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Abstract: The objective of this study was to use whole-genome sequencing (WGS) to screen for
genes encoding for antibiotic resistance, fitness and virulence in Cronobacter sakazakii strains that
had been isolated from food and powdered-milk-producing environments. Virulence (VGs) and
antibiotic-resistance genes (ARGs) were detected with the Comprehensive Antibiotic Resistance
Database (CARD) platform, ResFinder and PlasmidFinder tools. Susceptibility testing was performed
using disk diffusion. Fifteen presumptive strains of Cronobacter spp. were identified by MALDI-TOF MS
and ribosomal-MLST. Nine C. sakazakii strains were found in the meningitic pathovar ST4: two were ST83
and one was ST1. The C. sakazakii ST4 strains were further distinguished using core genome MLST based
on 3678 loci. Almost all (93%) strains were resistant to cephalotin and 33% were resistant to ampicillin.
In addition, 20 ARGs, mainly involved in regulatory and efflux antibiotics, were detected. Ninety-nine
VGs were detected that encoded for OmpA, siderophores and genes involved in metabolism and stress.
The IncFIB (pCTU3) plasmid was detected, and the prevalent mobile genetic elements (MGEs) were
ISEsa1, ISEc52 and ISEhe3. The C. sakazakii isolates analyzed in this study harbored ARGs and VGs,
which could have contributed to their persistence in powdered-milk-producing environments, and
increase the risk of infection in susceptible population groups.

Keywords: antibiotics resistance; virulence genes; Cronobacter sakazakii; whole genome sequencing;
environment; food

1. Introduction

Cronobacter is a genus of enteropathogenic bacteria consisting of seven species: Cronobac-
ter sakazakii, C. malonaticus, C. universalis, C. turicensis, C. muytjensii, C. dublinensis and C.
condimenti [1–3]. C. sakazakii and C. malonaticus are the species with the greatest clinical
significance as they have been detected in both individual cases as well as in outbreaks [4].

C. sakazakii mainly affects immunocompromised groups ranging from premature new-
borns infants to older adults [5–7]. In infants, the serious symptoms include life-threatening
meningitis, septicemia and necrotizing enterocolitis (EN), while in adults, urinary tract infec-
tions are more common. The mortality rate associated with the infection of this pathogen is
between 15 and 80%, whereas, for cases with neonatal meningitis and septicemia, rates of 15
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and 25%, respectively, are seen [8]. Neonatal meningitic cases have been associated with C.
sakazakii sequence type 4 (ST4) infections [5]. Infant infections are mainly associated with the
consumption of contaminated rehydrated powdered infant formula (PIF) for a target age of
less than 6 months, although infection through expressed milk can also occur.

Cronobacter spp. can be isolated from other foods, such as infant cereals, milk replacers,
water, and vegetables, as well as on food preparation surfaces, dairy plant equipment,
and the hospital environment [9–12]. The organism has been isolated from infant formula
manufacturing plants around the world and its prevalence ranges from 3 to 30% [4,13,14].

The Cronobacter genus underwent wide diversification during its evolution, with C.
sakazakii and C. malonaticus being more pathogenic, while others have a less frequently
reported impact on human health [4]. Information on the diversity, pathogenicity and
virulence of C. sakazakii isolated from various sources is still scarce and under study. Our
current understanding is that C. sakazakii infection is due to various virulence factors such
as adherence and invasiveness in cell lines [7], gene encoding iron uptake systems, fimbriae,
flagella, invasion, outer membranes, serum resistance and spreading, sialic acid utilization,
capsule and endotoxin production [15–18]. In addition, C. sakazakii has shown resistance to
various antibiotics [19,20], as well as the presence of antibiotic resistance genes, plasmids
and mobile genetic elements [21,22].

Studies with whole-genome sequencing (WGS) have shown a high discrimination of
the content of conserved and variable genetic information that can discriminate between
different species in a more precise way. WGS is used as a tool for identification, typing
(multilocus sequence typing (MLST)) core genome multilocus sequence typing ((cgMLST),
CRISPR-Cas, serogroup, SNPs), and the detection of genes that confer resistance to antibi-
otics (ARGs) and/or virulence (VGs), which allows for more precise molecular epidemio-
logical studies [23]. Therefore, the study of complete genomes and their comparison can
reveal the role of ARGs and VGs in the pathogenicity of the organism [24].

Therefore, the objective of this study was to use WGS to screen for genes encoding
resistance to ARGs, fitness or VGs in C. sakazakii isolated from food and the powdered-
milk-producing plant environments.

2. Results
2.1. Sampling and Identification of Isolates

The isolates (n = 15) included in this study (Table 1) were presumptively identified
as Cronobacter spp. by Matrix Assisted Laser Desorption Ionization—Time of Flight Mass
Spectrometry (MALDI-TOF MS). The isolates were then speciated using ribosomal MLST
(rMLST; 53 genes). Fourteen strains were identified and C. sakazakii and the remainders
were identified as C. dublinensis (Table 2).

Table 1. Numbers and types of examined samples in the study.

Group of Samples Specific Commodity Number of Examined Samples

Swabs from the food production environment Swabs 855

Poultry Feaces 148

Food

Chockolate 72

Caramel 55

Spice (dill, pepper) 260

Poultry meat 77

Dried cow milk 244

Wheat flour 91

Seeds (soy, pistachio, barley, mustard) 198

Total 2000
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Table 2. Identification of Cronobacter spp. strains isolated from different sources by MALDI-TOF MS
and whole-genome sequencing rMLST.

Sample ID * PubMLST
ID Source WGS rMLST Result ST CC Serotype

(gnd-galF Alleles)
Collection

Date

510177-19 3823 Food Cronobacter sakazakii 4 4 Csak O:2 2015
510178-19 3824 Food Cronobacter sakazakii 4 4 Csak O:2 2015

510183-19 3828 Production
environment Cronobacter sakazakii 4 4 Csak O:2 2015

510184-19 3829 Production
environment Cronobacter sakazakii 4 4 Csak O:2 2015

510185-19 3830 Food Cronobacter sakazakii 4 4 Csak O:2 2015
510187-19 3831 Food Cronobacter sakazakii 4 4 Csak O:2 2015

510188-19 3832 Production
environment Cronobacter sakazakii 4 4 Csak O:2 2015

510189-19 3833 Production
environment Cronobacter sakazakii 4 4 Csak O:2 2015

510190-19 3834 Production
environment Cronobacter sakazakii 4 4 Csak O:2 2015

510181-19 3826 Food Cronobacter sakazakii 1 1 Csak O:1 2015

510179-19 3825 Production
environment Cronobacter sakazakii 83 83 Csak O:7 2015

510182-19 3827 Food Cronobacter sakazakii 83 83 Csak O:7 2015
510176-19 3695 Food Cronobacter sakazakii 260 - Csak O:1 2015
510186-19 3697 Hen Cronobacter sakazakii 93 - Csak O:7 2015
510180-19 3696 Food Cronobacter dublinensis 822 - ND 2015

* MLST database ID; WGS rMLST: Whole-Genome Sequencing ribosomal MLST; ST: sequence type; CC: clonal
complex; -: no associated clonal complex; ND: not determined.

Most C. sakazakii were of the neonatal meningitic pathovar sequence type ST4 (60%,
9/15) [5]. The remainder were C. sakazakii ST83 (13.3%, 2/15); and single strains of ST1,
ST93, ST822, and ST260. The prevalent C. sakazakii serotype was O:2 and only the ST1
isolate was serotype O:1. There was no correlation between source of isolation, or serotype,
or STs for the C. sakazakii ST4 strains (Table 2).

Analysis of the 14 C. sakazakii isolates using cgMLST comprising 3678 core genes
supported the conventional 7-loci MLST clustering of strains, but also showed that the ST4
strains could be further distinguished (Figure 1).

2.2. Antibiotic Resistance Profile

The strains analyzed in this study showed resistance to cephalothin (93%, 14/15), ampi-
cillin (33.3%, 5/15), tetracycline (20%, 3/15), ceftazidime (13.33%, 2/15) and amoxicillin-
clavulanic (6.66%, 1/15) (Table 2). Interestingly, only three strains were multidrug-resistant
(MDR): 510176-19, 510177-19 and 510182-19. The strains were definied as MDR according
to the four families of antibiotics to which these strains were resistant: ampicillin (peni-
cillins), amoxicillin-clavulanic acid (B-lactam combination agents), ceftazidime, cephalothin
(cephems) and tetracycline (tetracyclines) (Table 3).
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Figure 1. Minimum spanning tree (MST) of fourteen C. sakazakii strains. The isolates are represented
as colored circles according to their sequence type (ST) as defined using the 7-loci MLST scheme (STs).
Black numbers on the connection lines indicate the number of allelic differences between isolates
from the cgMLST scheme comprising 3678 target genes for C. sakazakii. Isolates falling under the
cluster threshold of 10 alleles are marked in grey as clusters.

Table 3. Antibiotic resistance profile of Cronobacter spp. strains.

ST Strains a AM
(10 µg)

AMC
(20/10 µg)

CAZ
(30 µg)

CIP
(5 µg)

CL
(30 µg)

CTX
(30 µg)

GE
(10 µg)

KF
(30 µg)

TE
(30 µg)

W
(30 µg)

1 510181-19 S S S S S S S R S S
4 510177-19 R S S S S S S R R S
4 510178-19 S S S S S S S R S S
4 510183-19 S R S S S S S R S S
4 510184-19 S S S S S S S R R S
4 510185-19 S S S S S S S R S S
4 510187-19 S S S S S S S R S S
4 510188-19 R S S S S S S R S S
4 510189-19 S S S S S S S R S S
4 510190-19 S S S S S S S R S S

83 510179-19 R S S S S S S R S S
83 510182-19 R S R S S S S R S S
260 510176-19 R S S S S S S R R S
822 510180-19 * S S S S S S S S S S

a All strains were C. sakazakii except for 510180-19; * which was C. dublinensis. AM: ampicillin; AMC: amoxicillin-
clavulanic acid; CAZ: Ceftazidime; CIP: ciprofloxacin; CL: chloramphenicol; CTX: cefotaxime; GE: gentamicin; KF:
cephalothin; TE: tetracycline; W: nalidixic acid; R: Resistance; S: Susceptibility.
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2.3. Antibiotic Genes Detected in C. sakazakii Genomes

Twenty genes associated with antibiotic resistance were identified in the 14 C. sakazakii
genomes. Some of these genes were classified as global regulators, such as HNS and CRP,
which were associated with resistance-nodulation-cell division (RND) antibiotic efflux
pump AMR families and rsmA a global translational regulatory protein RsmA. Other genes
were related to antibiotic efflux, reduced antibiotic permeability, target modification or
antibiotic inactivation (Supplementary Table S1). C. sakazakii strains carried the same genes
(Figure 2) that were involved in general bacterial porin with reduced permeability to beta-
lactams, small multidrug resistance (SMR) antibiotic efflux pump, ATP-binding cassette
(ABC) antibiotic efflux pump, resistance-nodulation-cell division (RND), glycopeptide
resistance gene cluster, Van ligase, antibiotic-resistant GlpT, and Penicillin-binding protein
mutations conferring resistance to beta-lactam antibiotics related to phenotypic profiles
(Supplementary Table S1).
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Figure 2. Antibiotic-resistant genes of fifteen Cronobacter spp. strains identified by Comprehensive
Antibiotic Resistance Database (CARD). C. dublinensis genome is shown in red color. The visualization
was performed with the iTol program.

Three genes (EF-tu, CSA-1 and qacJ) were identified in seven, four and two genomes,
respectively (Figure 2). The EF-tu gene with a SNP R234F was detected in 46.7% (7/15) of
the genomes. This gene belongs to the AMR gene family elfamycin and their mechanism
of resistance is antibiotic target alteration. The gene CSA-1 was found in 26.7% (4/15)
of the genomes. This gene belongs to AMR gene family CSA beta-lactamases, conferring
resistance to cephalosporin by antibiotic inactivation. Lastly, the qacJ gene was identified
in 13.3% (2/15) of the genomes of the associated gene family small multidrug-resistance
(SMR) antibiotic efflux pump disinfecting agents and antiseptics (Supplementary Table S1).

Although most of the genes were identified in all the strains, three genes were absent
in the analyzed genomes (Figure 2). The gene kpnF was not detected in 60% (9/15) of the
genomes. This gene belongs to a major facilitator superfamily (MFS) antibiotic efflux pump.
The gene CSA-2 was not found in 40% (6/15) of analyzed genomes. This gene encodes for a
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CSA beta-lactamase inactivating cephalosporins. The gene qacG was not identified in 13.3%
(2/15) of genomes. This gene encodes for a small multidrug-resistance (SMR) antibiotic
efflux pump associated with resistance to disinfecting agents and antiseptics; it uses the
antibiotic efflux as a mechanism of resistance (Supplementary Table S1).

The genes kpnF, CSA-1, and qacJ were not identified in the C. dublinensis genome
(510180-19); however, these genes were detected in most C. sakazakii genomes.

2.4. Virulence Genes in C. sakazakii Genomes

A total of 99 virulence and fitness genes were identified in the C. sakazakii and C.
dublinensis genomes. The most common genes associated with virulence encode for ompA,
siderophores and genes involved in metabolism or fitness (Figure 3, Supplementary Ta-
ble S2).
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Figure 3. Virulence genes identified in C. sakazakii and C. dublinensis genomes (red color font). The
visualization was performed with the iTol program.

Some genes could be involved in bacterial metabolism, such as: algG: bifunctional
mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase; ctpC:
manganese-exporting P-type ATPase CtpC; galF: UTP–glucose-1-phosphate uridylyltrans-
ferase GalF; gndA: NADP+-dependent 6-P-gluconate dehydrogenase; icl: isocitrate lyase,
msrA/BpilB: methionine sulfoxide reductase; nar: nitrate reductase; pchD: transcriptional
regulator.

The virulence genes detected in this study were related to: icmF1/tssM1, hsiC1/vipB/tssC,
imp: type VI secretion system protein; hcp: type VI secretion system receptor/chaperone
Hcp; iucA: aerobactin synthase, iucA, iutA: ferric aerobactin receptor IutA, entB: enterobactin
synthase component B; fep: ferric enterobactin outer membrane transporter; fes: ferric en-
terobactin esterase; iroN: siderophore salmochelin receptor IroN, ompA: outer membrane
protein; hec: B family hemolysin secretion/activation protein; kpsD: capsule polysaccharide
ABC transporter substrate-binding protein; clvp: ATP-dependent protease ClpV; cpsG:
colanic acid biosynthesis phosphomannomutase CpsG; gacS: RhoGAP domain-containing
protein; ehaB: autotransporter adhesin EhaB; and cdiA: contact-dependent inhibition effec-
tor toxin. The flagella synthesis operon was also identified. Furthermore, plasminogen
activator (cpa) and utilization of sialic acid (nanA,K,T) genes were detected only in the C.
sakazakii strains and not in C. dublinensis. The small heat shock protein sHSP20 was detected
in C. sakazakii ST4 and ST83, while the locus of heat resistance: yfdX1GI, yfdX2, hdeDGI,
orf11, trxGI, kefB, and psiEGI was only found in the genomes of C. sakazakii ST4.

The genes: bvrS, ehaB, fepB, fliC, fliF, fliJ, hcpC, cpa, and nanA,K,T were not identified
in the C. dublinensis genome (510180-19); however, these genes were detected in most C.
sakazakii genomes.

2.5. Plasmids and Mobile Genetic Elements in C. sakazakii Genomes

The IncFIB(pCTU3) plasmid was detected in most (8/9) C. sakazakii isolates and the
ST260 isolate (Table 3). IncFIB(pCTU2), pESA2, rep7a and Col4401 were found in strains
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510186-19 and 510180-19, respectively. Regarding the mobile genetic elements (MGEs), the
most prevalent were ISEsa1, ISEc52 and ISEhe3 (Table 4).

Table 4. Plasmids and mobile genetic elements of Cronobacter spp. strains.

ID Strain a ST Plasmid Plasmid Accession
Number

Mobile Genetic
Elements

510177-19 4 IncFIB(pCTU3) FN543096 ISEhe3, ISEsa1, ISEc52
510178-19 4 IncFIB(pCTU3) FN543096 ISEhe3, ISEsa1, ISEc52
510183-19 4 IncFIB(pCTU3) FN543096 ISEc52
510184-19 4 IncFIB(pCTU3) FN543096 ISEhe3, ISEsa1
510185-19 4 —– —– ISEhe3

510187-19 4 IncFIB(pCTU3) FN543096 ISEhe3, ISEsa1, IS26,
ISEc52

510188-19 4 IncFIB(pCTU3) FN543096 ISEsa1,IS26, ISEc52
510189-19 4 IncFIB(pCTU3) FN543096 ISEhe3, ISEsa1
510190-19 4 IncFIB(pCTU3) FN543096 ISEhe3, ISEsa1, ISEc52
510179-19 83 rep7a SAU83488 —–

510180-19 822 IncFII(pCTU2)
pESA2

FN543095
CP000784 ISEch12

510186-19 93 Col440l Cp023920.1 ISEsa1, ISKpn34

510176-19 260 IncFIB(pCTU3) FN543096 ISEsa1, IS26,
cn_6897_IS26

a All strains were C. sakazakii except for 510180-19 which was C. dublinensis.

3. Discussion

C. sakazakii ST1, ST4 and, to a lesser extent, ST83, are the pathovars that have been
most frequently found in PIF marketed in different countries, in PIF production plants
and in invasive clinical cases such as fatal meningitis and septicemia [5,25–29]. The other
strains, ST93, ST822 and ST260, have not been associated with cases of disease and are of
less clinical importance. In this study, we identified nine C. sakazakii isolates of ST4 (CC4)
serotype Csak O:2. These were mostly from environmental sources (5/9) (Table 2), whereas
C. sakazakii 1 ST1 (CC1) serotype Csak O:1 was isolated from food. A previous study carried
out on Cronobacter in the Americas showed that most of the isolates came from clinical,
environmental and infant formula samples from North America (57.4%, n = 465) and Brazil
(42.6%, n = 465). In addition, the study reported a total of 75 sequence types, with the most
frequent being C. sakazakii ST4 (CC4) and ST1 (CC1) [30].

Analysis using a 3678 loci cgMLST scheme revealed a group of eight indistinguisable
C. sakazakii ST4 isolates from food and the production environment. A previously reported
multicenter study assessing the incidence of C. sakazakii throughout Europe found that
76.6% (59/77) of the human clinical strains of Cronobacter spp. corresponded to C. sakazakii.
Twelve C. sakazakii isolates were ST4, and eight were ST1 [31]. There was only one allele
difference between isolates associated with epidemiological outbreaks in Austria in 2016
and 2009, respectively.

C. dublinensis has primarily been reported in environmental samples and food ingre-
dients. This is primarily considered an environmental commensal and has rarely been
reported in clinical samples [4,32].

In the present study, the C. sakazakii strains were resistant to cephalothin, ampicillin
tetracycline, ceftazidime and amoxicillin–clavulanic acid. In addition, two strains showed
an MDR profile (ampicillin, cephalothin and tetracycline); one was ST 260 (510176-19), and
the other was ST4 (510177-19). These two strains were isolated from different foods. Com-
pared to other studies, the resistance observed in this study is low. For example, in Teheran
city (Iran), of the 25 C. sakazakii strains recovered from PIF, 96% were MDR; these were
mainly resistant to amoxicillin–clavulanic acid, amoxicillin, ampicillin, cefoxitin, cefepime,
erythromycin, and ceftriaxone, and totally susceptible to trimethoprim/sulfamethoxazole
and levofloxacin antibiotics [33]. In China, C. sakazakii from PIF and processing environ-
ments showed isolates resistant to amoxicillin–clavulanic acid, ampicillin, and cefazolin [34].
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MDR isolates have been reported from domestic kitchens in middle Tennessee, (USA);
the highest resistance was to penicillin (76.1%), tetracycline (66.6%), ciprofloxacin (57.1%),
and nalidixic acid (47.6%) [35]. C. sakazakii antibiotic resistance is diverse and depends
on the source and geographic location of the strain [33–35]. The genomic analysis has
enabled the detection of genes involved in antibiotic resistance. The genes are related to cell
permeability to beta-lactams and antibiotic efflux pumps. In other studies, blaCTX genes
are commonly detected in strains resistant to cephalosporins, whereas, in this study, these
genes were not detected [36,37]. Another detected gene was EF-Tu, which is included in the
AMR gene family elfamycin and their mechanism of resistance is antibiotic target alteration.
This gene has evolved to be a multifunctional protein in a wide variety of pathogenic
bacteria [38]. Functions related to EF-Tu vary among microbial species; however, there
is a common role of adherence and immune regulation [38]. The AmpC beta-lactamases
designated CSA-1 and CSA-2 (from C. sakazakii) were found in the 14 C. sakazakii strains
and have been reported previously [39].

The genomic analysis of the Cronobacter strains revealed a number of virulence-related
genes. Several putative genes of the Type VI Secretion System cluster were found. The
Type VI Secretion System (T6SS) is a protein secretion machinery that transports protein
toxins into eukaryotic cells [40,41] and bacteriolytic effectors to target cells [42]. Some genes
involved in the iron uptake category (fur, iroN and PSEEN_RS11615), responsible for the
production of metal binding proteins, were identified in genomic sequences, and are associ-
ated with bacterial virulence [43]. The flagella operon was found in all genomes. Flagella
has been involved in adherence and proinflammatory response in different pathogens [16].
The most frequently occuring gene, the outer membrane protein A (OmpA), was identified
in the genomes. OmpA plays a critical role in host cell invasion [44].

In our research, all 14 C. sakazakii strains encoded the cpa gene. The cpa gene is
possibly involved in serum resistance, as well as in the systemic spread of C. sakazakii. The
isolates harbored the nanAKT cassette coding for the use of exogenous sialic acid. Only
the C. sakazakii species and a few C. turicensis strains can catabolize this [45]. Sialic acid
is found in gangliosides of the brain, and occurs naturally in breast milk [46]. Powdered
infant formula is supplemented with this monosaccharide due to its association with brain
development [4]. Sialic acid also regulates the expression of enzymes, such as sialidase and
adhesins, or inhibits the transcription factors of the fimB gene involved in the adhesion and
invasion of epithelial cells [47].

Another important observation was the presence of rpoS, ibpA, ibpB and clpk genes in
the C. sakazakii genomes. These genes are involved in protection against environmental
stress [48]. For example, the RpoS regulon, which acts as a transcriptional factor in response
to general stress, develops cross-protection against other environmental disturbances, such
as the response to oxidative stress and the response to heat stress. In E. coli, for example, it
represents 10% of genes [49]. On the other hand, the genes encoding for heat shock proteins
Hsp15, Hsp20 and HspQ, were found in thermotolerant C. sakazakii [50,51]. Therefore,
when these environmental C. sakazakii are subjected to desiccation or drying processes, as
in the preparation of PIF or other foods, they may become more resistant to these stresses,
enabling them to persist either in the environments of these production plants or in the
final products.

Sixty percent of the C. sakazakii strains in our study carried the IncFIB(pCTU3) plasmid,
which has been previously reported in environmental sources and food [52,53], as shown
in Table 3. The majority of strains carrying the plasmid were C. sakazakii ST4. This plasmid
is associated with encoding for efflux pumps associated with heavy metals, which could
allow the microorganism to adapt to the changing environmental conditions of osmotic
stress [54].

In this study, C. sakazakii ST4 and ST1 were isolated from environmental strains
(Table 2), and harbored genes that encode for antibiotic resistance proteins and virulence
factors (Figures 2 and 3). Consequently, there is the potential risk that these isolates could
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persist in the environment and become a source of food contamination, therefore presenting
a risk to the health of consumers.

4. Materials and Methods
4.1. Sampling

A total of 15 presumptive strains of Cronobacter spp. were isolated from 2000 samples
from food (n = 997), milk-producing environments (n = 855), and feces from live poultry
(n = 148) on the territory of the Czech Republic in 2015. Sampling was performed by
instructed veterinarians. Solid, loose and slurry materials were collected in 60–200 mL
sterile plastic containers (Dispolab Ltd., Brno, Czech Republic) or in original packaging.
Swabs were taken using Transbak system containing Amies broth with active carbon
(Dispolab Ltd., Brno, Czech Republic). Environmental swabs, feces and meat samples were
stored and transported to the laboratory at +4 ◦C. Other materials were transported at
+21 ◦C. These strains were analyzed at the bacteriology department, Palacký University
Olomouc, Czech Republic (Supplementary Table S3).

4.2. Isolation and Identification Methods of Cronobacter spp.

Cronobacter spp. strains were isolated according to the method described by Iversen
et al. [55]. Food and environment samples were pre-enriched in buffered peptone water
(BPW), followed by Enterobacteriaceae enrichment broth (BD Difco, Sparks, MD, USA),
then on Brilliance CM 1035 chromogenic agar (Oxoid Thermo-Fisher, UK) and purified on
trypticase soy agar (BD Difco, Sparks, MD, USA). Prior to sequencing, the strains were
presumptively identified using Matrix Assisted Laser Desorption Ionization—Time of
Flight Mass Spectrometry (MALDI-TOF MS) (Bruker, Billerica, MA, USA) and with the
MALDI Biotyper Compass IVD 4.1.60 software (Bruker, Billerica, MA, USA) described
by Lepuschitz et al. [56]. The identification of the Cronobacter spp. strains was confirmed
with the Ribosomal Multilocus Sequence Typing (rMLST) software available at https:
//pubmlst.org/species-id (accessed on 2 February 2023) [57].

4.3. Whole-Genome Sequencing (WGS)

Cronobacter spp. isolates were cultured in Columbia blood agar plates (bioMérieux,
Marcy-l’Étoile, France) at 37 ◦C for 24 h. For WGS, DNA was isolated from bacterial
cultures with the MagAttract HMW DNA Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The quantification of input DNA was performed with a Qubit
2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and the double-stranded
DNA (dsDNA) BR assay kit (Thermo Fisher Scientific). Nextera XT chemistry (Illumina Inc.,
San Diego, CA, USA) was used to prepare sequencing libraries for a 2 × 300 bp paired-end
sequencing run on an Illumina MiSeq sequencer. Samples were sequenced to achieve a
minimum of 80-fold coverage using standard Illumina protocols. The resulting FASTQ
files were quality-trimmed and de novo assembled with the SPAdes v3.11.1 software.
Contigs were filtered for a minimum of 5-fold coverage and 200 bp minimum length with
the Ridom SeqSphere+ software v8.3 (Ridom, Münster, Germany) [31]. Raw reads were
quality-controlled using FastQC v0.11.9. Trimmomatic v0.36 [58] was used to remove
adapter sequences and to trim the last 10 bp of each sequence and sequences with quality
scores < 20. Reads were assembled using SPAdes v3.11.1 [59]. Contigs were filtered for a
minimum coverage of 5× and a minimum length of 200 bp using SeqSphere+ software
v8.3.0 (Ridom GmbH, Würzburg, Germany) [58] (Supplementary Table S3).

4.4. Sequence Type (ST) and Core Genome Multilocus Sequence Typing (cgMLST) of Cronobacter
sakazakii

A total of 3678 targets were used for core genome multilocus sequence typing (cgMLST)
scheme of Cronobacter spp., with strain ATCC BAA-894 as a reference using a target gene loci
task template of the Ridom SeqSphere+ software v8.3.0 (Ridom, Münster, Germany) [31,60].
According to this cgMLST scheme, isolates were visualized with a minimum spanning

https://pubmlst.org/species-id
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tree (MST) to establish their genotypic relationships and define those isolates with max-
imum differences of 10 alleles as clusters [31]. In addition, the sequences of the seven
housekeeping genes of the conventional MLST for C. sakazakii (atpD, fusA, glnS, gltB, gyrB,
infB and ppsA) were extracted and cross-checked against the Cronobacter MLST database
https://pubmlst.org/organisms/cronobacter-spp/ (accessed on 2 February 2023) [61].

4.5. Determination of Serotypes

The profiles of gnd and galF genes specific to the Cronobacter spp. serotype O region
were determined by WGS sequence analysis with the BIGSdb tool available in the PubMLST
database (http://pubmlst.org/cronobacter/) (accessed on 2 February 2023) [18].

4.6. Antibiotic Susceptibility

To assess antibiotic susceptibility, the disk diffusion method was used, in accordance
with the recommendations of the Clinical and Laboratory Standards Institute [62]. The
commercial disks that were used consist of ampicillin (10 µg), amoxicillin–clavulanic acid
(20/10 µg), ceftazidime (30 µg), ciprofloxacin (5 µg), chloramphenicol (30 µg), cefotaxime
(30 µg), gentamicin (10 µg), cephalothin (30 µg), tetracycline (30 µg) and nalidixic acid
(30 µg). The characterization of the resistance/susceptibility profiles was determined
according to the manufacturer’s instructions. The Escherichia coli ATCC 25922 and Pseu-
domonas aeruginosa ATCC 27853 strains were used as internal control.

4.7. Detection of Antibiotic Resistance and Virulence Genes

The existence of virulence genes was confirmed by ResFinder tool from the Center
of Genomic Epidemiology (CGE) (http://www.genomicepidemiology.org) (accessed on 5
March 2023) [63]. Thresholds for the target scanning procedure were set with a required
identity of ≥90% to the reference sequence and an aligned reference sequence ≥99%. The
Comprehensive Antibiotic Resistance Database (CARD) with the “perfect” and “strict”
default settings for sequence analysis [64], the Task Template AMRFinderPlus 3.2.3 available
in Ridom SeqSphere+ v7.8.0 software using the EXACT method at 100%, and BLAST
alignment for protein identification available in the AMRFinderPlus database were used
for antimicrobial resistance genes. For the search for genes and proteins associated with
virulence and fitness, the Virulence Factor Database (VFDB), available at http://www.
mgc.ac.cn/VFs/main.htm (accessed on 5 March 2023), was downloaded and compared
with each of the 15 genomes using the blast tool ncbi-blast-2.13.0+-x64-arm-linux.tar.gz,
available at https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LAST/ (accessed on 5
March 2023) on command line.

4.8. Detection of Plasmids and Mobile Genetic Elements (MGEs)

The PlasmidFinder v2.1 and MobileElementFinder v1.0 tools were used to detect
plasmids and mobile genetic elements (MGEs), respectively. The selected minimum identity
was 95% and 90%, respectively (http://www.genomicepidemiology.org/) (accessed on 5
March 2023) [65,66].

5. Conclusions

The C. sakazakii isolates analyzed in this study harbored ARGs and VGs, which con-
tributed to their persistence in powdered-milk-producing environments, and increased the
risk of infection in susceptible population groups due to the presence of multi-resistant
strains to antibiotics, reducing the possibility of treating of the infection [67,68].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12050851/s1. Supplementary Tables S1–S3 Virulence
and antibiotic resistance genes, and sequencing parameters.
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