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Abstract: Polymicrobial biofilms provide a complex environment where co-infecting microorganisms
can behave antagonistically, additively, or synergistically to alter the disease outcome compared
to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are
frequently reported in healthcare and community settings, and they can also involve other bacterial
and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such
as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species
biofilms in chronic wounds has been extensively described. This review article explores the recent
updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas
aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among
others. The molecular mechanisms behind these polymicrobial interactions in the context of infected
wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.

Keywords: Staphylococcus aureus; skin and soft tissue infection; polymicrobial infection;
interspecies interactions

1. Introduction

Skin and soft tissue infections (SSTIs) comprise a group of infections that affect the skin
and underlying subcutaneous tissue, fascia, or muscle. These infections can vary in severity,
ranging from superficial infections of mild to moderate severity to deeper necrotizing
infections [1,2]. SSTIs have significant global impact, increasing hospitalizations, length of
stay, and mortality [3–5].

Several classifications can be adopted for SSTIs, depending on specific variables such
as anatomical localization, etiological agent(s), skin extension, progression rate, clinical
presentation, and severity [6–9]. The Infectious Diseases Society of America (IDSA) classifi-
cation is based on three different distinctions: (i) skin extension, uncomplicated, typically
superficial infections, and complicated infection, basing the latter definition for those
reaching deep structures of the skin; (ii) rate of progression, acute wound infections (trau-
matic, bite-related, postoperative) and chronic wound infections (diabetic foot infections,
venous stasis ulcers, pressure sores); (iii) tissue necrosis, necrotizing (fascitis, myonecrosis,
gangrena) and non-necrotizing infections [7]. There is one last criterion that allows the
differentiation of SSTIs as monomicrobial and polymicrobial [3]. Especially those infections
with a long lasting or chronic course can be sustained by multiple microbial species [10].

All these classifications include patients with the following clinical entities: (i) cel-
lulitis/erysipelas, defined as a skin infection characterised by spreading areas of redness,
edema, or induration; (ii) wound infection, characterised by purulent drainage from a
wound with surrounding redness, edema, or induration; and (iii) major cutaneous abscess
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characterised by a collection of pus within the dermis or deeper that is accompanied by
redness, edema, or induration [3].

Staphylococcus aureus, an opportunistic Gram-positive pathogen, is a common cause of
SSTIs, ranging from the benign (e.g., impetigo and uncomplicated cellulitis) to the immedi-
ately life-threatening [3,11]. Among S. aureus strains, methicillin-resistant S. aureus (MRSA)
isolates are of particular concern because they can also exhibit concomitant resistance to
many commonly used antibiotics. The specific multidrug-resistant pattern of MRSA can
vary depending of the geographic location and includes resistance to macrolides (ery-
thromycin and clarithromycin), lincosamides (clindamycin), aminoglycosides (gentamicin),
tetracyclines (tetracycline and doxycycline), and fluoroquinolones (ciprofloxacin) [12–14].

S. aureus expresses several factors that facilitate skin colonization and infection. These
include various toxins and immune evasion factors, and a large array of protein and non-
protein factors that enable host colonisation during infection [15,16]. S. aureus avoids being
eliminated by neutrophils on many levels that include: (i) the inhibition of neutrophil
extravasation from the bloodstream into the tissues, neutrophil activation, and chemotaxis,
(ii) inhibition of phagocytosis by aggregation, protective surface structures, and biofilm for-
mation, (iii) inhibition of opsonisation, (iv) inhibition of neutrophil killing mechanisms, and
(v) direct elimination of neutrophils by cytolytic toxins or triggering of apoptosis [16,17].

Furthermore, biofilm formation has been postulated as a common behaviour of
S. aureus isolates from skin infections [18–21]. Biofilms pose a significant challenge in
the treatment of these infections due to their unique characteristics and the protective envi-
ronment they create. In this regard, biofilms show increased resistance to host immunity
and increased tolerance to antibiotics compared to their planktonic counterparts [22,23].

Polymicrobial SSTIs involving S. aureus have been reported (Sa-SSTIs) [10,11,24–26].
Most mixed-species SSTIs are associated with chronicinfections such as diabetic foot infec-
tions (DFIs), pressure ulcers infection, and burn infection, among others [10]. These chronic
wounds can commonly become infected with polymicrobial biofilms containing bacterial
and fungal microorganisms [27,28]. Mixed biofilm communities provide a complex envi-
ronment in which a variety of interactions may occur, ranging from cooperative interactions
to antagonism [29,30]. The polymicrobial interactions in wounds may help the partner
species to establish and infect the tissues. It has been reported that the high polymicrobial
load in wounds delays the wound closure and favours the emergence of antibiotic-resistant
strains compared to the single-species biofilms [31,32]. Understanding the microbial species
involved, predisposing factors of the disease progression, and the polymicrobial interaction
between microorganisms is essential for diagnosing and developing treatment strategies.

This review article explores the recent updates on the microorganisms commonly
found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli,
Enterococcus spp., Acinetobacter baumannii, and Candida albicans. The molecular mechanisms
behind these polymicrobial interactions and their impact on pathogenesis and antimicrobial
susceptibility are also revised.

2. Occurrence of PolymicrobialSSTI Associated with S. aureus (Sa-SSTIs)

Infections with a long-lasting or chronic course are usually sustained by multiple
microbial aetiologies [30,33–35]. In this regard, polymicrobial SSTIs are usually observed
for diabetic foot ulcers, pressure ulcers, and burn wounds [3,10]. Microbiological assess-
ment of polymicrobial SSTIs, performed by standard culturing techniques or molecular
methods, can be challenging [3,36,37]. Culture-dependent techniques are biasedtoward
those microorganisms that develop well under laboratory conditions, and might inade-
quately represent fungal and bacterial communities in chronic wounds [20,38]. On the other
hand, culture-independent, amplicon-based sequencing methods (i.e., bacterial and fungal
16S rRNA gene sequencing) have the major limitation of failing to distinguish individual
species [21,39]. Recently, exhaustive strain-level classification of microbial communities has
been achieved by shotgun metagenomic sequencing [40]. Consequently, a combinationof
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metagenomic approach and culturing methods seems to be more adequate to identify the
complex microbial communities formed in chronic wounds [41].

The microbiology of SSTIs shows that S. aureus is a frequent aetiology, with a high
incidence of MRSA [2,8]. Cumulative data indicate that up to 70% of Sa-SSTIs are polymi-
crobial [2,10,25]. As mentioned early, mixed-species SSTIs are usually associated with
chronic infections such as diabetic foot infections (DFIs), pressure ulcers infection, and burn
infections [3].

2.1. Diabetic Foot Infections (DFIs)

Diabetic foot ulcers are a common complication of diabetic patients affecting their
lower extremities; these wounds occur due to a combination of factors such as reduced
blood flow and nerve damage (neuropathy) [42,43]. Although usually initially characterised
as acute wounds, their inability to progress through the healing stages converts them into
chronic wounds [11].

Diabetic foot ulcers are highly susceptible to infections due to several reasons: (i) diabetes
can cause peripheral neuropathy, which damages the nerves in the feet, making it difficult
for the patient to notice a foot ulcer infection developing; (ii) compromised blood circulation
that impairs the immune cells to reach the wound efficiently; and (iii) prolonged healing due
to the underlying complications mentioned before, which provides an extended window
of opportunity for bacteria to multiply and establish an infection. Once an ulcer becomes
infected, the bacteria can spread through the tissues, leading to cellulitis, abscess formation,
osteomyelitis (infection of the bone), or systemic infection if left untreated. In severe cases,
the infection can progress to a point where amputation becomes necessary [44].

Chronic diabetic foot ulcers usually become infected with bacterial biofilms, which
constitute a significant factor contributing to the severity and delayed healing of diabetic
foot infections (DFIs) [20]. Diabetic foot ulcers are typically colonised with skin commensal
bacteria establishing biofilms that increase their microbial diversity over time and with
progression of the ulcer [21,45]. Some common microorganisms associated with DFIs are
Staphylococcus spp., Corynebacterium spp., and P. aeruginosa [26,46]; however, these infections
involve a great diversity of microbes. The microorganisms reported to co-exist with S. aureus
in polymicrobial DFIs are mainly gram negative bacteria: P. aeruginosa, Acinetobacter spp.,
Escherichia coli, Enterobacter spp., Citrobacter spp., Proteus spp., Klebsiella spp. In addition,
Gram-positive Enterococcus spp. have also been reported to co-occur with S. aureus in DFIs
(Table 1) [10,27].

Table 1. Microbial species in polymicrobial Sa-SSTIs.

Type of Infections Co-Infecting Microorganisms References

Diabetic foot ulcers

Gram negative bacteria
P. aeruginosa

Acinetobacter spp. (Acinetobacter baumannii)
Escherichia coli

Enterobacter spp.
Citrobacter spp.

Proteus spp.
Klebsiella spp.

Gram positive bacteria
Enterococcus spp. (Enterococcus faecalis)

[10,27]

Pressure ulcers infections

Gram negative bacteria
Pseudomonas aeruginosa

Escherichia coli
Proteus spp. (Proteus mirabilis)

Enterobacter cloacae
Gram positive bacteria

Enterococcus spp. (Enterococcus faecalis)

[29,47,48]

Burn infections

Gram negative bacteria
Pseudomonas aeruginosa

Fungi
Candida albicans

[49–52]
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2.2. Pressure Ulcer Infections

Pressure ulcers (PUs) are injuries to the skin and underlying tissue resulting from
ischemia caused by prolonged pressure on the skin [28]. PUs can affect any part of the
body that is put under pressure. They are most common on bony parts of the body, such
as the heels, elbows, hips, and base of the spine [53]. PUs are a significant health problem
worldwide that commonly occurs among inpatients and elderly people with physical-motor
limitations. The overall prevalence of pressure ulcers in hospitalised patients has been
estimated to range from 5% to 15% but may be significantly higher in intensive care units
and certain long-term care settings [54,55].

PUs are typically categorised into stages based on their severity: (i) Stage 1, the skin
is intact, but there may be non-blanchable erythema; (ii) Stage 2, partial-thickness skin
loss with exposed dermis; (iii) Stage 3, full-thickness skin loss: (iv) Stage 4, full-thickness
skinand tissue loss; (v) unstageable pressure injury, obscured full-thickness skinand tissue
loss; (vi) deep tissue pressure injury, persistent nonblanchable deep red, maroon, or purple
discoloration [54,55].

These wounds are frequently exacerbated by the presence of bacteria and advanced
stages of PUs are described to be polymicrobial and linked with biofilm-associated in-
fections [28,29]. The most common organisms identified in PUs are S. aureus, Proteus
mirabilis, P. aeruginosa, and E. faecalis [53]. In chronically infected PUs, S. aureus has been
found together with P. aeruginosa, E. coli, P. mirabilis, Enterobacter cloacae, and E. faecalis
(Table 1) [29,47,48].

2.3. Burn Wound Infections

Burn wounds refer to injuries that result from exposure to heat, chemicals, electricity, or
radiation, and they are considered a public health issue all over the world, especially in low-
or middle-income countries [56,57]. Burn wounds can vary in severity and are typically
classified, based on the depth and extent of tissue damage, as follows: (i) first-degree
burns, superficial burns, called erythema, that only affect the epidermis; (ii) second-degree
burns, partial-thickness superficial burns where the epidermis and the dermis are damaged;
(iii) third-degree burns, full-thickness deep burns that affect all layers of the skin, including
the subcutaneous tissue and the muscle; (iv) fourth-degree burns, full-thickness burns
including deeper lying tissues such as muscles, tendons, or bones [58].

Burn wounds are particularly susceptible to infections because the damaged skin
provides an entry point for microbes, including bacteria and fungi. Microbial infections
in burn wound patients are difficult to control; moreover, biofilm formation in burns is
a major concern [49,59]. Some of the bacteria commonly found in chronic burn wound
infections are P. aeruginosa, S. aureus, Streptococcus spp., Klebsiella spp., Enterococcus spp.,
and E. coli. In addition, the most prevalent fungi are Aspergillus niger and Candida spp. [60].
In particular, chronic burn wounds co-infected by S. aureus/P. aeruginosa and S. aureus/C.
albicans have been widely reported (Table 1) [49–52].

3. Implications of Polymicrobial Interactionson Infection Outcome

Polymicrobial infections, which are being recognised with increasing frequency, can
occur in various parts of the body including the oral cavity, respiratory tract, urinary tract,
skin, and wounds [30,61,62]. The presence of multiple microbial species in a polymicrobial
infection can lead to several challenges in diagnosis, treatment, and management [61,63,64].
This is partly because infectious polymicrobial communities are often found to be more
resistant to antibiotics than their mono-culture counterparts [65,66].
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A polymicrobial biofilm is a complex community of microorganisms (fungi, bacteria,
and viruses) that adhere to a biotic or abiotic surface, and it is embedded in a self- and/or
host-derived hydrated matrix, often consisting of polysaccharides, proteins, and extracellu-
lar DNA [30,67]. Biofilm formation involves a series of steps: aggregation or attachment of
cells to a surface, growth of the cells into a sessile biofilm colony, and detachment of the
cells from the colony into the surrounding medium [22,68]. Because of the large variety
and concentration of microbes present in polymicrobial biofilms, each of these stages can
be shaped by species-specific physical and chemical interactions, ranging from cooperative
relationships to microbial competition [34,69].

3.1. Beneficial Interactions

In polymicrobial biofilms, the synergism and cooperation between microbial species
are important to keep the coexistence of different microorganism, outcompeting possible
mutual antagonistic effects [70,71].

A behaviour that helps to promote multispecies coexistence within a biofilm oc-
curs when microbes initiate cohesion and coaggregation by producing several adhesion
molecules that induce intercellular interactions. Coaggregation has been very well studied
in the oral biofilm–dental plaque, and it can involve fimbriae, other surface proteins with
adhesive properties, and extracellular polysaccharides; for example, the short fimbriae of
Porphyromonasgingivalis play a role in coadhesion with Streptococcus gordonii [72,73].

Another important cooperative strategy is related to metabolic interactions, such
as cross-feeding. This occurs when different strains have access to distinctive nutrient
substrates, and the product of one strain’s metabolism can be utilised in the nutrition
of another. An example is that of Aggregatibacter actinomycetemcomitans and Streptococcus
gordonii, bacteria isolated from the human oral cavity. It has been shown that Streptococcus
gordonii can secrete lactate as a metabolic byproduct, and this lactate is used as a preferred
carbon source by Aggregatibacter actinomycetemcomitans, favouring its growth [74]. Cross-
feeding is beneficial because it gives single or multispecies biofilm systems higher metabolic
efficiency that can better support the growth of the microorganisms [71,75].

Quorum sensing, a type of cell signalling related to the ability to detect and respond
to cell population density by gene regulation, is important in biofilm formation and inter-
species communication. Quorum sensing acts through small diffusible signal molecules
(autoinducers) that have been implicated in interspecies cooperation [71]. In this regard,
Autoinducer 2 (AI-2) produced by Enterococcus faecalis promotes collective behaviours of
Escherichia coli at lower cell densities, enhancing autoaggregation of E. coli but also leading
to chemotaxis-dependent coaggregation between the two species [76].

In addition, within biofilms, different species of bacteria can use horizontal gene trans-
fer to exchange antibiotic resistant genes, helping the entire community survive antibiotic
exposure. The mechanisms of horizontal gene transfer include conjugation, transformation,
transduction, membrane vesicles, and gene transfer agents [77–79]. It has been widely
reported that horizontal gene transfer allows microbes to acquire new sources of antibiotic
resistant genes [80]. For example, one study described that a plasmid harboring a carbapen-
emase resistance gene (blaNDM-1) can be transferred from E. coli to either P. aeruginosa or
Acinetobacter baumannii via conjugation within dual-species biofilms [81].

Finally, microorganisms in polymicrobial biofilms may benefit each other by secreting
certain beneficial molecules, such as enzymes that inactivate detrimental agents. In this
context, studies of polymicrobial biofilms related to otitis media evidenced that beta-
lactamase production by Moraxella catarrhalis provides passive protection to Streptococcus
pneumoniae from beta-lactam antibiotic killing [82].
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3.2. Competitive Interactions

Bacteria in mixed-species biofilms have to coexist and compete for limited space and
nutrients. Competition between species appears to define the interactions that predominate
in microbial communities [83]. Competition is categorized into two modes, exploitative and
interference. Exploitative competition refers to indirect interactions between organisms,
by which one organism prevents access to and/or limits the use of resources by another
organism whereas interference competition is related to the production of antagonistic
factors to impede competitors [84–86].

In biofilms, bacteria live under severe environmental conditions, characterized by
low nutrient concentrations and low rates of gas renewal or exchanges [68]. Due to the
requirements for limited nutrients, different bacterial species compete for nutrients to
survive. Competition for iron has been widely observed and is related to the production
of iron-chelating molecules (siderophores) by microorganisms [69]. For example, iron
competition has been postulated to modulate bacterial composition of dual-species biofilms
formed by uropathogenic Klebsiella pneumoniae and E. coli strains, promoting K. pneumoniae
growth to the detriment of E. coli [87]. Moreover, oxygen competition has been described
between aerobic microorganisms growing in polymicrobial biofilm pellicles at the air liquid
interface. For instance, the facultative aerobe Pseudoxanthomonas outcompeted the obligate
aerobe Brevibacillus in dual-species pellicles through severe competition for oxygen [88].

In addition, metabolic byproducts generated by one microorganism can be toxic for
the surrounding organisms; this provides the first one a competitive advantage. In the
upper respiratory tract, hydrogen peroxide is a byproduct of the Streptococcus pneumoniae
metabolism that diminish cell viability of Neisseria meningitidis and Moraxella catarrhalis [89].

Bacterial competition can also be driven by the production of small antimicrobial com-
pounds, such as colicins, microcins, and bacteriocins. For example, Streptococcus salivarius
in the oral cavity secretes bacteriocins that inhibit several Gram-positive pathogens, such
as Streptococcus pneumoniae [90].

Contact-dependent growth inhibition mediated by the type 6 secretion system (T6SS)
is able to inject a toxic molecule into other competitor bacteria. In this regard, T6SS of
Burkholderia thailandensis conferred an ecological advantage to this species in mixed biofilms
because it protected B. thailandensis from invasion by other competitor species, for example,
Pseudomonas putida [91].

Finally, interference competition may occur by alteration of biofilm development.
Bacteria can use several biofilm-inhibiting strategies including: (i) quorum sensing inhi-
bition as a result of degradation of quorum sensing molecules or by blocking its synthe-
sis [92,93], (ii) inhibition of adhesion by modifying the surface with biosurfactants or by
down-regulating adhesion molecules [94,95], (iii) matrix degradation caused by secreted
enzymes [96,97], and (iv) the induction of biofilm dispersal on the competitor species by
secreting specific messenger molecules [98].

4. Interactions between S. aureus and P. aeruginosa

S. aureus and P. aeruginosa are two common microorganisms colonising chronic
wounds [50,99,100]. These two organisms, used as model organisms to study polymicrobial
interactions, have been shown to display both cooperative and competitive interactions
within the wound (Figure 1). The subtle balance between the competitive and cooperative
behaviours of S. aureus and P. aeruginosa could be the key to understanding this interspecies
relationship.
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4.1. Interactions Observed In Vitro in Co-Cultivation Experiments

Several competitive interactions between S. aureus and P. aeruginosa have been ob-
served by performing co-cultivation experiments under standard laboratory conditions.
P. aeruginosa excretes several small respiratory toxins that kill or inhibit growth of S. au-
reus, including pyocyanin that permeates the cells where it produces reactive oxygen
species [101,102]; the quorum sensing effector molecule 2-heptyl-4-hydroxyquinoline n-
oxide (HQNO) [103]; the LasA protease (also known as staphylolysin) that cleaves the
S. aureus peptidoglycan and induces its lysis [104]; rhamnolipids, which present antiad-
hesive and dispersing properties on S. aureus biofilms [105,106]; and the iron-chelating
siderophores pyoverdine and pyochelin [107].

In response to this antagonistic attack, S. aureus reduces its metabolism, favouring
small-colony variant selection as a survival strategy [108]. These S. aureus small-colony
variants are well known for stable aminoglycoside resistance and persistence in chronic
infections [109,110].

In vitro co-cultivation experiments using a wound-like medium demonstrated that the
quorum sensing systems of P. aeruginosa are inhibited by the albumin present in the serum;
consequently, the bacteria was unable to produce the virulence factors that kill S. aureus
such as HQNO. This results in the survival of S. aureus in the presence of P. aeruginosa [111].

4.2. Interactions Observed in Wound Infection Models

In contrast to the reported antagonisms described above, the results obtained in wound
infection models showed coexistence between S. aureus and P. aeruginosa. Studies during
early stages of wound coinfection evidenced a predominance of S. aureus in non-attached
bacterial aggregates and biofilm, favouring the subsequent attachment of P. aeruginosa to
human keratinocytes [112]. Moreover, P. aeruginosa promoted S. aureus invasion to these
cells. Co-infected keratinocytes showed an intermediate inflammatory response that is in
agreement with the maintenance of low-level tissue damage and can be associated with
chronicity, prolonged colonisation, and impaired wound repair [112].

In addition, P. aeruginosa showed a higher tolerance to gentamicin in S. aureus/P.aeruginosa
polymicrobial infection when compared to mono-infection in a murine chronic wound
infection model [113].On the other hand, the presence of P. aeruginosa induced the expres-
sion of S. aureus virulence factors alpha-toxin and Panton-Valentine leukocidin in a porcine
wound model when compared to infection with S. aureus alone [50]. A recent report showed
that S. aureus inactivated the P. aeruginosa-derived siderophore pyochelin via the methyl-
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transferase Spm (staphylococcal pyochelin methyltransferase), increasing S. aureus survival
during in vivo competition with P. aeruginosa in a murine wound co-infection model [114].
Furthermore, the secreted P. aeruginosa molecule HQNO induced the production of S. aureus
membrane-bound pigment staphyloxanthin (STX), which consequently promotes resistance
of both pathogens to innate immune effectors such as hydrogen peroxide [115].

Analysis of chronic wound biopsies suggests that S. aureus and P. aeruginosa occupy
distinct niches, albeit separated by a few hundred micrometres [116]. In the same way,
using a mouse chronic wound model, it has been observed that S. aureus and P. aeruginosa
coexist at high cell densities in murine wounds, establishing a patchy distribution [117,118].
A precise microbial spatial distribution at both the macro (mm)- and micro (µm)-scales was
mediated by P. aeruginosa production of the antimicrobial HQNO, while pyocyanin had
no impact. This precise spatial structure enhances S. aureus tolerance to aminoglycoside
antibiotics but not vancomycin [117]. Pougetet al. found that the percentages of biofilm
formation were significantly higher in the mixed S. aureus/P. aeruginosa biofilm compared
to those determined for the bacterial species alone and that S. aureus aggregates were
located close to the wound surface, whereas P. aeruginosa was located deeper in the wound
bed [118].

5. Interactions of S. aureus with Microorganisms other than P. aeruginosa
5.1. S. aureus and Enterococcus faecalis

S. aureus and E. faecalis have been implicated in biofilm-associated infections such
as chronic wounds, among others [27,119]. The transfer of vancomycin resistance genes
from E. faecalis to S. aureus has been observed in clinical settings [120,121]. Additionally,
it has been reported that in combination, these two species act synergistically, producing
augmented biofilm biomass (Figure 2) [122]. For this, heme cross-feeding has been reported,
and it was postulated to involve gelatinase-mediated heme acquisition by E. faecalis from
secreted S. aureus hemoproteins. Heme acquisition by E. faecalis facilitates its oxidative
respiration [122].
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senses S. aureus and responds by upregulating pks island gene expression [124]. Given 
that E. coli and S. aureus are co-isolated from wounds, it may be possible that these E. coli 
strains are unable to express the pks island. Another possibility is related to a spatial seg-
regation within wound biofilms such that colibactin-producing E. coli resides far enough 
from S. aureus to not be able to affect its viability [125]. 

5.3. S. aureus and Acinetobacter baumannii 
Wound co-infections with S. aureus and A. baumannii are found in clinical settings. It 

has been reported that clinical strains of S. aureus and A. baumannii that were recovered 
from the same site of infection (diabetic foot ulcer) exhibit a state of commensalism be-
tween the two when co-cultured in vitro, without an effect of one another, whether bene-
ficial or detrimental (Figure 2) [126]. More recently, evidence was published that A. bau-
mannii can sense and respond to molecules secreted by S. aureus, modulating virulence 
responses, such as motility and biofilm formation [127]. In addition, it has been shown 
that the fitness requirements of S. aureus in vivowere dramatically changed by co-
infection with A. baumannii, with around 50% of the essential genes needed during 
mono-infection converted to non-essential during co-infection [128]. 

5.4. S. aureus and Candida Albicans 
The mixed species of S. aureus and C. albicans can cause skin infections. An increase 

in S. aureus proliferation and biofilm formation was observed in S. aureus and C. albi-

Figure 2. Scheme of the studied microbial interactions of S. aureus. S. aureus can establish neutral
interactions and co-exist with A. baumannii. Competitive interactions have been reported for E. coli
on S. aureus trough the genotoxin colibactin. Synergistic interactions occur between S. aureus and
E. faecalis, where heme cross-feeding facilitates oxidative respiration in E. faecalis. C. albicans also
favors S. aureus proliferation, biofilm formation and virulence factors upregulation.

5.2. S. aureus and Escherichia coli

S. aureus and E. coli are among the most frequent cultured microorganisms from
wound infections [12,27,123]. By using a mouse excisional wound model, E. coli was
shown to antagonize the growth of S. aureus via the genotoxin colibactin (Figure 2) [124].
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The prevalence of polyketide synthase island (pks) in E. coli isolated from human wound
swabs was nearly 30% [124]. While the mechanism for colibactin release from E. coli or
penetration into target cells is not known, it has been shown that the colibactin intermediate
N-myristoyl-D-Asn (NMDA) is able to disrupt the S. aureus membrane [124]. Moreover,
during interspecies competition, the E. coli BarA-UvrY two-component system senses
S. aureus and responds by upregulating pks island gene expression [124]. Given that E. coli
and S. aureus are co-isolated from wounds, it may be possible that these E. coli strains are
unable to express the pks island. Another possibility is related to a spatial segregation within
wound biofilms such that colibactin-producing E. coli resides far enough from S. aureus to
not be able to affect its viability [125].

5.3. S. aureus and Acinetobacter baumannii

Wound co-infections with S. aureus and A. baumannii are found in clinical settings. It
has been reported that clinical strains of S. aureus and A. baumannii that were recovered
from the same site of infection (diabetic foot ulcer) exhibit a state of commensalism between
the two when co-cultured in vitro, without an effect of one another, whether beneficial
or detrimental (Figure 2) [126]. More recently, evidence was published that A. baumannii
can sense and respond to molecules secreted by S. aureus, modulating virulence responses,
such as motility and biofilm formation [127]. In addition, it has been shown that the
fitness requirements of S. aureus in vivowere dramatically changed by co-infection with
A. baumannii, with around 50% of the essential genes needed during mono-infection con-
verted to non-essential during co-infection [128].

5.4. S. aureus and Candida Albicans

The mixed species of S. aureus and C. albicans can cause skin infections. An increase in
S. aureus proliferation and biofilm formation was observed in S. aureus and C. albicans dual-
species culture [129]. According to the transcriptome analysis of the dual-species culture,
virulence factors of S. aureus were significantly upregulated. Moreover, the beta-lactams
and vancomycin-resistant genes in S. aureus as well as azole-resistant genes in C. albicans
were also significantly increased [129].

5.5. S. aureus and Commensal Skin Bacteria

It has been demonstrated that co-infection of S. aureus with commensal skin flora can
increase S. aureus virulence. This effect, termed augmentation, has been observed in several
infection models, including mouse soft-tissue infection [130]. A natural mix of mammalian
skin microflora, as well as isolated Staphylococcus epidermidis or Micrococcus luteus
strains, was able to augment S. aureus virulence. Moreover, pathogenesis augmentation
could be mediated by particulate cell wall peptidoglycan from a range of Gram-positive
species including Staphylococcus epidermidis, Curtobacterium flaccumfaciens, and Bacillus
subtilis, reducing the S. aureus infectious dose by over 1000-fold [130]. More recently,
in vitro and in vivo studies have evidenced that the molecular basis for augmentation is
absorption of reactive oxygen species by augmenting material (peptidoglycan), shielding
S. aureus from macrophage-mediated killing [131].

6. Conclusion and Perspectives

Polymicrobial human infections are of significant concern on human health. These
infections have been reported to be more tolerant to antibiotics and to cause worse clinical
outcomes compared to their single-species counterparts.

S. aureus in polymicrobial infections constitutes a greater medical problem than
S. aureus in single-species infections. The complex network of microbial S. aureus partners
and their interactions has the potential, through diversity in beneficial and/or competitive
crosstalk, to accelerate, delay, or worsen wound healing. Microorganisms coexisting in the
same site of infection can alter growth, gene expression, invasion ability, and antimicrobial
sensitivity patterns.
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Further investigations are required to better understand the multi-species interactions
between S. aureus and co-infecting organisms to design appropriate treatment strategies
and to improve the management of chronic polymicrobial skin and soft-tissue infections
involving S. aureus.
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