

N

N
N

NN

Fluconazole
 (Antifungal)

O

OH
HO

N
N

NH2N

OH

   Ribavirin
  (Antiviral)

NHN

Benzimidazole

N
N

H
N

1,2,4-Triazole

N

N

H
N

1,2,3-Triazole

Cl

Cl
O

O

N
N

N

O
N N N

N

N

O

Itraconazole
 (Antifungal)

O

N

N

Cl

N

N

CH3

    Alprazolam
(Antidepressant)

OHO

N

NH

S

N

Figure 1. Chemical structures of some benzimidazole, 1,2,3-triazole, and 1,2,4-triazole-based mar-
keted drugs.

Therefore, this review aims to provide an update on the synthesis methods of the
benzimidazole-triazole hybrids, along with their antimicrobial and antiviral activities, as
well as the structure–activity relationship and DFT studies reported in the literature. The
advantages of the study of benzimidazole-triazole hybrid compounds refer to a wider
range of antimicrobial activities, compared to simple precursor heterocycles, to their better
minimum inhibitory concentrations compared to simple component heterocycles, as well
as to the need to hire specialized personnel to carry out this research.

The main disadvantages are material because the synthesis of some hybrid compounds
requires high costs compared to simple heterocycles, as well as greater time consumption.
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Consequently, if the synthesized hybrids have increased biological properties compared
to simple precursor heterocycles, the balance clearly tilts towards the advantage of the
synthesis of hybrid compounds. However, access to hybrid compounds will not be without
both sides, advantages and disadvantages, which requires careful prospecting of all the
components involved in the production of hybrids.

As expected, the literature mentions benzimidazole-triazole hybrids with other biolog-
ical properties than those studied in this review, such as antitumor [15,48,75–92], antioxi-
dant [93–95], anti-Alzheimer [96–99], antidiabetic [100–104], and anti-inflammatory [105]
properties, which is additional proof of the therapeutic potential of these hybrids and the
need to study these hybrids on the topic proposed in the title. As expected, the study refers to
both 1,2,3-triazole-benzimidazole hybrids and 1,2,4-triazole-benzimidazole hybrids, even if it
seems that the literature is richer in the second category in terms of antimicrobial activity.

The recent literature marks several strategies for the synthesis of 1,2,3-triazoles, like
click reaction [106], Bouiton-Katritzky rearrangement [107], oxidative cyclization of hy-
drazones [108], post-cycloaddition functionalization [109], alkylation or arylation of tria-
zoles [110]. Also, for benzimidazoles, the literature mentions several methods of synthesis,
such as the reaction of o-phenylenediamine with aldehydes or ketones (Phillips-Ladenburg
reaction) [3,111–113], with acids or their derivatives (Weidenhagen reaction) [81], or green
methods of classic syntheses [111,114–117].

Why this review is necessary and what exactly it proposes I will clarify in what
follows. This article summarizes for the first time in the literature: various synthesis
methods of benzimidazole-1,2,3-triazole hybrids as well as benzimidazole-1,2,4-triazoles,
their antimicrobial and antiviral activities, as well as SAR studies and DFT performed on
the mentioned hybrids. Where necessary, for compounds with superior biological activities,
several examples from the literature were given, and the various studies performed on
them (in vitro, in vivo, in silico, etc.) were mentioned. All of these aim at directing the
syntheses of hybrid compounds with specific structures and superior antimicrobial and
antiviral properties, taking into account the mentions reported in the literature up to now.

The database search methodology used in this review was the use of keywords,
which can be found in the title, such as benzimidazole, 1,2,3-triazole, click reaction, 1,2,3-
triazole, benzimidazole-triazole hybrids, antimicrobial, antiviral, or therapeutic properties,
in different websites, such as PubMed, MDPI, Science Direct, Springer, The Royal Society
Chemistry, ACS Publications, and Taylor & Francis. The selection of scientific articles
for the last ten years was made according to the novelty brought in the benzimidazole-
triazole hybrids and their antimicrobial and antiviral properties, as well as the therapeutic
properties of the reported compounds.

Generally, articles from the last ten years have been selected. For the hybrids found,
first, the syntheses and then their biological properties were presented, with special em-
phasis on those with improved properties (active on a larger range of microbial strains,
with better minimum inhibitory concentrations, or where SAR studies were performed,
DFT, etc.). In the following, we will present syntheses of benzimidazole-triazole hybrids
with antimicrobial and antiviral properties. In order to highlight the structures of the
heterocycles in the discussed compounds, we colored the benzimidazole nucleus with red,
1,2,3-triazole with blue, and 1,2,4-triazole with green.

2. Synthesis and Antimicrobial Activities of Benzimidazole-1,2,3-Triazoles
2.1. 2-Benzimidazole-R(Ar)-1,4-Disubstituted-1,2,3-Triazole Hybrids

Two series of new hybrids, 2-[4-((1H-benzimidazol-2-ylthio)methyl)-1H-1,2,3-triazol
-1-yl]N′-(arylmethylidene)acetohydrazides (2a–2l) and 2-[4-((1H-benzimidazol-2-ylthio)
methyl)-1H-1,2,3-triazol-1-yl]N-(α-arylethylidene)acetohydrazides (3a–3f) were prepared
by Youssif et al. in two steps starting from 2-[4-((1H-benzimidazol-2-ylthio) methyl)-1H-
1,2,3-triazol-1-yl] acetohydrazide 1 (Scheme 1). Compounds 2a–2l exhibited pronounced
antibacterial activity, which ranged from 35 to 75% of that of the standard drug against
Staphylococcus aureus and 50–80% of that of Ciprofloxacin against E. Coli (MIC values of
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3.125–12.5 µmol mL−1). Compound 2k showed the highest activity against S. aureus (75%
activity, MIC = 12.5 µmol mL−1), while compound 2d was the most active derivative against
E. Coli (80% activity, MIC = 3.125 µmol mL−1). All the synthesized compounds were tested
as potential antifungal agents against Candida albicans using Fluconazole as a reference drug.
Compound 1 showed the activity of 48% of that of Fluconazole (MIC = 12.5 µmol mL−1).
Compounds 2e and 2k displayed higher antifungal activity among the other derivatives as
they showed 75% activity of that of Fluconazole (MIC = 3.125 µmol mL−1). Compounds
3a–3f exhibited moderate to good activity against E. Coli, and their activity was 50–70%
of that of Ciprofloxacin (MIC values of 6.25–12.5 µmol mL−1), and compounds 3a and 3f
were the most active compounds against E. coli as they showed 70% of that of Flucona-
zole (MIC = 6.25 µmol mL−1) while compound 3b showed the highest activity against
Staphylococcus aureus (65% of that of Ciprofloxacin, MIC = 18 µmol mL−1) [118]. Al-blewi
et al. used an azide–alkyne Huisgen cycloaddition reaction carried out by simultane-
ously mixing thiopropargylated benzimidazole 4 with the appropriate sulfa drug azides
5a–5f, copper sulfate, and sodium ascorbate in DMSO/H2O to regioselectively furnish
target mono-1,4-disubstituted-1,2,3-triazole tethered benzimidazole-sulfonamide conju-
gates 6a–6f with 85–90% yields after 6–8 h of heating at 80 ◦C (Scheme 2). All compounds
were evaluated for their antimicrobial activity (Table 1) against four pathogenic bacterial
strains (Gram-positive: Bacillus cereus ATTC 10876, Staphylococcus aureus ATTC 25,923, and
Gram-negative: Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27,853 and two
fungal strains, Candida albicans ATTC 50193, Aspergillus brasiliensis ATTC 16404). As can
be seen in Table 1, compound 6a showed the best antibacterial activity against Bacillus
cereus and Staphylococcus aureus (64 µg mL−1), and compounds 6c, 6d, and 6e showed the
best antibacterial activity against Escherichia coli (64 µg mL−1) [119]. Evaluation of in silico
physicochemical properties or ADMET (adsorption, distribution, metabolism, excretion,
and toxicity) as a robust tool to confirm the potential of a drug candidate was applied for
these compounds [120]. As per Lipinski’s rule of five, an orally administered drug should
have a log p ≤ 5, a molecular weight (MW) < 500 Daltons, and an HBD ≤ 5 [121] to be in
the acceptable range. Results have shown that all hybrids have in good agreement in terms
of HBD. Rashdan et al. synthesized hybrids 10 starting from 2-azido-1H-benzo[d]imidazole
derivatives 7a–7b, which reacted with acetylacetone in the presence of sodium ethoxide
to obtain hybrids molecules 8a–8b. The latter acted as a key molecule for the synthesis
of new carbazone derivatives 9a–9b that were submitted to react with 2-oxo-N-phenyl-2
(phenylamino)acetohydrazonoyl chloride to obtain the target hybrid derivatives 10a–10b
(Scheme 3). All compounds were screened for their in vitro antimicrobial activity against
pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus
niger, and Candida albicans. The results showed that compounds 10a and 10b had strong
activity against all the tested pathogenic microbes. Compounds 8a and 9a only showed
effects against the Gram-negative and Gram-positive bacteria and had no effect on the
tested fungi. In addition, in silico, and in vitro findings showed that compounds 10a and
10b were the most active against bacterial strains and could serve as potential antimicrobial
agents (Table 2). The hybrids 8–10 were subjected to molecular docking studies with DNA
gyrase B and exhibited binding energy that extended from -9.8 to -6.4 kcal/mol, which
confirmed their excellent potency. The compounds 10a and 10b were found to be with the
minimum binding energy (−9.8 and −9.7 kcal/mol) as compared to the standard drug
Ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B, as summarized in
Figure 2 [122].
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Antibiotics 2023, 12, x FOR PEER REVIEW 5 of 42 
 

with the minimum binding energy (−9.8 and −9.7 kcal/mol) as compared to the standard 

drug Ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B, as summa-

rized in Figure 2 [122]. 

 

Scheme 1. Synthesis of benzimidazole-1,2,3-triazole hybrids 2a-2l and 3a-3f. 

 

Scheme 2. Synthesis of benzimidazole-1,2,3-triazole hybrids 6a-6f. 

Table 1. Antimicrobial screening results of compounds 6a–6f presented as MIC (μg mL−1). 

Compound 

Gram-Positive Organ-

isms 

Gram-Negative Organ-

isms 
Fungi Organisms 

B.c. S.a. P.a. E.c. A.b. C.a. 

6a 64 64 256 128 128 128 

6b 128 128 128 128 256 256 

6c 256 128 256 64 256 156 

6d 256 128 256 64 256 256 

6e 256 128 256 64 256 256 

6f 512 512 256 256 512 512 

Ciprofloxacin 8 4 8 4 - - 

N

H
N

N3

X

Ac2O

NaOEt, EtOH
N

H
N

N

X

N
N

O

H3C
H3C

7a-7b 8a-8b
X = H, Cl

H2N
N
H

S
GH3

S

N

H
N

N

X

N
N

N

H3C
H3C

9a-9b

N S

S

CH3

Ph
N

N

H
N

Ph

O

Cl

N

H
N N

X

N
N

N

H3C

H3C

10a-10b

N

S

N
N

O

H
N

 

Scheme 3. Synthesis of benzimidazole-1,2,3-triazole hybrids 8a–8b, 9a–9b, and 10a–10b. 

  

N
H

N

S N
N

N

H
N

O

NH2

N
H

N

S N
N

N

H
N

O

N Ar

N
H

N

S N
N

N

H
N

O

N

R

ArCHO, EtOH

reflux, 4h

p-R-C6H4COCH3, EtOH
reflux, 6h 2a−2l: Ar = C6H5, p-BrC6H4, p-ClC6H4,                 

                  m-BrC6H4,     m-ClC6H4, p-FC6H4,      

                   p-HOC6H4, p-CH3C6H4,                      

                  p-CH3OC6H4, p-isopropylC6H4,           

                  p-dimethylaminoC6H4

3a−3f: R = H, Br, Cl, F, CH3, CH3O

83-93%

89-91%

1
MIC = 3.125-12.5 mol mL-1

MIC = 6.25-12.5 mol mL-1

MIC = 12.5 mol mL-1

MIC = 64 g mL-1 against E. coli

N
H

N

S N3 S

O

O

NHR
DMSO: H2O/ 1:1

CuSO4, Na ascorbate
N
H

N

S

N

N
N

S
O

O
NHR

+

4 5a-5f

6a-6f

N

N

H3C

CH3

N

N N S
N

O

N

CH3

CH3 NH

H2N

a b c d e f

MIC = 64 g mL-1 

against B. cereus 

      and S. aureus

Scheme 2. Synthesis of benzimidazole-1,2,3-triazole hybrids 6a–6f.

Table 1. Antimicrobial screening results of compounds 6a–6f presented as MIC (µg mL−1).

Compound
Gram-Positive

Organisms
Gram-Negative

Organisms Fungi Organisms

B.c. S.a. P.a. E.c. A.b. C.a.
6a 64 64 256 128 128 128
6b 128 128 128 128 256 256
6c 256 128 256 64 256 156
6d 256 128 256 64 256 256
6e 256 128 256 64 256 256
6f 512 512 256 256 512 512

Ciprofloxacin 8 4 8 4 - -

Antibiotics 2023, 12, x FOR PEER REVIEW 5 of 42 
 

with the minimum binding energy (−9.8 and −9.7 kcal/mol) as compared to the standard 

drug Ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B, as summa-

rized in Figure 2 [122]. 

 

Scheme 1. Synthesis of benzimidazole-1,2,3-triazole hybrids 2a-2l and 3a-3f. 

 

Scheme 2. Synthesis of benzimidazole-1,2,3-triazole hybrids 6a-6f. 

Table 1. Antimicrobial screening results of compounds 6a–6f presented as MIC (μg mL−1). 

Compound 

Gram-Positive Organ-

isms 

Gram-Negative Organ-

isms 
Fungi Organisms 

B.c. S.a. P.a. E.c. A.b. C.a. 

6a 64 64 256 128 128 128 

6b 128 128 128 128 256 256 

6c 256 128 256 64 256 156 

6d 256 128 256 64 256 256 

6e 256 128 256 64 256 256 

6f 512 512 256 256 512 512 

Ciprofloxacin 8 4 8 4 - - 

N

H
N

N3

X

Ac2O

NaOEt, EtOH
N

H
N

N

X

N
N

O

H3C
H3C

7a-7b 8a-8b
X = H, Cl

H2N
N
H

S
GH3

S

N

H
N

N

X

N
N

N

H3C
H3C

9a-9b

N S

S

CH3

Ph
N

N

H
N

Ph

O

Cl

N

H
N N

X

N
N

N

H3C

H3C

10a-10b

N

S

N
N

O

H
N

 

Scheme 3. Synthesis of benzimidazole-1,2,3-triazole hybrids 8a–8b, 9a–9b, and 10a–10b. 

  

N
H

N

S N
N

N

H
N

O

NH2

N
H

N

S N
N

N

H
N

O

N Ar

N
H

N

S N
N

N

H
N

O

N

R

ArCHO, EtOH

reflux, 4h

p-R-C6H4COCH3, EtOH
reflux, 6h 2a−2l: Ar = C6H5, p-BrC6H4, p-ClC6H4,                 

                  m-BrC6H4,     m-ClC6H4, p-FC6H4,      

                   p-HOC6H4, p-CH3C6H4,                      

                  p-CH3OC6H4, p-isopropylC6H4,           

                  p-dimethylaminoC6H4

3a−3f: R = H, Br, Cl, F, CH3, CH3O

83-93%

89-91%

1
MIC = 3.125-12.5 mol mL-1

MIC = 6.25-12.5 mol mL-1

MIC = 12.5 mol mL-1

MIC = 64 g mL-1 against E. coli

N
H

N

S N3 S

O

O

NHR
DMSO: H2O/ 1:1

CuSO4, Na ascorbate
N
H

N

S

N

N
N

S
O

O
NHR

+

4 5a-5f

6a-6f

N

N

H3C

CH3

N

N N S
N

O

N

CH3

CH3 NH

H2N

a b c d e f

MIC = 64 g mL-1 

against B. cereus 

      and S. aureus

Scheme 3. Synthesis of benzimidazole-1,2,3-triazole hybrids 8a–8b, 9a–9b, and 10a–10b.



Antibiotics 2023, 12, 1220 6 of 39

Table 2. In vitro antimicrobial screening of hybrids 8, 9, and 10 using the agar diffusion method.

Hybrids
Inhibition Zone Diameters Using the Agar Diffusion Method (mm)

S. aureus E. coli P. aeruginosa A. niger C. albicans

8a 15 ± 0.14 12 ± 1.08 22 ± 1.01 - -
8b - 5 ± 0.2 - 30 ± 1.16 27 ± 1.1
9a 23 ± 0.8 - 13 ± 0.65 - -
9b - - 12 ± 0.8 14 ± 0.15 19 ± 1.04
10a 24 ± 0.6 25 ± 0.9 17 ± 0.75 20 ± 0.9 16 ± 0.89
10b 29 ± 1.2 21 ± 1.14 19 ± 0.79 18 ± 0.12 14 ± 0.58

Ciprofloxacin 20 ± 0.9 23 ± 1.02 21 ± 0.9 - -
Nystatin - - - 22 ± 0.18 23 ± 1.15
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Figure 2. The molecular interactions of the best-docked compounds 10a and 10b with the target
enzyme DNA gyrase B. Left side (2D): the residues are represented in 3 letter codes. Hydrogen bonds
are represented by green and blue lines, and π-interactions are represented by orange lines. Right
side (3D): the docked compounds are represented by gray stick models, and the active site pockets
are shown by blue stick models. H-bond interactions are shown in green dashed lines. π-interactions
are shown in orange lines. Image adapted from [122].

ADMET analysis of compounds 8–10 exhibited that they have good absorption prop-
erties (%HIA) ranging from 99.57 to 100% [123]. For distribution, the compounds do
not permeate the blood–brain barrier (BBB). Moreover, the molecules were negative in
the AMES toxicity and carcinogenicity test, which suggests that they are non-mutagenic.
Compounds 11a–11g with terminal acetylene and 2-(azidomethoxy)ethyl acetate were
condensed using CuI as catalyst and triethylamine (TEA) under microwave irradiation to
achieve hybrids 1,2,3-triazole connected via benzene to the benzimidazole nucleus 12a–12g
with excellent yields (70–90%) (Scheme 2). The cleavage of the acetyl group using potassium
carbonate (K2CO3) in methanol liberated the hydroxy group of the corresponding hybrid
triazoles 13a–13g (Scheme 4). in almost quantitative yields. Compounds 13a–13g were
screened for in vitro antifungal activities against two phytopathogenic fungi, Verticillium
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dahliae Kleb and Fusarium oxysporum f. sp. albedinis. The result of the mycelia linear growth
rate indicates that some of the compounds show a weak inhibition against the two fungi,
the only compound that shows a significantly increased rate is compound 13e, with a rate
of 29.76% against Verticillium dahliae in the sporulation test [124].

Antibiotics 2023, 12, x FOR PEER REVIEW 7 of 42 
 

12g with excellent yields (70–90%)(Scheme 2). The cleavage of the acetyl group using po-

tassium carbonate (K2CO3) in methanol liberated the hydroxy group of the corresponding 

hybrid triazoles 13a–13g (Scheme 4). in almost quantitative yields. Compounds 13a–13g 

were screened for in vitro antifungal activities against two phytopathogenic fungi, Verti-

cillium dahliae Kleb and Fusarium oxysporum f. sp. albedinis. The result of the mycelia linear 

growth rate indicates that some of the compounds show a weak inhibition against the two 

fungi, the only compound that shows a significantly increased rate is compound 13e, with 

a rate of 29.76% against Verticillium dahliae in the sporulation test [124]. 

AcO
O N3

N
H

N R

R'
N
H

N R

R'

NN

NO
AcO

CuI, TEA

MWI

11a−11g
K2CO3

N
H

N R

R'

NN

NO
HO

12a−12g

13a−13g

a: R = H;    R' = H
b: R = Me;  R' = H
c: R = Me;  R' = Me

d: R = H;       R' = H
e: R = CF3;    R' = H
f: R = F;         R' = H
f: R = NO2;    R' = H

29.76% against Verticillium dahliae

 

Scheme 4. Synthesis of benzimidazole-1,2,3-triazole hybrids 13a–13g. 

Bistrović et al. synthesized in two steps hybrids 19a–19e, 20a–20e, and 21a–21e start-

ing from 4-(prop-2-ynyloxy)benzaldehyde 14 (Scheme 5). All compounds were evaluated 

for their in vitro antibacterial activity against Gram-positive bacteria: S. aureus ATCC 

25923, methicillin-sensitive S. aureus, E. faecalis, vancomycin-resistant E. faecium, and 

Gram-negative bacteria: E. coli ATCC 25925, P. aeruginosa ATCC 27853, A. baumannii ATCC 

19,606 and ESBL-producing K. pneumoniae ATCC 27736. Generally, compounds showed 

better activities against Gram-positive than Gram-negative bacteria. Compounds 20a–20e, 

with better binding affinity relative to other amidines, were the most active against S. au-

reus (MIC = 8–32 μgmL−1). Compound 19a was the most promising candidate because of 

its higher potency (MIC = 4 μgmL−1) against ESBL-producing E. coli. Results of anti-tryp-

anosomal evaluations showed that p-methoxyphenyl substituent in 19b–21b enhanced ac-

tivity, with 20b (IC50 = 1.1 mM and IC90 = 3.5 mM) being more potent than Nifurtimox. In 

contrast to the observed correlation between antimicrobial activity and DNA binding, the 

antiprotozoal effects of 20b did not correlate with its DNA affinity [125]. 

OHC O R1N3

OHC O

N

NN

R1

NH2

NH2

R2

O

N

N
N

R1

N

N
H

R2

14 15a-15e

19a-19e, 20a-20e, 21a-21e

CuSO4
DMF
80oC

NaHSO3

EtOH,reflux

16-18

15a, 19a-21a:   R1 = C6H5

15b, 19b-21b:  R1 = 4-OCH3C6H4

15c, 19c-21c:   R1 = 2-ClC6H4

16, 19a-19e: R2 =

17, 20a-20e: R2 =

18, 21a-21e: R2 =

NH2

NH2

NH2

HN

N

H
N

21%−70%

15d, 19d-21d:  R1 = -CH2C6H5

15e, 19e-21e:   R1 = -CH2SC6H5

O

N

N
N

N

N
H 19a

H2N

NH2

MIC = 4 mol mL-1 against E. coli (ESBL)

O

N

N
N

N

N
H 20b

H2N

NH

IC50 =1 .1 M against T. brucei
OCH3  

Scheme 5. Synthesis of benzimidazole-1,2,3-triazole hybrids 19a–19e, 20a–20e, and 21a–21e. 

 Rao et al. synthesized hybrids 22a–22b (Figure 3) using the click chemistry approach. 

Compounds had weak activity against Mycobacterium bovis strain, with BCG values % in-

hibition = 27.3 and 26.2, respectively, at 30 μM concentration, using a turbidometric assay. 

Compounds 22a and 22b also showed moderate antiproliferative activity against human 

breast cancer cell line MCF-7, with IC50 values of 31.9 and 25.1μM, respectively [126]. 

Scheme 4. Synthesis of benzimidazole-1,2,3-triazole hybrids 13a–13g.

Bistrović et al. synthesized in two steps hybrids 19a–19e, 20a–20e, and 21a–21e starting
from 4-(prop-2-ynyloxy)benzaldehyde 14 (Scheme 5). All compounds were evaluated
for their in vitro antibacterial activity against Gram-positive bacteria: S. aureus ATCC
25923, methicillin-sensitive S. aureus, E. faecalis, vancomycin-resistant E. faecium, and Gram-
negative bacteria: E. coli ATCC 25925, P. aeruginosa ATCC 27853, A. baumannii ATCC 19,606
and ESBL-producing K. pneumoniae ATCC 27736. Generally, compounds showed better
activities against Gram-positive than Gram-negative bacteria. Compounds 20a–20e, with
better binding affinity relative to other amidines, were the most active against S. aureus
(MIC = 8–32 µgmL−1). Compound 19a was the most promising candidate because of
its higher potency (MIC = 4 µgmL−1) against ESBL-producing E. coli. Results of anti-
trypanosomal evaluations showed that p-methoxyphenyl substituent in 19b–21b enhanced
activity, with 20b (IC50 = 1.1 mM and IC90 = 3.5 mM) being more potent than Nifurtimox.
In contrast to the observed correlation between antimicrobial activity and DNA binding,
the antiprotozoal effects of 20b did not correlate with its DNA affinity [125].
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Rao et al. synthesized hybrids 22a–22b (Figure 3) using the click chemistry approach.
Compounds had weak activity against Mycobacterium bovis strain, with BCG values % inhibi-
tion = 27.3 and 26.2, respectively, at 30 µM concentration, using a turbidometric assay. Com-
pounds 22a and 22b also showed moderate antiproliferative activity against human breast
cancer cell line MCF-7, with IC50 values of 31.9 and 25.1 µM, respectively [126]. Ashok et al.
synthesized in three steps hybrids 26a–26j, starting from 1H-indole-3-carbaldehyde 7
(Scheme 6). The compounds were evaluated for their antimicrobial activity against Gram-
positive Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, and Gram-negative
Proteus vulgaris ATCC 29213, Escherichia coli ATCC 11,229 bacteria using Gentamicin as
standard. Antifungal activity was tested against Candida albicans ATCC 10,231 and As-
pergillus niger ATCC 9029 strains with the standard drug Fluconazole. Compounds 26b, 26c,
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and 26h with MIC of 3.125–6.25 µg mL−1 were found to be the most promising potential
antimicrobial molecules [127]. The authors calculated various physicochemical param-
eters such as clogP, drug score, and drug-likeness of 26a–26j using the Osiris Property
Explorer software [128]. For all the compounds, the calculated clogP values were found to
be below five according to Lipinski’s rule-of-5 and also exhibited positive values for drug
score. Mallikanti et al. synthesized novel benzimidazole-conjugated 1,2,3-triazole analogs
29a–29l in two steps: 1. formation of benzimidazole intermediate by reaction between
3’,5’-difluorobiphenyl-3,4-diamine 27 and 2-hydroxy-4-(prop-2-ynyloxy) benzaldehyde
28, and 2. microwave-assisted copper-catalyzed click reaction (Scheme 7). Compounds
29a–29l showed minimal inhibition zones against all Gram-positive (S. aureus, B. subtilis)
and Gram-negative (E. coli, P. aeruginosa) strains using Ampicillin as A standard drug.
Among all tested compounds, the 29i and 29k showed higher activity against P. aeruginosa,
S. aureus, and B. subtilis than the standard reference. Compounds 29a, 29b, 29c, 29d, 29e,
29f, 29g, 29h, 29j, and 29l showed moderate antibacterial activity against tested strains
(Inhibition zone: 10–25 mm compared with 18–20 mm for Ampicillin). Compounds 29i, 29j,
and 29k also established strong activity against both fungal strains, C. albicans MTCC 183
and A. niger MTCC 9652, compared to the standard drug Griseofulvin [70]. To understand
the binding mode of novel compounds, docking simulations were performed against the
crystal structures of glucosamine-6-phosphate synthase (GlmS) (PDB ID: 2VF5) of E. coli
and secreted aspartic proteinase (Sap) 1 (PDB ID: 2QZW) of C. albicans retrieved from
the protein data bank. The best active compound, 29l, scored the highest binding affinity
value of about −10.0 kal/mol, which demonstrated two key interactions with the active
site amino acid Asp549 of Glms with a bond distance of 2.66 and 2.81 Å. Further, the
hydrophobic interactions were taken with Tyr312, Ser316, Asp474, Asn523, Ala572, and
Ala551 of Glms, among which one π-π T-shaped interaction with Tyr312, and halogen
bond [129] interactions with Tyr312, Asn523, and Asn551 (Figure 4). The binding energies
and interactions of all compounds are better than that of Ampicillin, which proves that
these molecules could best fit into the cavity of Glms [70]. Chandrika et al. reported hy-
brids 30–32 with broad spectrum antifungal activity (0.975–3.9 µgmL−1 against C. albicans;
0.12–0.48 µgmL−1 against C. parapsilosis) (Figure 5). These compounds also displayed good
activity against C. albicans biofilms (3.9–15.6 µgmL−1 against C. albicans) [130].
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Figure 5. Structure of benzimidazole-1,2,3-triazole hybrids 30–32.

2.2. 1-Benzimidazole-R(Ar)-1,4-Disubstituted-1,2,3-Triazole Hybrids

Deswal et al. synthesized a new series of benzimidazole-1,2,3-triazole-indoline deriva-
tives 35 by employing a click reaction between substituted N-propargylated benzimi-
dazole derivatives 33 and in situ formed substituted 2-azido-1-(indolin-1-yl) ethanone
derivatives 34, in moderate to good yields (Scheme 8). The obtained results indicate a
stronger inhibitory effect of compound 35d against E. coli, while compound 35g showed
good inhibition against all the tested strains except B. subtilis (Table 3). The good an-
timicrobial activity of the compounds was correlated with the presence of the pyridine
ring in position “2” of the benzimidazole and the NO2 group on the indole ring. Fur-
thermore, in vitro α-glucosidase inhibition of all synthesized derivatives identified 35e
(IC50 = 0.015 ± 0.0003 µmol mL−1) and 35g (IC50 = 0.018 ± 0.0008 µmol mL−1) as potent
inhibitors of α-glucosidase, even better than standard drug Acarbose [6].
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and Pseudomonas aeruginosa, but compounds 37b and 37d are more effective against Gram-

positive bacterium S. aureus (MIC = 3.125 μgmL−1), and 37b has better activity against 

Gram-negative bacterium E. coli (MIC = 3.125 μgmL−1) with Chloramphenicol as standard 

drug. The expected inhibition efficiency, 37c > 37a > 37b, was attributed to the favorable 

effect of the side carbon chain of the triazole moiety, according to DFT calculations, in this 
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benzimidazole 38, namely two alkylation reactions and a click reaction (Scheme 10). New 
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Table 3. Antimicrobial activity of the compounds 35 in terms of MIC (µmol mL−1).

Compound S. aureus E. coli B. subtilis S.
epidermitis A. niger C. albicans

35a 0.028 0.056 0.056 0.056 0.056 0.056
35b 0.031 0.062 0.062 0.062 0.062 0.062
35c 0.029 0.058 0.058 0.058 0.058 0.058
35d 0.060 0.030 0.060 0.030 0.060 0.060
35e 0.029 0.056 0.056 0.056 0.056 0.056
35f 0.026 0.052 0.052 0.052 0.052 0.052
35g 0.031 0.026 0.052 0.026 0.026 0.026

Norfloxacin 0.020 0.039 0.039 0.039 - -
Fluconazole - - - - 0.04 0.020

Saber et al. synthesized new 1,4-disubstituted-1,2,3-triazole containing benzimida-
zolone derivatives 37a–37d exclusively using click chemistry (Scheme 9). All derivatives
exhibited antibacterial activity against tested strains, Staphylococcus aureus, Escherichia coli,
and Pseudomonas aeruginosa, but compounds 37b and 37d are more effective against Gram-
positive bacterium S. aureus (MIC = 3.125 µgmL−1), and 37b has better activity against
Gram-negative bacterium E. coli (MIC = 3.125 µgmL−1) with Chloramphenicol as standard
drug. The expected inhibition efficiency, 37c > 37a > 37b, was attributed to the favorable
effect of the side carbon chain of the triazole moiety, according to DFT calculations, in this
process [131,132]. Mohsen et al. synthesized hybrids 41a–41e in three steps, starting from
benzimidazole 38, namely two alkylation reactions and a click reaction (Scheme 10). New
derivatives exhibited good zone inhibition of 6.8, 5.4, 5.2, 4.5, and 5.3 mm for the S. aureus
strain and 5.4, 3.8, 4.2, 3.3, 4.9 mm for the E. coli strain, indicating that the 1,2,3-triazole core
contributed significantly to bacterial growth suppression (Ciprofloxacin showed 10.2 mm
for S. aureus and 10.4 mm for E. coli). Compared with Gram-negative bacteria, all com-
pounds showed a strong effect against Gram-positive bacteria [94].
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2.3. 1,2- Bis-Substitutedbenzimidazoles-R(Ar)-1,4-Disubstituted-1,2,3-Triazole. 

Rezki reported the intramolecular cyclization of thiosemicarbazides 42a–42d in re-

fluxing aqueous sodium hydroxide (2N) for 6 h with the formation of hybrids 43a–43d 

with yields of 82–86% (Scheme 11). Among all the 1,2,4-triazole derivatives, N4-phenyl 

and N4-(4-fluorophenyl) derivatives 43a and 43b were found to be the most potent with 

MIC values of 4–8 μg mL−1. Also, triazoles 43c and 43d exerted the best inhibition against 

both tested fungal strains, A. brasiliensis and Candida albicans, with MIC values ranging 

from 0.5 to 4 μg mL−1, more potent than the reference drug Fluconazole. Condensation of 

compound 44 with several benzaldehydes in refluxing ethanol for 4–6 h with a catalytic 

amount of HCl produced a new class of hybrid Schiff bases 45a–45g with yields of 84–86% 

(Scheme 12). The antimicrobial bioassay results for the synthesized Schiff bases 45a–45g 

revealed that all of the tested compounds were more effective towards all of the organ-

isms, with MIC values of 1–16 μg mL−1. Among them, Schiff bases 45c, 45d, and 45e with 

a fluorine atom at position “2” exhibited the highest antibacterial inhibition potency at 

MIC 1–8 μg mL−1. The Schiff base 45e containing a CF3 group exerted the highest antifun-

gal inhibition activity with MIC of 1 μg mL−1 [133]. Al-blewi et al. synthesized triazoles 

47a–47f in two steps: i. regioselective alkylation of 4 with two equivalents of propargyl 

bromide in the presence of two equivalents of potassium carbonate as a base catalyst to 

afford benzimidazole 46 with 91% yield after stirring at room temperature overnight; ii. 

Copper-mediated Huisgen 1,3-dipolar cycloaddition reaction on compound 46 in good 

yields (82–88%) (Scheme 13). Generally, bis-1,2,3-triazoles 47a–47f exhibited more potent 

antimicrobial activities than their mono-1,2,3-triazole derivatives 6a-6f. This was at-

tributed to the synergistic effect of the sulfonamoyl and tethered heterocyclic components 

in addition to the improved lipophilicity of the bis-substituted derivatives. Among the 

synthesized compounds, compound 47a was the most potent antimicrobial agent, with 

MIC values ranging between 32 and 64 μg mL−1 against all tested strains B. cereus, S. aureus, 

E. coli P. aeruginosa, C. albicans, and A. brasiliensis. Pharmacophore elucidation of the com-

pound 47a–47f was performed based on in silico ADMET evaluation of the tested com-

pounds. Screening results of drug-likeness rules showed that all compounds follow the 

accepted rules, meet the criteria of drug-likeness, and follow Lipinski’s rule of five. In 

addition, the toxicity results showed that all compounds are non-mutagenic and noncar-

cinogenic [119]. 

Scheme 9. Synthesis of benzimidazole-1,2,3-triazole hybrids 37a–37d.
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2.3. 1,2-Bis-Substitutedbenzimidazoles-R(Ar)-1,4-Disubstituted-1,2,3-Triazole

Rezki reported the intramolecular cyclization of thiosemicarbazides 42a–42d in re-
fluxing aqueous sodium hydroxide (2N) for 6 h with the formation of hybrids 43a–43d
with yields of 82–86% (Scheme 11). Among all the 1,2,4-triazole derivatives, N4-phenyl
and N4-(4-fluorophenyl) derivatives 43a and 43b were found to be the most potent with
MIC values of 4–8 µg mL−1. Also, triazoles 43c and 43d exerted the best inhibition against
both tested fungal strains, A. brasiliensis and Candida albicans, with MIC values ranging
from 0.5 to 4 µg mL−1, more potent than the reference drug Fluconazole. Condensation of
compound 44 with several benzaldehydes in refluxing ethanol for 4–6 h with a catalytic
amount of HCl produced a new class of hybrid Schiff bases 45a–45g with yields of 84–86%
(Scheme 12). The antimicrobial bioassay results for the synthesized Schiff bases 45a–45g
revealed that all of the tested compounds were more effective towards all of the organisms,
with MIC values of 1–16 µg mL−1. Among them, Schiff bases 45c, 45d, and 45e with a
fluorine atom at position “2” exhibited the highest antibacterial inhibition potency at MIC
1–8 µg mL−1. The Schiff base 45e containing a CF3 group exerted the highest antifungal
inhibition activity with MIC of 1 µg mL−1 [133]. Al-blewi et al. synthesized triazoles
47a–47f in two steps: i. regioselective alkylation of 4 with two equivalents of propargyl
bromide in the presence of two equivalents of potassium carbonate as a base catalyst to
afford benzimidazole 46 with 91% yield after stirring at room temperature overnight; ii.
Copper-mediated Huisgen 1,3-dipolar cycloaddition reaction on compound 46 in good
yields (82–88%) (Scheme 13). Generally, bis-1,2,3-triazoles 47a–47f exhibited more potent
antimicrobial activities than their mono-1,2,3-triazole derivatives 6a–6f. This was attributed
to the synergistic effect of the sulfonamoyl and tethered heterocyclic components in addi-
tion to the improved lipophilicity of the bis-substituted derivatives. Among the synthesized
compounds, compound 47a was the most potent antimicrobial agent, with MIC values
ranging between 32 and 64 µg mL−1 against all tested strains B. cereus, S. aureus, E. coli
P. aeruginosa, C. albicans, and A. brasiliensis. Pharmacophore elucidation of the compound
47a–47f was performed based on in silico ADMET evaluation of the tested compounds.
Screening results of drug-likeness rules showed that all compounds follow the accepted
rules, meet the criteria of drug-likeness, and follow Lipinski’s rule of five. In addition, the
toxicity results showed that all compounds are non-mutagenic and noncarcinogenic [119].
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Scheme 13. Synthesis of benzimidazole-1,2,3-triazoles 47a–47f.

Aparna et al. used a similar strategy for obtaining nine new bis-1,2,3-triazol-1H-
4-yl-substituted arylbenzimidazole-2-thiol derivatives 48a–48l (Figure 6). Antibacterial
activity of triazole derivatives 48 demonstrates moderate to good activity against Gram-
negative (E. coli, S. typhy, P. aeruginosa) and Gram-positive (S. aureus) bacterial strains.
The products 48i, 48k, and 48l are characterized by a broad spectrum of antibacterial
activity at a concentration of 10 µg mL−1. The synthesized 1,2,3 triazole derivatives were
studied for their molecular docking on the high-resolution X-ray crystal structure of FabI of
Staphylococcus aureus (pdb id:4FS3) obtained from the protein data bank [134]. The highest
dock score of –7.69 kcal/mol and the lowest dock score of –0.942 kcal/mol were obtained
for molecules 48l and 48h, respectively [135].
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2.4. Benzimidazole-R(Ar)-1,2,3-Triazole Hybrids as Antitubecular Agents

Ashok reported compound 26h has the best antitubercular drug candidate by inhibit-
ing the growth of the MTB (Mycobacterium tuberculosis) strain with MIC = 3.125 µ mL−1

(7.1 µM) (control Rifampicin MIC = 0.04 µg mL−1 and isoniazid MIC = 0.38 µg mL−1). The
best antitubercular activity of 26h may be attributed to the presence of the nitro group on
the phenyl ring at the ortho position. Compound 26b (MIC = 6.25 µg mL−1 (14.7 µM)) with
chlorine substituent, compound 26i (MIC = 6.25 µg mL−1(14.2 µM)) with trifluoromethyl
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substituent and compound 26j (MIC = 12.5 µg mL−1 (28.4 µM)) with benzyl substituent
exhibited moderate antitubercular activity. Therefore, the incorporation of the electron-
withdrawing nitro group, electronegative chlorine, and trifluoromethyl groups on the
phenyl ring was highly favored for antitubercular activity. The authors calculated various
physicochemical parameters and found from the theoretical data that compounds 26a–26j
also exhibited positive values for drug score [127]. Gill et al. reported syntheses of hybrids
51a–51d by reaction between 2-(3-fluorophenyl)-1H-benzo[d]imidazole 50 and phenyl-
substituted 4-(bromomethyl)-1-phenyl-1H-1,2,3-triazole 49 in DMF at room temperature
(Scheme 14). Trifluorosubstituted-compound 51a possessed enhanced anti-mycobacterial
activity, >96% of inhibition at 6.25 µg concentration. Also, compounds 51b and 51c, which
had antimicrobial activities superior to the other compounds, were reported as the best
choice for the preparation of new derivatives in order to improve effectiveness on intra-
cellular mycobacteria (macrophage) or in infected animals [136]. Anand et al. reported a
one-pot reaction between 2-propargylthiobenzimidazole 4, 4-bromomethylcoumarins/1-
aza-coumarins 52/53 and sodium azide under click chemistry conditions to give exclusively
1,4-disubstituted triazoles 54a–54n. (Scheme 15). Antitubercular assays against M. tuber-
culosis (H37Rv) coupled with in silico molecular docking studies indicated that dimethyl
substituents 54c and 54d showed promising activity (MIC = 3.8 µMol L−1) with higher
C-score values. Surflex-Dock was used to investigate detailed intermolecular interactions
between the ligand and the target protein. Three-dimensional structure information on
the target protein was taken from the PDB entry 4FDO. Processing of the protein included
the removal of the co-crystallized ligand and water molecules, as well as the addition of
essential hydrogen atoms. All 14 inhibitors 54a–54n were docked into the active site of
ENR, as shown in Figure 7a, and Figure 7b indicates the superimposition of compounds 54a
and 54d with ligand [137]. Khanapurmath et al. synthesized triazoles 55 by click reaction
(Figure 8a). Benzimidazolone bis-triazoles 55a–55n showed better activity with MIC in the
range 2.33–18.34 µM, and the most active compounds were 55h and 55m. All compounds
exhibited moderate to low levels of cytotoxicity with IC50 values of the human embryonic
kidney cells in the range of 943–12294 µM, and none of the 14 compounds exhibited any
significant cytotoxic effects, suggesting huge potential for their in vivo use as antitubercular
agents. Docking studies revealed an additional interaction of benzimidazolone oxygen
in these compounds (Figure 8b) [138]. Also, Sharma et al. summarize 1,2,3-triazoles as
antitubercular compounds and various hybrids with benzimidazole, coumarin, isoniazid,
quinolines, etc. [39].
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Figure 8. (a). Structure of benzimidazolone bis-1,2,3-triazoles 55a–55n. (b). Representation of docked
view of compound 55j at the active site of RmlC.

3. Synthesis and Antimicrobial Activities of Benzimidazole-1,2,4-Triazoles
3.1. 2-Benzimidazole-R(Ar)-1-(1,2,4-Triazole)

Pandey et al. synthesized hybrids 59a–59e in three steps: reaction of 7-hydroxy-4-
methyl coumarin with thiosemicarbazide to form triazole intermediate 57, which under-
went Mannich reaction with formaldehyde, and an amino acid to form intermediates
58a–58e. Intermediates 58a–58e reacted with o-phenylenediamine in pyridine to give
benzimidazole-1,2,4-triazole hybrids in poor yields (Scheme 16). Compound 59a displayed
promising antifungal activity against Candida albicans and Cryptococcus himalayensis since the
MIC value in each case was found to be 3.5 µg mL–1. Compound 59b showed low to mod-
erate antifungal activity against all five fungi, Candida albicans, Cryptococcus himalayensis,
Sporotrichum schenkii, Trichophyton rubrum, and Aspergillus fumigatus [139].
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Scheme 16. Synthesis of benzimidazole-1,2,4-triazoles 59a–59e.

Jadhav et al. synthesized a series of hybrids 1,2,4-triazolyl-fluorobenzimidazoles
in two steps: i. synthesis of 2-(4-(1H-1,2,4-triazol-1-yl)phenyl)-4,6-difluoro-1H-benzo
[d]imidazole 62 by reaction between 3,5-difluorobenzene-1,2-diamine 60 and 4-(1H-1,2,4-
triazol-1-yl)benzaldehyde 61 in toluene at 110 ◦C, and ii. alkylation of compound 62 in
DMF at room temperature, with the formation of the final hybrids 63a–63o (Scheme 17).
All compounds were screened for antimicrobial activity against different Gram-positive
organisms, S. aureus, P. aeruginosa, and Gram-negative organisms, E. coli and S. typhosa
using Gentamycin as a reference standard. The data generated from preliminary screening
showed that compounds displayed moderate to better antimicrobial activity. Compounds
63a, 63e, 63f, 63h, 63i, and 63l displayed maximum activity (Table 4) [140].
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Scheme 17. Synthesis of benzimidazole-1,2,4-triazoles 63a–63e.

Table 4. Antimicrobial activity of the compounds 63a–63o using the agar diffusion method.

Compound
Inhibition Zone Diameters Using the Agar Diffusion Method (mm)

S. aureus P. aeruginosa E. coli S. typhosa
63a 28 26 21 19
63b 23 18 16 14
63c 21 23 18 19
63d 20 22 23 23
63e 25 23 21 24
63f 27 26 24 20
63g 19 20 15 13
63h 29 26 22 24
63i 26 22 19 18
63j 14 12 16 16
63k 22 21 20 18
63l 25 23 19 21

63m 21 18 18 16
63n 24 22 22 21
63o 19 21 18 14

Gentamycin 34 35 31 30

Barot et al. synthesized hybrid 64 and determined its antimicrobial activity against
Bacillus cereus MTCC-430, Enterococcus faecalis MTCC-493, S. aureus MTCC-737, Escherichia
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coli MTCC-1687, Pseudomonas aeruginosa MTCC-2642, Klebsiella pneumonia MTCC-109,
Candida albicans MTCC-3017, Aspergillus niger MTCC-1344 and Fusarium oxyspora MTCC-
1755, of MIC = 13–18 µg ml−1, with Ofloxacine and Fluconazole as standard drugs [141].
Also, Jiang et al. reported antifungal activity for hybrid 65 against Candida albicans, Can-
dida tropicalis, Cryptococcus neoformans, Trichophyton rubrum, and Aspergillus fumigatus of
MIC80 = 1–64 µg mL−1 considering Fluconazole as a standard drug (Figure 9). From the
antifungal activity data, preliminary SARs was obtained. In general, the amine linker was
important for antifungal activities. Substituted piperazine derivatives were comparable
or superior to the corresponding N-methyl derivatives. [142]. Luo et al. reported a series
of naphthalimide benzimidazole-1,2,4-triazole hybrids 68a–68h and the corresponding
triazolium salts 69a–69d prepared by convenient and efficient procedures starting from
naphthalimide triazole 66 (Scheme 18). 2-Chlorobenzyl triazolium 68g and compound 69b
with octyl group exhibited the best antibacterial activities among all the tested compounds,
especially against S. aureus with an inhibitory concentration of 2 µg mL−1 which was
equipotent potency to Norfloxacin (MIC = 2 µg mL−1) and more active than Chloromycin
(MIC = 7 µg mL−1). Triazoliums 68g and 68f bearing 3-fluorobenzyl moiety displayed the
best antifungal activities (MIC = 2–19 µg mL−1) against all the tested fungal strains, C.
albicans ATCC 76615, A. fumigatus ATCC 96918, C. utilis, S. cerevisia and A. flavus, without
being toxic to PC12 cell line within concentration of 128 µg mL−1. Further investiga-
tions showed that compound 68g could intercalate into calf thymus DNA to form the
68g-DNA complex, which could block DNA replication, exerting powerful antimicrobial
activities. [143]. Benzimidazole-1,2,4-triazole Mannich base 70 was active against Bacillus
subtilis and Bacillus pumilus (inhibition zone diameters being 19 and 17 mm, respectively,
compared to Ciprofloxacin with 28 and 30 mm, respectively) [144].
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68d:  R1 = Cl;  R2 = H;  R3 = Cl;  R4 = H;  R5 = H; R6 = Cl

68e:  R1 = Cl;  R2 = H;  R3 = Cl;  R4 = H;  R5 = H;  R6 = F

68f:  R1 = Cl;  R2 = H;  R3 = Cl;  R4 = H;  R5 = F;  R6 = H

68g: R1 = Cl;  R2 = H;  R3 = Cl;  R4 = Cl;  R5 = H;  R6 = H

68h: R1 = Cl;  R2 = H;  R3 = Cl;  R4 = Cl;  R5 = H;  R6 = Cl

Br
R

CH3CNCH3CN

reflux reflux

Cl
Cl

MIC =2 g mL-1

Scheme 18. Synthesis of benzimidazole-1,2,4-triazoles 68 and 69.
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Kankate et al. reported the synthesis of hybrids 73a–73l (Scheme 19). The antifungal
activity of compound 73 was tested against Candida albicans spores in vitro (turbidimetric
method) and in vivo (kidney burden test). Compound 73i had a good antifungal activity
as compared with the other twelve compounds at 0.0075 µM mL−1, which is equivalent to
Fluconazole activity both in vitro and in vivo. The antifungal activity decreased with the
increasing alkyl length of N1 of benzimidazole (methyl to ethyl). This was proven for com-
pounds 73i and 73l, which showed MICs of 0.0075 and 0.015 µM mL−1, respectively. The
ligand fit method was performed to study and predict the binding mode of the hybrids 73
with the target enzyme (homology modeled) cytochrome P450 lanosterol 14-α-demethylase
of C. albicans. All compounds showed binding in the active site of the enzyme. The 1,2,4-
triazole ring of compounds 73a–73l is positioned almost perpendicular to the porphyrin
plane, with a ring nitrogen (N-4) atom coordinated to the heme iron (Figure 10) [145,146].
Ahuja et al. reported antifungal activity of compounds 74a–74c against F. verticillioides, D.
oryzae, C. lunata, and F. fujikuroi (Figure 11). All compounds had increased potency than the
standard commercial benzimidazole fungicide, carbendazim (Table 5).
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Table 5. ED50 values (µg mL−1) of compounds against test fungi.

Compound F. verticillioides D. oryzae C. lunata F. fujikuroi

74a 35 50 28 45
74b 30 25 18 30
74c 16 12 10 15

Carbendazim 230 - - 150
Propiconazole 20 25 22 21

Compound 74c exhibited ED50 values lower than triazole fungicide, propiconazole.
The results reinforced the synergistic effects of the benzimidazole and 1,2,4-triazole combi-
nation supported by a computational approach. Hydrogen bonding interactions were more
pronounced in compounds 74a–74c in the binding pockets of both the target enzymes, in
comparison to standards. In compound 74c, two H-bonds were formed with Gln11 present
in the binding cleft of the active pocket of β-tubulin (Figure 12). In all three compounds,
the right position of the N-atoms of both 1,2,4-triazole and benzimidazole, that O-atoms
of methoxy and carbonyl groups, contributed well to strong binding into the active site
of enzymes via H-bonding [147]. Evren et al. reported the synthesis of the compounds
79a–79c in two steps: i. reaction of 1,2,4-triazole 75 with 4-fluorobenzaldehyde 76 in DMF
with the formation of 4-(1H-1,2,4-triazol-1-yl)benzaldehyde 77; ii. reaction of aldehyde
77 with 1,2-phenylene diamines 78 (Scheme 20). Although the antibacterial activities of
compounds 79a–79c against Escherichia coli ATCC 35218, E. coli ATCC 25922, Klebsiella
pneumoniae NCTC 9633, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC
13311, and Staphylococcus aureus ATCC 25923, were weak, the antifungal activities against
C. albicans were found promising, with MIC values of 3.9, 7.8, and 3.9 µg mL−1 respectively,
using as reference drug Ketokonazole (MIC = 7.8 µg mL −1). Protein-ligand interactions
and binding poses of the 79a, 79b, and 79c compounds on the CYP51 active site were
examined. As shown in Figure 13, an H bond of 2.11 Å between compound 79a and Met508,
π-π stacking interactions with Tyr118, Hie377, Phe233, generated hydrophobic interactions
with Pro230, Leu376, Tyr64, Phe228, and Tyr505. Theoretical ADME calculations of the
79a, 79b, and 79c were made, and the compounds were found to have good lipophilicity,
moderate water solubility, and within the limiting rules of Lipinski, Ghose, Veber, Egan,
and Muegge (Figure 14) [148]. Ghobadi et al. reported the synthesis of compounds 85a–85e,
in two different ways, from 3,4-diaminobenzophenone 80, i. formation of 2-mercapto benz-
imidazole derivatives 82, 83, and ii. nucleophilic ring opening of various oxiranes 84a–84e
with benzimidazoles 82 and 83 using NaHCO3 in ethanol at room temperature (Scheme 21).
Compounds 85a–85e, containing a 5-benzoylbenzimidazole scaffold, showed better anti-
fungal activity against Candida spp. and Cryptococcus neoformans than related benzimidazole
and benzothiazole derivatives. The better results were obtained with 4-chloro-derivative
85b displaying MICs < 0.063–1 µg mL−1. Also, compound 86c, synthesized analogously, is
as potent as compound 85b. The docking experiments were conducted to further rational-
ize the obtained antifungal activity data and investigate the type of interactions between
compound 85b and the active site of lanosterol 14α-demethylase (CYP51). As shown in
Figure 13, the coordinated bond-forming distance between the N4 atom of the triazole
nucleus of compound 85b and the iron atom in the heme group of active site were 2.71 and
2.40 Å, respectively. A hydrogen-bonding interaction between Tyr132 and the sulfur group
of (S)-85b was observed. In vitro and in silico ADMET evaluations of the most promising
compounds 85b indicated that the selected compounds have desirable ADMET properties
in comparison to the standard drug Fluconazole. A docking simulation study demonstrated
that the benzimidazol-2-yl-thio moiety is responsible for the potent antifungal activity of
these compounds [72].
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3.2. 1-Benzimidazole-R(Ar)-2-1,2,3-Triazole

Ansari et al. synthesized hybrids 88a–88c in two steps from 2-(2-methyl-1H-benzo
[d]imidazol-1-yl)acetohydrazide 87 (Scheme 22). Generally, all benzimidazole-triazole hybrids
showed low antimicrobial activity (Table 6) [149]. Tien et al. synthesized hybrids 89a–89d
in three steps from 2-(2-methyl-1H-benzo[d]imidazol-1-yl)acetohydrazide 87b (Scheme 23).
All compounds exhibited antifungal activity against A. niger (MIC = 50 µg mL−1). Only com-
pound 89b exhibited activity against F. oxysporum (Table 7) [150]. Kantar et al. reported
antimicrobial activity of hybrid 90 (Figure 15) against four Gram-positive, Bacillus cereus
702 Roma (62.5 µg mL−1), B. megaterium DSM-32 (125 µg mL−1), B. subtilis ATCC 6633
(62.5 µg mL−1), Staphylococcus aureus ATCC 25,923 (250 µg mL−1), and four Gram-negative
bacteria, Escherichia coli ATCC 25,922 (250 µg mL−1), Enterobacter cloaceae ATCC13047
(125 µg mL−1), Pseudomonas aeruginosa ATCC 27,853 (250 µg mL−1), and Yersinia pseudotuber-
culosis ATCC 911 (125 µg mL−1) bacteria [151]. Nandwana et al. reported compound 91 syn-
thesized in good yield (70%) with promising antibacterial activity, with minimum inhibitory
concentration (MIC) values of 4−8 µg mL−1 for all bacterial tested strains (Escherichia coli,
Pseudomonas putida, Salmonella typhi, Bacillus subtilis, Staphylococcus aureus), as compared to
the positive control Ciprofloxacin, and also with pronounced antifungal activity against
both tested strains, Aspergillus niger and Candida albicans (MIC = 8−16 µg mL−1) as com-
pared with Amphotericin B [152]. Al-Majidi et al. synthesized 2-mercaptobenzimidazole
derivatives 95, 96, and 97 by cyclization of intermediate precursors 93, 94, and 95 under
reflux with 2N NaOH (Scheme 24). The compounds generally showed moderate antimi-
crobial activity against all tested strains, as can be seen in Table 8 [153]. El-masry et al.
synthesized compounds 98 and 99 and found that they did not exhibit antimicrobial ac-
tivity (Figure 16) [154]. Menteşe et al. synthesized compounds 100a–100d, for which
they found no antimicrobial activity on the ten strains tested [155]. Karale et al. synthe-
sized bis-benzimidazole-1,2,4-triazole hybrids 102a–102e (Scheme 25) in four steps from
7-methyl-2-propyl-3H-benzo[d]imidazole-5-carboxylic acid. All compounds 102 did not
show antimicrobial activity against the strains tested, C. albicans, A. fumigatus, S. aureus,
and E. coli [156,157].
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Scheme 22. Synthesis of benzimidazole-1,2,4-triazoles 88a–88c.

Table 6. Antimicrobial activity of compounds 88a–88c expressed as MIC in µg mL−1.

Compound S. aureus B. subtilis S. mutans P. aeruginosa C. albicans

88a NT NT 16 16 32
88b 8 16 16 16 NT
88c 8 16 32 32 32

Ampicillin 2 2 <1 4 NT
Kanamycin 2 <1 4 2 NT

NT = not tested.
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Scheme 23. Synthesis of benzimidazole-1,2,4-triazoles 89a–89c.

Table 7. The minimum inhibitory concentrations (µg mL−1) of the compounds against fungi.

Compound Concentration (µg mL−1) Aspergillus niger Fusarium oxysporum

89a 50 50 -
89b 50 50 50
89c 50 50 -
89d 50 50 -
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Table 8. Antimicrobial activity of compounds 89a–89c.

Compound
(800 µg mL−1) S. aureus P. aerugnosa B.

subtilis
A.

baumannii C. albicans

95 18 14 15 - 10
96 19 11 12 - 11
97 17 15 14 12 -

Amoxicillin 33 32 33 - -
Fluconazole - - - - 25
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3.3. 2-Benzimidazole-R(Ar)-2-1,2,4-Triazole

Eisa et al. synthesized compounds 105a and 105b (Scheme 26) (Table 9) by the reaction
between 2-(chloromethyl)-1H-benzo[d]imidazole 103 and 4-phenyl-5-(pyridin-3-yl)-4H-
1,2,4- triazole-3-thiol 104a or 4-phenyl -5-(thiophen-2-yl)-4H-1,2,4-triazole-3-thiol 104b, at
reflux in absolute ethanol, for 12 h. Also, they reported synthesis of the compounds 107a
and 107b from 2-(2-(phenylthiomethyl)-1H-benzo[d]imidazol-1-yl)acetohydrazide in two
steps (Scheme 27). All compounds showed antimicrobial activity against Escherichia coli
superior to that of standard Gentamicin. Compound 107a exhibited only moderate activity
against Staphylococcus aureus [158]. Nevade et al. synthesized compounds 109a–109h in
five steps from 1H-benzo[d]imidazole-2-thiol 108 (Scheme 28). The antimicrobial screening
results presented in Table 10 reveal that compounds 109a, 109c, and 109e exhibited satis-
factory effects against S.aureus and E.coli, while compounds 109b, 109f, and 109g showed
moderate activity against the same microbes. Also, the antifungal activity of these com-
pounds was screened against Candida albicans. Compounds 109a and 109d showed the
highest degree of inhibition against C.albicans when compared with the standard drug
Ketoconazole [159]. Can et al. synthesized hybrids 111a–111h in four steps from methyl
4-(5-methyl-1H-benzo[d]imidazol-2-yl)benzoate 110 (Scheme 29). All compounds were
screened for antifungal activity against Candida albicans ATCC 24433, Candida glabrata
ATCC 90030, Candida krusei ATCC 6258, and Candida parapsilosis ATCC 22,019 (Table 11).
Compounds 111i and 111s exhibited significant inhibitory activity against Candida strains
with MIC50 values ranging from 0.78 to 1.56 µg mL−1 [160]. Gencer et al. synthesized
compounds 112 in good yields (77–88%) using a similar strategy (Figure 17). Microbi-
ological studies revealed that compounds 112a, 112b, 112c, 112e, 112f, 112g, and 112h
possess a good antifungal profile against all tested strains, C. albicans, C. glabrata, C. krusei,
C. parapsilopsis, with MIC50 = 0.78–1.56 µg mL−1. Compound 112i was the most active
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derivative and showed comparable antifungal activity to those of reference drugs Ketocona-
zole and Fluconazole [161]. The SAR (Structure–activity relationship) on the synthesized
benzimidazole-triazole compounds is summarized in Figure 18. It is observed that the
presence of chlorine or fluorine in the “5” position of benzimidazole, as well as the pres-
ence of fluorine in the “4” position of phenyl, increase the antibacterial activity, while the
presence of fluorine in the “2” position of phenyl does not change the activity, and the
presence of groups CH3 or C2H5 in position “4” in the triazole nucleus does not bring
any change in the antibacterial activity of the compounds. Furthermore, toxicological and
ADME studies indicated the relative potency of hybrids 112h and 112i, according to the
literature [162–166]. Compound 112i also inhibited ergosterol biosynthesis concentration
dependently. Results of ergosterol level quantification assay and fluorescence microscopy
studies revealed that the mechanism of action of hybrids is associated with the inhibition
of ergosterol biosynthesis, which may subsequently result in altered membrane fluidity,
plasma membrane biogenesis, and functions of fungi. Güzel et al. synthesized a new
series of benzimidazole-1,2,4-triazole derivatives 113a–113l using the same procedure de-
scribed in Scheme 29 as potential antifungal agents (Figure 19). All the compounds were
screened for their in vitro antifungal activity against four fungal strains, namely, C. albicans,
C. glabrata, C. krusei, and C. parapsilopsis and were found to exhibit excellent activity against
C. glabrata. Especially, compounds 113b, 113i, and 113j were found to be the most effective
compounds in the series with an MIC value of 0.97 µg mL−1 [71]. According to the molecu-
lar docking study, compounds 113b, 113i, and 113j fit into the LDM enzyme active pocket.
In a previous study [167], the Tyr118 amino acid and HEM601 protein were described as
essential residues, and in this study, the synthesized active compounds interacted signifi-
cantly with Tyr118, His377, and HEM601 residues. The interactions with HEM were seen
as π−π stacking and π−cation interactions. Therefore, the antifungal effects of compounds
113b, 113i, and 113j were considered to be caused by the destruction of cell integrity due
to the inhibition of the LDM enzyme. The authors identified compound 6i with higher
inhibitory activity due to H-bonding with Tyr132, unlike the other two compounds. Aryal
et al. reported synthesis of 2-substituted benzimidazole containing 1,2,4-triazoles 114a and
114b (Figure 20). The compounds did not show antimicrobial activity against the tested
strains Staphylococcus aureus ATCC 6538P and Staphylococcus epidermidis ATCC 1228 [168].
Kazeminejad et al. did a study on 1,2,4-triazoles as well as structure–activity relationships
(SAR) [38].
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Table 9. Antimicrobial activity of compounds 105a–105b and 107a–107b.

Compound

Minimum Inhibitory Concentrations (µg mL−1)

Gram-Positive Bacteria Gram-Negative Bacteria

B. subtilis S. aureus E. coli P. aeruginosa
105a 98 - 52 -
105b - - 65 -
107a 75 105 62 -
107b 79 - 72 -

Gentamycin * 64 56 72 48

* Concentration of Gentamycin = 30 µg mL−1.
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Scheme 28. Synthesis of benzimidazole-1,2,4-triazoles 109a–109h.

Table 10. Antibacterial activity of compounds 109a–109h.

No Compound
Zone of Inhibition (mm)

E. coli S. aureus C. albicans

1 109a 15 13 18
2 109b 13 11 12
3 109c 17 16 14
4 109d 12 13 16
5 109e 13 17 9
6 109f 10 8 11
7 109g 8 11 12
8 109h 12 7 10
9 Ampicilline 24 25 -

10 Ketokonazole - - 20
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Table 11. MIC50 (µg mL−1) values of compounds 111a–111s.

Compound C. albicans G. glabrata C. krusei C. parapsilosis

111a 12.5 6.25 6.25 12.5
111b 6.25 3.12 6.25 6.25
111c 12.5 6.25 6.25 12.5
111d 6.25 12.5 6.25 6.25
111e 12.5 6.25 12.5 12.5
111f 6.25 3.12 3.12 6.25
111g 3.12 6.25 6.25 6.25
111h 12.5 6.25 12.5 6.25
111i 0.78 1.56 1.56 0.78
111j 12.5 6.25 12.5 12.5
111k 12.5 6.25 12.5 12.5
111l 6.25 12.5 6.25 12.5

111m 3.12 3.12 3.12 6.25
111n 3.12 3.12 1.56 3.12
111o 3.12 3.12 6.25 6.25
111p 12.5 12.52 6.25 6.25
111r 6.25 3.12 3.12 3.12
111s 0.78 1.56 1.56 0.78

Ketokonazole 0.78 1.56 1.56 1.56
Fluconazole 0.78 1.56 1.56 0.78
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Figure 19. Structure of benzimidazole-1,2,4-triazole hybrids 113a–113l.
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3.4. 6-Substituted-Benzimidazole-R(Ar)-1-1,2,4-Triazole

Nandha et al. reported synthesis of 6-substituted-benzimidazoles with 1-(1,2,4-triazole)
115a–115d in three steps from 5-chloro-4-fluoro-2-nitrobenzenamine (Scheme 30). All
compounds were screened against M. tuberculosis and four fungal strains, C. albicans,
C. glabrata, C. krusei, and C. tropicalis. Compound 115c was the most active against M.
tuberculosis and all tested fungal strains (MIC = 25 µg mL−1) [169].
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4. Synthesis and Antiviral Activities of Benzimidazole-Triazoles

Over 200 viruses are known to cause disease in humans, yet currently approved
antiviral drugs are available to treat only about 10 of these viral infections [170,171]. The
past decade has underscored the global threat posed by emerging viruses. An alternative
solution is the development of broad-spectrum antiviral drugs. One advantage of this
approach is reduced time and cost associated with the early stages of drug development
per approved indication. It can also diminish the clinical risks in more advanced stages
of development [172,173]. Youssif et al. reported the synthesis of benzimidazole-1,2,3-
triazole hybrids 2-{4-[(1-benzoylbenzimidazol-2-ylthio)methyl]-1H-1,2,3-triazol-1-yl}-N-(4-
nitro-phenyl)-acetamide 116 and 2-(4-{[1-(4-chlorobenzoyl)-benzimidazol-2-ylthio)methyl]-
1H-1,2,3-triazol -1-yl}-N-(4-nitrophenyl)-acetamide 117 which showed significant activity
against hepatitis C virus (HCV) (Figure 21). Thus, fifty percent effective concentrations
(EC50) of HCV inhibition for compounds 116 and 117 were 7.8 and 7.6 µmol L–1, respectively,
and the 50% cytotoxic concentrations (CC50) were 16.9 and 21.1 µmol L–1. The results gave
an insight into the importance of the substituent at position 2 of benzimidazole for the
inhibition of HCV [73].
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The antiviral activity of compounds 59a–59e was tested against two viruses, viz.,
Japanese encephalitis virus (JEV) (P20778), an RNA virus of higher pathogenicity, and Herpes
simplex virus type-I (HSV-I) (753166), the most common virus present in the environment.
The antiviral activity of the compounds data is given in Table 12. All but one of the five
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compounds were found active against JEV. Compound 59b displayed 90% CPE (cytopathic
effect) in vitro with an effective concentration of 8 µg mL–1, while in vivo activity was
less significant (16% protection with an MST of 4 days). The authors suggested that these
compounds are better anti-JEV agents than anti-HSV agents since two such compounds,
namely 59b and 59e, also displayed a measurable degree of anti-JEV activity in vivo.
Compound 59c was found antivirally inactive against both viruses. The anti-HSV-I activity
was found to be in the order of 33, 46, 53, and 64% for compounds 59a, 59b, 59d, and 59e,
respectively. Since among compounds 59a to 59e, only compound 59e contains a methyl
group instead of H as R1; it follows that R1 does not seem to be responsible for the biological
activity [139].

Table 12. Anti-JEV and anti-HSV activity of compounds 59a–59e.

Compd.

In Vitro In Vivo

CT50
(µg mL–1)

EC50
(µg mL–1) TI

CPE
Inhibition

(%)

Dose (µg per
Mouse per

Day)

MST
(days)

Protection
(%)

Anti-JEV
59a 125 4 31 30 200 - -
59b 125 8 16 90 200 4 16
59c - - - - - - -
59d 125 4 31 30 200 - -
59e 250 62.5 4 50 200 2 10

Anti-HSV
59a 125 62.5 2 33 - - -
59b 125 62.5 2 46 - - -
59c - - - - - - -
59d 125 31.25 4 53 200 - -
59e 250 7.8 32 64 200 - -

CT50—50% cytotoxic concentration, EC50—50% effective concentration, TI—therapeutic index (TI = CT50/EC50).
CPE—cytopathic effect, MST—mean survival time.

Tonelli et al. synthesized a series of 1-substituted 2-[(benzotriazol-1/2-yl)methyl]
benzimidazoles 118–137 and tested for antiviral activity against a large panel of RNA
and DNA viruses (Figure 22). Twelve compounds exhibited high activity against RSV
(Respiratory Syncytial Virus), with EC50 values in most cases below 1 µM, comparing
favorably with the reference drug 6-azauridine, which, moreover, exhibited high toxicity
against both the MT-4 and Vero-76 cell lines (S.I. = 16.7). The observed activity against
BVDV (Bovine Viral Diarrhea Virus), YFV (Yellow Fever Virus), and CVB2 (Coxsackie
virus B2) is moderate, with EC50 values in the range of 6–55 µM for the best compounds
(Table 13). Though not particularly impressive, the presently uncovered activity against
BVDV, YFV, and CVB2 is of some interest because it may lead, through the identification
of the target, to the development of broad spectrum antiviral agents. In this respect, the
definition of the mode of action of the above compounds is mandatory. Furthermore,
since the activity against these viruses was influenced by the presence and nature of the
substituents in position “5” of the benzimidazole ring, it will be worthwhile to further
explore the effect of diversified substitutions as a possibility to improve activity and/or
decrease cytotoxicity [174]. SARS-CoV-2 and its variants, especially the Omicron variant,
remain a great threat to human health [10]. More novel variants of SARSCoV-2 are also
expected to originate in the future. Therefore, efforts should be made to develop wide-
ranging measures to prevent future outbursts of zoonotic origin. Recent articles reported
essential and up-to-date information about SARS-CoV-2 variants, antiviral drugs, and
vaccines used to fight it [175,176].
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Table 13. RSV, BVDV, YFV, and CVB2 Inhibitory Activity of hybrids 118–137 expressed as EC50 (µM).

Compound Anti-RSV
Activity

Anti-BVDV
Activity

Anti-YFV
Activity

Anti-CVB2
Activity

118 0.7 - - -
119 2.3 - - -
120 0.7 >100 80 >100
121 0.7 63 >90 >100
122 0.3 53 >70 >100
123 0.15 51 >60 >100
124 0.03 - - -
125 0.7 - - -
126 0.06 90 >100 >100
127 0.1 72 >54 >100
128 0.9 15 6 40
129 0.05 19 >21 >88
130 0.02 14 >20 26
131 10.0 - - -
132 7.0 - - -
133 1.9 67 >36 >100
134 >36 15 >18 >36
135 9 - - -
136 11 80 >45 >100
137 23.0 80 27 >83

6-Azaurine 1.2 >100 26 >100

Al-Humaidi et al. reported the synthesis of a series of benzimidazole-1,2,3-triazoles
138–140 (Figure 23). Molecular docking studies and in vitro enzyme activity revealed that
most of the investigated compounds demonstrated promising binding scores against the
SARS-CoV-2 and Omicron spike proteins in comparison to the reference drugs (Table 14).

Antibiotics 2023, 12, x FOR PEER REVIEW 32 of 42 
 

N

N
N

N

N
N NH

N S

H2N

S

N
N

N

N NH

N
S

NH2

N

N
N

N

N
N NH

N S

Ph

S

N
N

N

N NH

N
S

Ph

138 139

N

N

S
N

NN

S
O

O
N
H

N
O

N

N
N

S
N
H

O

O
N

O140

 

Figure 23. Structure of antiviral benzimidazole-1,2,3-triazole hybrids 138-140. 

Table 14. Antiviral activity of benzimidazole-1,2,3-triazole hybrids 138-140. 

Compound CC50 (µg mL−1) EC50 (µg mL−1) Selectivity Index (SI) 

Ceftazidime 1045.53 85.07 12.29 

138 1065.51 155.05 6.87 

139 1530.5 306.1 5.0 

140 1028.28 80.4 12.78 

Data proved the promising activity of the tested compound 140, with its IC50 reaching 

75.98 nM against the Omicron spike protein and 74.51 nM against the SARS-CoV-2 spike 

protein. The three-dimensional binding mode of compound 140 is shown in Figure 24. 

Benzimidazole-1,2,3-triazole hybrids can be potent anti-HSV (Herpes simplex virus) 

agents. These compounds were screened against flaviviruses and pestiviruses. Com-

pound 141 showed excellent activity against respiratory syncytial virus (RSV) with an EC50 

value of 0.02 mM (Figure 25) [74]. Seliem et al. designed and synthesized some quinolone–

triazole conjugates against SARS-CoV-2. It was revealed that 4-((1-(2-chlorophenyl)-1H-

1,2,3-triazol- 4-yl)methoxy)- 6-fluoro-2-(trifluoromethyl)quinoline and 6-fluoro-4-(2-(1-(4-

methoxyphenyl) -1H-1,2,3- triazol-4-yl)ethoxy)-2-(trifluoromethyl)quinoline have high 

antiviral activity with a high selectivity index (SI) against SARS-CoV-2 in comparison to 

the reference drugs. They explained that the fluorine atoms in the tested compounds have 

a major role in the observed antiviral activity [43]. The importance of the 1,2,4-triazole ring 

in antiviral compounds is reviewed by El-Sebaey, who emphasizes the importance of the 

substituents in the triazole nucleus, as well as the important role of other heterocycles in 

the molecule [177]. 

 

Figure 24. Three-dimensional binding mode of compound 140 (green) at the binding interface 

between the Omicron S-RBD (red) and human ACE2 (blue) [74]. 

Figure 23. Structure of antiviral benzimidazole-1,2,3-triazole hybrids 138–140.



Antibiotics 2023, 12, 1220 30 of 39

Table 14. Antiviral activity of benzimidazole-1,2,3-triazole hybrids 138–140.

Compound CC50 (µg mL−1) EC50 (µg mL−1) Selectivity Index (SI)

Ceftazidime 1045.53 85.07 12.29
138 1065.51 155.05 6.87
139 1530.5 306.1 5.0
140 1028.28 80.4 12.78

Data proved the promising activity of the tested compound 140, with its IC50 reaching
75.98 nM against the Omicron spike protein and 74.51 nM against the SARS-CoV-2 spike
protein. The three-dimensional binding mode of compound 140 is shown in Figure 24.
Benzimidazole-1,2,3-triazole hybrids can be potent anti-HSV (Herpes simplex virus) agents.
These compounds were screened against flaviviruses and pestiviruses. Compound 141
showed excellent activity against respiratory syncytial virus (RSV) with an EC50 value
of 0.02 mM (Figure 25) [74]. Seliem et al. designed and synthesized some quinolone–
triazole conjugates against SARS-CoV-2. It was revealed that 4-((1-(2-chlorophenyl)-1H-
1,2,3-triazol- 4-yl)methoxy)- 6-fluoro-2-(trifluoromethyl)quinoline and 6-fluoro-4-(2-(1-(4-
methoxyphenyl) -1H-1,2,3- triazol-4-yl)ethoxy)-2-(trifluoromethyl)quinoline have high
antiviral activity with a high selectivity index (SI) against SARS-CoV-2 in comparison to
the reference drugs. They explained that the fluorine atoms in the tested compounds have
a major role in the observed antiviral activity [43]. The importance of the 1,2,4-triazole ring
in antiviral compounds is reviewed by El-Sebaey, who emphasizes the importance of the
substituents in the triazole nucleus, as well as the important role of other heterocycles in
the molecule [177].
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5. Conclusions

This review summarizes the syntheses of benzimidazole–triazole compounds with
antimicrobial and antiviral properties mentioned in the literature. The presence of certain
groups grafted on the benzimidazole and triazole nuclei, such as -F, -Cl, -Br, -CF3, -NO2,
-CN, -NHCO, -CHO, -OH, OCH3, -N(CH3)2, COOCH3, as well as other heterocycles in
the molecule (pyridine, pyrimidine, thiazole, indole, isoxazole, thiadiazole, coumarin),
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increases the antimicrobial activity of the compounds [4,5,114,115,165,178–180]. From
the presented literature data, we can highlight some aspects related to the correlation:
structure—antimicrobial properties.

- The presence of substituents in the “4” or “5” positions of the benzimidazole nu-
cleus can increase the antimicrobial activity of the benzimidazole-triazole hybrids
(compounds 12, 13, 19, 20, 35).

- The presence of the ortho- or para-substituted phenyl substituent in the “1” position
of 1,2,3-triazoles in benzimidazole-triazole hybrids can increase their antimicrobial
activity.

- In the case of benzimidazoles substituted in the “1” position with triazoles, the pres-
ence of an aliphatic or aromatic radical substituent increases the antimicrobial activity
of the hybrids.

- The presence of the oxygen atom in the bridge that connects the benzimidazole and
triazole rings is favorable to the antimicrobial activity of the hybrids (compounds 19,
20, 21, 29, 30).

- The presence of the sulfur atom in the bridge that connects the benzimidazole and
triazole rings is favorable to the antimicrobial activity of the hybrids and even to the
antitubercular activity (95–97, 105, 107).

- The presence of a supplementary triazole ring in benzimidazole-triazole hybrids
improves their antimicrobial activity (compounds 43, 45, 47).

- The presence of the benzoyl substituent in the “5” position of the benzimidazole in
the benzimidazole-1,2,4-triazole hybrids clearly improves their antimicrobial activity
(compounds 85a–85e).

- The phenyl nucleus as a spacer between the “1” position of 1,2,4-triazole and the “2”
position of benzimidazole favors the formation of antimicrobial compounds, and the
substituents in the “5” position of the benzimidazole nucleus increase the antimicrobial
activity (compounds 79, 111, 112, 113).

- Only benzimidazole-1,2,3-triazole hybrids are mentioned in the literature as having
antiviral properties.

- 2-Substituted or 1,2-disubstituted benzimidazoles with 1,2,3-triazoles are mentioned
as antiviral compounds, and the presence of an additional triazole ring improves the
antiviral activity (compound 140).

The presence of both the benzimidazole ring and the triazole ring in a single molecule
enhanced the effectiveness of the antimicrobial activities, as seen in the sections above. The
recent ADME and SAR studies mentioned in this review are also important for directing
new syntheses of benzimidazole-triazole hybrids in close correlation with their properties.

As mentioned in the cited literature, it is extremely useful, both from a therapeutic
and economic point of view, that the synthesized compounds, such as the benzimidazole-
triazole hybrids analyzed in this review, possess both antimicrobial and antimicrobial
biological activity antiviral, to meet the medical requirements demanded especially lately,
for better action, especially in the case of SARS-CoV-2.

The ADME studies performed on the benzimidazole-triazole hybrids mentioned in
this review recommend the compounds as antimicrobials and antivirals and open new
horizons to create new compounds, following the conclusions found here, with improved
biological properties.

The articles researched on this topic, although they report the general characteristics of
these molecules (lipophilicity/hydrophilicity), in order to have the desired antimicrobial or
antiviral properties, refer only to liquid formulations in the form in which the compounds
were tested, and so far not no article is reported that formulates in the form of nanosystems,
nanoparticles for better availability of the active substance. This remains an open research
topic for future studies.

We hope that this review will be useful for the design and synthesis of new benzimidazole-
triazole hybrids with antimicrobial and antiviral properties in the context of exacerbation of
microbial and viral infections and resistance to treatments with drugs known on the market.
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26. Dik, B.; Coşkun, D.; Bahcivan, E.; Unez, K. Potential antidiabetic activity of benzimidazole derivative albendazole and lan-

soprazole drugs in different doses in experimental type 2 diabetic rats. Turk. J. Med. Sci. 2021, 51, 1578–1585. [CrossRef]
[PubMed]

27. Farid, S.M.; Noori, M.; Montazer, M.N.; Ghomi, M.K.; Mollazadeh, M.; Dastyafteh, N.; Irajie, C.; Zomorodian, K.; Mirfazli,
S.S.; Mojtabavi, S.; et al. Synthesis and structure–activity relationship studies of benzimidazole-thioquinoline derivatives as
α-glucosidase inhibitors. Sci. Rep. 2023, 13, 4392. [CrossRef]

28. Stanton, J.B.; Schneider, D.A.; Dinkel, K.D.; Balmer, B.F.; Baszler, T.V.; Mathison, B.A.; Boykin, D.W.; Kumar, A. Discovery of a
Novel, Monocationic, Small-Molecule Inhibitor of Scrapie Prion Accumulation in Cultured Sheep Microglia and Rov Cells. PLoS
ONE 2012, 7, e0119084. [CrossRef]

29. Dinparast, L.; Zengin, G.; Bahadori, M.B. Cholinesterases Inhibitory Activity of 1H-benzimidazole Derivatives. Biointerface Res.
Appl. Chem. 2021, 11, 10739–10745. [CrossRef]

30. Adalat, B.; Rahim, F.; Taha, M.; Alshamrani, F.J.; Anouar, E.H.; Uddin, N.; Shah, S.A.A.; Ali, Z.; Zakaria, Z.A. Synthesis of
Benzimidazole–Based Analogs as Anti Alzheimer’s Disease Compounds and Their Molecular Docking Studies. Molecules 2020,
25, 4828. [CrossRef]

31. Cheretaev, I.V.; Korenyuk, I.I.; Nozdrachev, A.D. Neurotropic, Psychoactive, and Analgesic Properties of Benzimidazole and Its
Derivatives: Physiological Mechanisms. Neurosci. Behav. Physiol. 2018, 48, 848–853. [CrossRef]

32. Maltsev, D.V.; Spasov, A.A.; Vassiliev, P.M.; Skripka, M.O.; Miroshnikov, M.V.; Kochetkov, A.N.; Eliseeva, N.V.; Lifanova, Y.V.;
Kuzmenko, T.A.; Divaeva, L.N.; et al. Synthesis and Pharmacological Evaluation of Novel 2,3,4,5-tetrahydro[1,3]diazepino[1,2-
a]benzimidazole Derivatives as Promising Anxiolytic and Analgesic Agents. Molecules 2021, 26, 6049. [CrossRef] [PubMed]

33. Yen, T.L.; Wu, P.; Chng, C.L.; Yang, W.B.; Jayakumar, T.; Geraldine, P.; Chou, C.M.; Chang, C.Y.; Lu, W.J.; Sheu, J.R. Novel synthetic
benzimidazole-derived oligosaccharide, M3BIM, prevents ex vivo platelet aggregation and in vivo thromboembolism. J. Biomed.
Sci. 2016, 23, 26. [CrossRef] [PubMed]

34. Zhang, T.; Liu, Q.; Ren, Y. Design, synthesis and biological activity evaluation of novel methyl substituted benzimidazole
derivatives. Tetrahedron 2020, 76, 131027. [CrossRef]

35. Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem. 2019, 168, 357–372.
[CrossRef] [PubMed]
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