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Abstract: To investigate the persistence risk of Campylobacter spp. in poultry farms, and to study
the virulence and antimicrobial resistance characteristics in the recovered strains, we collected
362 samples from breeding hen flocks, before and after disinfection. The virulence factors were
investigated by targeting the genes; flaA, cadF, racR, virB11, pldA, dnaJ, cdtA, cdtB, cdtC, ciaB, wlaN, cgtB,
and ceuE by PCR. Antimicrobial susceptibility was tested and genes encoding antibiotic resistance
were investigated by PCR and MAMA-PCR. Among the analyzed samples, 167 (46.13%) were positive
for Campylobacter. They were detected in 38.7% (38/98) and 3% (3/98) of environment samples before
and after disinfection, respectively, and in 126 (75.9%) out of 166 feces samples. In total, 78 C. jejuni
and 89 C. coli isolates were identified and further studied. All isolates were resistant to macrolids,
tetracycline, quinolones, and chloramphenicol. However, lower rates were observed for beta-lactams
[ampicillin (62.87%), amoxicillin-clavulanic acid (47.3%)] and gentamicin (0.6%). The tet(O) and the
cmeB genes were detected in 90% of resistant isolates. The blaOXA-61 gene and the specific mutations in
the 23S rRNA were detected in 87% and 73.5% of isolates, respectively. The A2075G and the Thr-86-Ile
mutations were detected in 85% and 73.5% of macrolide and quinolone-resistant isolates, respectively.
All isolates carried the flaA, cadF, CiaB, cdtA, cdtB, and cdtC genes. The virB11, pldA, and racR genes
were frequent in both C. jejuni (89%, 89%, and 90%, respectively) and C. coli (89%, 84%, and 90%). Our
findings highlight the high occurrence of Campylobacter strains exhibiting antimicrobial resistance
with potential virulence traits in the avian environment. Thus, the improvement of biosecurity
measures in poultry farms is essential to control bacterial infection persistence and to prevent the
spread of virulent and resistant strains.

Keywords: campylobacter; antibiotic resistance; resistance mechanisms; virulence; breeding hens;
environment; risk factors

1. Introduction

Campylobacter spp. are a major cause of foodborne diarrheal illnesses in humans, and
represent the main cause of infant enteric disease in developing countries. Campylobacte-
riosis is an important zoonosis, with infection occurring mainly through the ingestion of
contaminated food and water, or direct contact with contaminated food animal species or
their carcasses [1]. Out of the 17 species and the 6 subspecies of the genus Campylobacter spp.,
C. jejuni and C. coli are the most commonly documented species in human diseases. The
infection causes inflammation, bloody diarrhea, cramps, fever, and pain. Even though the
pathogenesis of Campylobacter spp. is yet unclear, various virulence factors, such as motility,
adhesion, colonization, host cell invasion, and the production of cytolethal distending toxin
were associated with their pathogenicity [1,2].

For a human Campylobacter infection, supportive antimicrobial therapies are typ-
ically not necessary; however, in the case of immunocompromised people, pregnant
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women, children, and the elderly, an antibiotic therapy could be needed. Fluoroquinolones
(i.e., ciprofloxacin) and macrolides (erythromycin, azithromycin) are the most prescribed
drugs for human campylobacteriosis; in addition, tetracycline and gentamicin are also
effective against systemic infection with Campylobacter spp. [3]. These common antibiotics
are frequently used in food animals, such as chicken, to prevent and reduce bacterial
infections in farms and to improve the performance of the animals’ growth. Globally,
these practices have been associated with high rates of antimicrobial resistance (AMR) in
Campylobacter spp. isolated from animal sources. The loss of therapeutic effectiveness of
antibiotics due to AMR spreading leads to higher rates of mortality and morbidity from
infectious diseases both in humans and animals, generating serious socioeconomic and
public health problems [3].

Campylobacter spp. infect several animals (cattle, sheep, pigs, birds, reptiles, and
crustaceans, etc.); however, poultry are the main reservoir of these agents. The bacteria
colonize the cecum, distal jejunum, and cloaca of birds, given their ability to live in the
mucus and crypts of these organs. Most of Campylobacter species colonize and proliferate in
the chicken gastrointestinal tract without any clinical symptoms [4,5]. They can survive
and spread from one rearing cycle to the next despite their tremendous vulnerability in
the breading farm. In addition, since chickens are coprophagic, inadequate biosecurity
measures and an intensive production method are the main causes of infection spreading
from infected chicken to others [6]. Consequently, fecal shedding of Campylobacter allows
this pathogen to easily contaminate the carcasses during processing, which can ultimately
lead to the transmission of Campylobacter to humans.

Campylobacter could also be introduced into flocks from the immediate environment of
the buildings as well as from surrounding farms [7,8] by various vectors: insects, rodents,
farmers or other persons entering the buildings during rearing, as well as equipment
introduced from one building to another [9,10]. The litter also plays an important role as a
source for contamination, indeed, these bacteria could survive for 10 days at 20 ◦C [11].

In Tunisia, as in other developing countries, data on the status of Campylobacter in
poultry farms are limited. Today, it has become essential to take the problem of farm
contamination into consideration, both for its impact on public health and for the signif-
icant economic repercussions for farmers. Although contamination of poultry meat is
possible at all stages of the food chain, the rearing period represents a critical phase in the
spreading of the bacteria. Therefore, the aim of this study was to investigate the persistence
of Campylobacter spp. contamination in one Tunisian intensive breeding hen farm after
cleaning and disinfection and to characterize virulence and antimicrobial resistance traits
of the recovered Campylobacter strains.

2. Results
2.1. Biosecurity Measures
2.1.1. Environment of the Farm

In the environment of the visited farm, animals (cats and dogs), insects and reptiles,
also known as vermin, were present. The studied farm is located near the villages that
surround it, and close to traffic routes. The buildings (n = 28) are more than 20 m apart from
each other. The areas around the buildings are paved, and the parking areas for delivery
vehicles are always close to the building’s entrance (Supplementary file S1).

2.1.2. Characteristics of the Farm

The capacity of the breeding hen flocks varied between 2500 to 18,000 birds in each
building, and the average surfaces varied from 500 to 1600 m2. The age of the sampled
hens ranged from 42 days to 75 weeks. The floors were made of concrete and the litter was
made of wood chips in all of the buildings. The ventilation system was automatic. The
buildings contained an airlock separated into two zones with a pedestrian restroom at the
entrance. The farm managers declared that they clean the airlock floor at least once a week
(Supplementary file S1).
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2.1.3. Sanitary Measures

The application of sanitary measures for environmental cleaning is done on a reg-
ular basis. The farm is distinguished by a high animal density per m2. In fact, at the
time of installation (hens), the density in the breeding hen flocks ranged between 10 and
30 animal/m2. Water was supplied to the visited farm by the National Society for the
Exploitation and Distribution of Water (SONED) network. Employees of the farm clean
and disinfect the facilities. A sanitary vacuum is used, with a duration of 20 days.

2.1.4. Personnel Hygiene

The number of workers per building does not exceed two. A change of clothes and
boots was not strictly respected (at least once a week).

According to the biosecurity data recovered from the questionnaire, the most applied
biosecurity measures in this farm were locked buildings, visitor restriction, feed quality,
united overalls and footwear for the workers, and the application of a disinfection program
at the end of each rearing cycle. By contrast, the lowest applied measures were the high
intensity of birds per m2, the isolation of the farm from animals (rodents, reptiles, dogs,
cats, etc.), absence of disinfectant baths, low clothes property, and hand hygiene.

2.2. Contamination Rates of Campylobacter spp. in Breeding Hens and Environment before and
after Cleaning and Disinfection

The rate of Campylobacter detection in the cloacal swabs of breeding hens was 75.9%
(126/166); 70.63% of isolates were identified as C. jejuni (n = 89) and 29.36% as C. coli
(n = 37). The percentage of infection in the flocks ranged from 14% to 56% per building
(p < 001).

A total of 196 samples were collected from the environment of eight breeding hen
buildings before and after cleaning and disinfection (Table 1). Before the void spaces, we
collected 98 samples, from plates, nest boxes, and soil. Among them, 38 (38.7%) were
Campylobacter spp.-positive, which were identified as C. coli.

Table 1. Occurrence of Campylobacter in environment before and after disinfection.

Before Disinfection After Disinfection

Nb. Samples NB % Isolates Nb.Samples NB Isolates

C. coli C. jejuni C. coli C. jejuni

Buildings

Trays 20 0 (0%) 0 (0%) 20 0 (0%) 0 (0%)

Nestings
boxes 20 0 (0%) 0 (0%) 20 0 (0%) 0 (0%)

Plates 20 12 (60%) 0 (0%) 20 0 (0%) 0 (0%)

floors 20 20 (100%) 0 (0%) 20 0 (0%) 0 (0%)

Worker’s
locker room

Boots 6 6 (100%) 0 6 3 (50%) 0 (0%)

Slides 6 0 0 6 0 (0%) 0 (0%)

Blouses 6 0 0 6 0 (0%) 0 (0%)

Total 98 38/98 (38.7%) 98 3/98 (3%) 0 (0%)

Among the 98 environmental samples collected after cleaning and disinfection, only
three boots were Campylobacter spp.-positive (3%; 3/98) (Table 1). The three were iden-
tified as C. coli. Taken together, 89 C. jejuni and 78 C. coli isolates were identified and
further studied.

2.3. Antimicrobial Resistance Patterns

All Campylobacter isolates were resistant to erythromycin, ciprofloxacin, nalidixic acid,
chloramphenicol, and tetracycline. To a lesser extent, resistance rates to β-lactams were
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about 62.87% toward ampicillin and 47.3% toward amoxicillin/clavulanic acid. The resis-
tance rates in C. jejuni and C. coli isolates against ampicillin (47.19% and 81%, respectively)
and amoxicillin/clavulanic acid (58.42% and 20.22%, respectively) differed significantly
(p < 0.05). No significant difference was observed between both species for the other
antibiotics (Table 2).

Table 2. Percentage of resistant Campylobacter isolates.

Source Specie No.
Antimicrobial Resistance Rates % (Number of Isolates)

ERY AM AMC Cip NAL CHL Tet GEN

Layer hens C. jejuni 89 100%
(89)

47.19%
(42)

58.42% *
(52)

100%
(89)

100%
(89)

100%
(89)

100%
(89)

1.12%
(1)

C. coli 37 100%
(37)

81% *
(30)

20.22%
(18)

100%
(37)

100%
(37)

100%
(37)

100%
(37)

0%
(0)

Environment C. coli 41 100%
(41)

80.48%
(33)

21.95%
(9)

100%
(41)

100%
(41)

100%
(41)

100%
(41)

0%
(0)

Total 167 100%
(167)

62.87%
(105)

47.3%
(79)

100%
(167)

100%
(167)

100%
(167)

100%
(167)

0.6%
(1)

Legends: ERY, erythromycin; AM, ampicillin; AMC, amoxicillin/clavulanic acid; Cip, ciprofloxacin; NAL,
nalidixic acid; CHL, chloramphenicol; Tet, tetracycline; GEN, gentamicin. *: significant association between
resistance to the corresponding antibiotic and the source of Campylobacter isolates.

Multidrug resistance to at least three antimicrobial classes was detected in all Campy-
lobacter isolates, and 14.37%, 47.9%, and 30.53% of isolates were resistant to 4, 5, and
6 antimicrobial classes, respectively. When looking at the antimicrobial resistance patterns,
five antimicrobial resistance patterns were found for all Campylobacter isolates, with the
combination “AMP + CIP + NAL + ERY + TET + CHL” as the most common profile
(39.52%). A significant higher percentage of C. coli isolates (83.3%) exhibited this resistance
profile, compared with C. jejuni isolates (47.6%). The next most frequent pattern was the
combined resistance to AMP, AMC, CIP, NAL, ERY, TET, and CHL, detected in 30.53% of
isolates. The remaining patterns comprised less than 10% of isolates (Figure 1).
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2.4. Detection of Antimicrobial Resistance Genes

The rates of antimicrobial resistance genes among resistant isolates of C. jejuni and
C. coli were as follows: tet(O) (100% vs. 80%), cmeB (80% vs. 100%), and blaOXA-61
(81% vs. 93%), respectively. The aphA-3 gene was not detected (Figure 1). Interestingly,
when testing these genes in susceptible isolates, the blaOXA-61 gene was detected in 41% of
β-lactams-susceptible C. coli isolates. None of the other genes was detected in the sensitive
isolates. In Cip and/or Nal resistant isolates, the analysis of the gyrA gene showed the
presence of the Thr-86-Ile amino acid substitution in 90% of C. jejuni and 80% of C. coli iso-
lates. Meanwhile, for the only C. jejuni isolate exhibiting susceptibility to both quinolones
(Cip and Nal), the Thr-86-Ile substitution was not detected. Macrolide-resistant isolates
were tested for the presence of the mutations A2074C and A2075G in the 23S rRNA gene.
The mutation at position A2075G was found in 86% and 61% of C. jejuni and of C. coli
isolates, respectively. While the A2074C mutation occurred in 14% and 27% of C. jejuni and
C. coli isolates, respectively. Interestingly, 12% of C. coli isolates harbored mutations at both
positions (A2074/2075) of the V region (Figure 2).
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Figure 2. Percentage and distribution of antimicrobial resistance determinants among C. jejuni and C.
coli isolates. Antibiotics and resistance determinants: quinolones (gyrA), erythromycin (23SrRNA),
β-lactams (blaOXA-61), tetracyclines (tet(O)), gentamicin (aphA-3), multidrug resistance (cmeB), resis-
tance to ciprofloxacin or nalidixic acid or both and resistance to ampicillin or amoxicillin/clavulanic
acid or both.

2.5. Prevalence of Genes Encodingvirulence Factors

All Campylobacter isolates (78 C. jejuni and 89 C. coli) were analyzed for virulotype
(content of genes coding for virulence factors) and AR phenotypic profiles. All isolates
(n = 167, 100%) harbored the flaA, cadF, ciaB, and cdt genes, followed closely by the racR
gene (n = 160, 90%). A similar result was obtained when analyzing the 78 C. jejuni isolates.
In addition, the flaA, cadF, ciaB, and cdt genes were present in all C. jejuni isolates (n = 78,
100%), followed by the dnaJ (n =73, 93.58%) and ceuE (n = 69, 88.46%) genes (Figure 3A).
No discernible differences were found between both campylobacter species for the most
prevalent virulence genes. Indeed, all isolates contained the flaA, cadF, racR, ciaB, and cdt
genes, while the pldA gene was detected in 75 (84.26%) isolates. Interestingly, a significant
difference was found for the ceuE gene, which was absent in all C. coli isolates but strongly
present in C. jejuni (90.47%) (Figure 3B).
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3. Discussion
3.1. Prevalence of Campylobacter and Risk Factors

In this study, we focused on the risk factors contributing to the colonization of Campy-
lobacter in breeding hens, in order to evaluate the control measures to be adopted to reduce
the prevalence of Campylobacter colonization. The described factors are related to the farm
management and the sanitary measures applied in the flocks. The survey in this poultry
farm showed that several animals such as cats, dogs, insects, and reptiles have access to
these facilities. It is well known that these animals can carry zoonotic pathogens [4].

The proximity of farms to rural villages is also a problem for the poultry sector in
some cases. This results in the negative influence of certain human activities on the studied
farm. The cohabitation of humans with these animals may carry the risk of increasing
the possibility of human contamination [12]. The absence of an outer barrier on the farm
gives free access of outside animals such as dogs and cats. This lack of a barrier at the
farm level can be a factor in the degradation of hygiene at this farm. As a result, it might
have a negative effect on productivity and possibly act as a vector for the spread of some
zoonotic diseases to poultry [13]. Easy access to poultry facilities by dogs, cats, and reptiles
significantly increases the risk of contamination. Those studies also indicated that any
input to the farm is likely to carry the bacteria from infected units to others, as is the case
for personnel in the absence of single-use boot swabs or equipment soiled by feces [12,14].
The same applies to vehicles driving around the building.

The cleaning of farms is an effective way to reduce and even eliminate certain
pathogenic microorganisms. The studied farm consisted of 28 flocks, which were made
of concrete floors and were easy to clean and disinfect and therefore not favorable to the
survival and multiplication of pathogenic bacteria.

Our work showed that the poultry farm exhibited a density of poultry that was above
regulatory levels, which is in accordance with the results of other authors who have reported
that high density is a risk factor for contamination and facilitates the growth of certain
pathogenic bacteria [15]. Furthermore, previous studies have also shown that crowding
is a key factor in the introduction of pathogens into an environment [16]. Knowledge of
these practices can help to reduce the risks in advance. In fact, Jussiau et al. [17] showed
that when personnel perform their duties without consistently changing into new work
clothing at least once a week and without using single-use boot covers, they promote the
contamination of the farms by pathogenic Campylobacter spp.

The studied poultry production structure has a production system showing average
health safety measures. The risk factors for Campylobacter infection in poultry products are
real and are summarized, for example, by the precarious nature of the installations and the
non-respect of hygiene rules by certain operators in the sector. Thus, the studied farm could
be a potential source of dissemination of zoonotic infections mainly campylobacteriosis.
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In the domain of food safety, Campylobacter represents an emerging threat with increas-
ing importance over the last years. Therefore, in our work, we were interested in studying
the prevalence of Campylobacter spp. in the feces of breeding hens. In the present study, our
findings revealed a prevalence of 75.9% (126/166 samples) from which 70.6% and 29.36%
were identified as C. jejuni and C. coli, respectively. C. jejuni was the predominant species
recovered from poultry carcasses as reported in several studies worldwide [18]. When
comparing the Campylobacter infection rate in the studied farm (39.4%), it showed that it
was higher than rates observed in Greece (13.33%) [19] and in Australia (11%) [20], but it is
lower than those observed in Finland (86%) [21], Italy (65%) [22], and Sri-Lanka (64%) [23].

Despite the various epidemiological studies carried out on Campylobacter contamina-
tion of farms, the sources and routes of contamination of chickens by this bacterium are
still poorly understood. It is essential to consider the problem of farm contamination, both
for its impact on public health and for the significant economic repercussions. Although
contamination of meat is possible at all levels of the production chain, the rearing period
is also a critical stage for the development of Campylobacter [24]. The knowledge of the
modalities of contamination of poultry by Campylobacter during this period is therefore
essential in order to prevent its development throughout the chain. To our knowledge, no
study has been done in Tunisia on the factors of Campylobacter contamination in breeding
hens’ flocks. Therefore, our objective in this study was to investigate the prevalence of
Campylobacter in the environment of a poultry farm and to determine the possibility of
isolating Campylobacter from environmental surfaces, flocks, and changing rooms after
cleaning and disinfection procedures in flocks. Our study was conducted between May
and June 2018, when the weather became dry, as it has been previously reported that
Campylobacter survival was reduced in low humidity environments [25,26].

A total of 196 samples were collected from the farm environment before and after cleaning
and disinfection of the flocks. Before and after the sanitation, we collected 98 environmental
samples. The overall prevalence of Campylobacter spp., was 21% (41 isolates) all identified
as C. coli. The predominance of C. coli in isolates from breeding hen flocks environments
was in agreement with various surveys conducted in European countries, including Bulgaria,
Hungary, Italy, Luxembourg, Malta, Portugal, Ireland, Spain, and Greece [27–30]. Of all the
samples taken before cleaning, 38.7% (38/98) were positive for C. coli. The isolation rate in our
study is in line with previous results in France [31,32]. From the total number of samples taken
after cleaning, only 3% (3/98) were positive for C. coli which were isolated from the workers’
boots. The results indicate that transmission to the chickens can occur via the farmer (boots).

It has also been shown that the implementation of strict biosecurity measures (such
as boot dips) has an effect on the prevalence of Campylobacter, reducing the transmis-
sion rate [33]. This observation corroborates with the results of Guerin et al. [33] and
Facciolà et al. [34] showing the presence of Campylobacter in the immediate environment
of farms.

Our findings are also explained by insufficient environmental conditions for cleaning
and disinfection, poor hygiene conditions and ignorance of owners and workers. The
persistence of Campylobacter after cleaning and disinfection of poultry farms is commonly
reported in poultry industries and constitute a serious threat for human health [35,36]. To
summarize, although poultry farming is evolving in Tunisia, there are still shortcomings in
the management of the quality of the facilities and the application of good practices for the
rearing and slaughter of poultry products.

3.2. Antimicrobial Resistances and Implicated Genes

The treatment of infections in humans and animals with antibiotics is being threatened
by the emergence and spread of antimicrobial resistant bacteria. Inappropriate use of
veterinary drugs in animal husbandry plays an important role in the rise of antimicrobial
resistance rates in foodborne pathogens. Antibiotics are extremely used in high-volume in
poultry production, whether to prevent bacterial infections or as growth promoter. Thus,
antimicrobial resistance studies are essential to identify resistant Campylobacter strains
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in poultry and their environments. The spread of antimicrobial resistance worldwide is
strongly linked to mobile genetic elements like plasmids and transposons, which can also
carry virulence determinants [37].

Our research has shown that resistance to erythromycin, tetracycline, quinolones
and ciprofloxacin is prevalent, which can significantly reduce the possibilities of treating
infections caused by these strains. As these antibiotics have been on the market for a
long time and have been frequently used in legal and illegal situations, high rates of
resistance are highly expected. Similar high rates of resistance have been found in several
other studies, particularly more recent ones [38,39]. In fact, the widespread use of these
antibiotics in the management, treatment, and disease prevention of livestock enhances
the selection and development of antimicrobial-resistant Campylobacter, which contributes
to an increasing burden of antibiotic-resistant infections, with serious consequences for
human health due to infection via food chain or direct contact of infected animals.

The majority of isolates have antimicrobial resistance phenotypes that closely match
the genetic mutations and genes that code for a corresponding resistance phenotype. The
tet(O) gene, which produces the TetO ribosomal protection protein, has been linked to
tetracycline resistance [40,41]. Our isolates showed a high rate of resistance to fluoro-
quinolones. The cmeABC operon, encoding for multidrug efflux, was detected in all our
isolates irrespective of their resistance or susceptibility to quinolones/fluoroquinolones.
The Thr-86-Ile substitution, which is frequently found in isolates resistant to quinolones
and fluoroquinolones, is one of several point mutations in the QRDR of the GyrA protein
that make up the second resistance process [42]. The gene encoding 23S rRNA had the
two-point mutations A2075G and/or A2074C in all erythromycin-resistant Campylobacter
isolates [42].

The erm (B) gene, was found in 55.55% [25/45: 47.61% (10/21) C. jejuni and 62.5%
(15/24) C. coli]. The presence of this gene in Campylobacter isolates is noteworthy, as it was
discovered on MDR gene islands co-harboring genes that encoded resistance to ampicillin,
ciprofloxacin, and tetracycline [43]. These results are concerning because macrolides, in
particular erythromycin and azithromycin, are the preferred antibiotics for treating human
Campylobacter infections. β-lactam antibiotics, such as ampicillin, are intrinsically ineffective
against Campylobacter spp. [43]. The primary mechanism of acquired ampicillin resistance
is, in fact, enzymatic inactivation by the beta-lactamase encoding blaOXA-61 gene, which
was found in 20% and 8% of β-lactam resistant C jejuni and C coli isolates, respectively.
According to earlier reports [39,43], the majority of our isolates were gentamicin-susceptible.
This may be due to its restricted use for systemic infections and the fact that it is not used
in the production of poultry [39,40].

3.3. Occurrence of Virulence Genes

The pathogenicity of Campylobacter species is influenced by their virulome [44] so it is
important to look into the virulence factors of avian Campylobacter for consumer safety.

This study revealed that all isolates had the genes cdtA, cdtB, and cdtC, which are
essential for cytolethal distending toxin (CDT) expression, as well as flaA, cadF, and ciaB,
which are related to adhesion, colonization, and invasion. These genes were found in
similar frequencies to those previously reported from Korea [45] and Italy [34], but at
higher levels than those previously reported from South Africa and Chile [46]. In cell
models, Campylobacter adhesion and internalization are empowered by the presence of the
cadF and ciaB genes [47]. According to research from South Africa [48], Japan [49], and
Iran [50], C. jejuni had a higher rate of the pldA gene, which encodes the outer membrane
phospholipase A.

4. Materials and Methods
4.1. Samples Collection

Our study was conducted in an intensive breeding hen farm located in the governorate
of Nabeul in north-eastern Tunisia. Eight breeding hen flocks were monitored from May
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to June 2018. The ages of the breeding hens ranged from 42 to 75 weeks. The farm
is one of the biggest poultry farms in Tunisia, encompassing 28 flocks and each flock
houses 2300 to 18,000 birds, and covering 43 hectares. Birds had ad libitum access to
feed and water. The diets were provided in mash form and consisted of corn-soybean
meal, barley, bran, calcium carbonate, dicalcium phosphate, and vitamin and mineral
supplements. For preventive purposes against infectious diseases, the following antibiotics
are commonly used: enrofloxacine, florfenicol, doxycycline, oxytracycline, tiamulin, colistin,
and trimethoprim-sulfadiazin. IODOSAN 30 (EWABO Chemikalien GmbH & Co. KG,
Wietmarschen, Germany) and DEPTAL MCL (code 02080) (Kersia, Courcelles, Belgium)
are used as the disinfectant for cleaning surfaces of flocks.

A total of 362 samples were taken from chickens’ cloacal swabs (n = 166) and the
farm environment before (n = 98) and after (n = 98) the cleaning and disinfection of the
buildings. Meaning, that before the cleaning period, the 264 collected samples encompassed
166 cloacal swabs and 98 environmental samples (rays, nest boxes, and from the ground).
After the cleaning and disinfection step, we collected 98 environmental samples [trays,
nests, plates, floor, doors, the changing rooms (blouses, boots, and flip flops)]. Environment
samples were taken by smearing swabs soaked in Bolton Broth (Oxoid, Basingstoke, UK).
In each flock, approximately 25 cloacal swabs were taken from five locations (four corners
and the center).

4.2. Audit of Cleaning and Disinfection Procedures in Poultry Farm Buildings

To study the risk factors potentially linked to contamination by Campylobacter spp.
a questionnaire was properly completed during the sample collection visits for the farm
(Supplementary file S2). The farm visit frequency was dependent on the authorizations
of the breeders. The epidemiological questionnaire comprised several questions. The
questions were related to the description of the farm, the buildings (flocks); breeding
characteristics and management; dead bird management measures; control of rodents and
other domestic animals; biosecurity; operations personnel and visitors; vaccination and
administration of antibiotics. The obtained scores were based on both personal observations
and information collected from the employees and the responsible veterinarians. These
notes were useful to establish possible correlations between the characteristics of the
breeding and the contamination by Campylobacter spp.

4.3. Sample Transportation and Processing

According to the Good Execution Analysis (GBEA) Guide and the Standard NF EN
ISO 15189 (version 2012) [51], the samples were transported in a cooler box with cold
accumulators at 4 ◦C and brought to the laboratory within 4 h. When the samples arrived
at the laboratory, they were all pre-enriched on the same day.

4.4. Culture and Growth Conditions

The isolation of Campylobacter was carried out according to the standard French method
(AFNOR, La Plaine-saint-denis, France, 1996). All samples were subjected to a selective
enrichment step in Bolton broth (Oxoid, Basingstoke, UK), in a microaerophilic atmosphere
(5% O2, 10% CO2, 85% N2) using GENbox generators (BioMérieux, Craponne, France) at
42 ◦C during 18 h–24 h. Presumptive positive culture for Campylobacter were streaked on
Karmali agar (Oxoid, Basingstoke, UK) and incubated for 48 h under the same conditions
as described previously [52]. Under a light microscope and using oxidase/catalase assays,
suspected colonies from each sample were examined for typical Campylobacter morphology
and motility. Then, presumptive Campylobacter colonies were subjected to PCR analysis for
genus and species identification.

4.5. DNA Extraction

For the PCR tests, the genomic DNA of collected isolates was extracted using the
boiling method [39]. Campylobacter isolates were grown in 2 mL Bolton broth and plated
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on Karmali agar. Campylobacter colonies were then harvested and suspended in 100 µL
TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). Cell suspensions were heated at 100 ◦C for
10 min and then cooled to room temperature. Thereafter, cell suspensions were pelleted
by centrifugation at 8000 rpm for 5 min. The supernatant containing DNA was collected,
transferred into a new tube, and then stored at −20 ◦C until use.

PCR amplification of a specific fragment of the 16S rDNA gene using the primers
described by Linton et al. [53] was used to Campylobacter genus identification of isolates.
Then, the isolates were identified as C. jejuni or C. coli by PCR assays based on amplification
of the mapA and ceuE genes, respectively [54] (Supplementary file S3, Table S1).

4.6. Antimicrobial Susceptibility Test

Antimicrobial susceptibility testing was performed on all isolates using the disk
diffusion method on Mueller-Hinton medium (Bio Life, Milan, Italy) according to the
recommendation of the Antibiogram Committee of French Society for Microbiology (CA-
SFM) [55]. The following antibiotics were used (Oxoid, Basingstocken, UK): ampicillin
(AMP,10 µg), amoxicillin/clavulanic acid (AMC, 10/20 µg), tetracycline (TET, 30 µg),
erythromycin (ERY, 15 µg), gentamicin (GEN, 10 µg), chloramphenicol (CHL, 30 µg),
nalidixic acid (NAL, 30 µg), and ciprofloxacin (CIP, 5 µg) [39]. The isolates were defined as
multidrug-resistant (MDR) if they exhibited resistance to at least one agent belonging to
three or more antimicrobial families [56].

4.7. Detection of Mutation(s) in the QRDR of gyrA and 23S rRNA Genes by PCR Mismatch
Amplification Mutation Assay (MAMA-PCR)

A single point mutation Thr-86-Ile in the quinolone resistance-determining region
(QRDR) of the gyrA gene was defined as the main cause of high-level resistance to
quinolones. Campylobacter isolates were subjected to analysis by MAMA-PCR, as pre-
viously described for C. jejuni and C. coli isolates by Zirnstein et al. [57,58]. The resistance to
macrolide (particularly to erythromycin) is mainly encoded by mutations in the V domain
of the 23S rRNA gene, at the positions A2074C or A2075G. The detection of these mutations
was also carried out by MAMA-PCR as described previously by Alonso et al. [59].

4.8. Detection of Their Resistance Determinants

All Campylobacter isolates were screened by PCR to detect the tet(O) (tetracyclines resis-
tance), aphA-3 (aminoglycosides resistance), cmeB (multidrug efflux pump), and blaOXA-61
(β-lactams resistance) genes (Table S1). The PCR mixture (25 µL) consisted of 2.5 µL of DNA
template, 0.2 µM of each primer (Carthagenomics Advanced Technologies, Borj Cédria,
Tunisia), 0.2 mM dNTP (Promega, Charbonnières-les-Bains, France), 1X Dream DNA poly-
merase buffer, and 1U Dream Taq DNA polymerase (Thermo Scientific, Bordeaux, France).

4.9. Detection of Virulence Genes

All Campylobacter isolates were tested by PCR for the occurrence of the following
virulence genes: flaA (motility), cadF, racR, virB11, pldA, dnaJ (adherence and colonization),
cdtA, cdtB, cdtC (cytotoxin production), cgtB and wlaN (Guillain-Barré syndrome), ciaB
(invasiveness), and ceuE encoding a lipoprotein in C. jejuni strains (Table S1).

4.10. Data Analysis

All collected data were analyzed using R software. The antimicrobial resistance
analyses were performed by means of a Chi-square statistic (p < 0.05) [60]. This test is a
nonparametric tool designed to compare frequency counts between two groups of different
sample sizes; the selection criteria for significantly prevalent variance was a stringent
p-value of 0.001 or less.
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5. Conclusions

The present study revealed high levels of Campylobacter contamination in the stud-
ied breeding farm, with a predominance of C. jejuni and C. coli species. The recovered
strains exhibited high levels of resistance to clinically relevant antimicrobial agents (i.e., ery-
thromycin, ciprofloxacin, and tetracycline) and simultaneously harbored several virulence
genes. The persistence of these strains after farm disinfection may present a significant
risk of cross-contamination of new chicken batches and the spread of virulent and resistant
strains throughout the poultry production chain. It is therefore essential to raise awareness
among poultry farmers and to improve biosecurity practices to avoid the persistence and
spread of infectious agents, including Campylobacter, in poultry farms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12050890/s1, File S1: Results of the questionnaire.
File S2: The questionnaire (in the French language). File S3: Table S1: Primers, amplification
conditions, and references of investigated genes. References [53,57–59,61–69] are cited from the
supplementary materials.
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