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Abstract: The ARC predictor is a prediction model for augmented renal clearance (ARC) on the next
intensive care unit (ICU) day that showed good performance in a general ICU setting. In this study, we
performed a retrospective external validation of the ARC predictor in critically ill coronavirus disease
19 (COVID-19) patients admitted to the ICU of the University Hospitals Leuven from February 2020
to January 2021. All patient-days that had serum creatinine levels available and measured creatinine
clearance on the next ICU day were enrolled. The performance of the ARC predictor was evaluated
using discrimination, calibration, and decision curves. A total of 120 patients (1064 patient-days)
were included, and ARC was found in 57 (47.5%) patients, corresponding to 246 (23.1%) patient-days.
The ARC predictor demonstrated good discrimination and calibration (AUROC of 0.86, calibration
slope of 1.18, and calibration-in-the-large of 0.14) and a wide clinical-usefulness range. At the default
classification threshold of 20% in the original study, the sensitivity and specificity were 72% and 81%,
respectively. The ARC predictor is able to accurately predict ARC in critically ill COVID-19 patients.
These results support the potential of the ARC predictor to optimize renally cleared drug dosages in
this specific ICU population. Investigation of dosing regimen improvement was not included in this
study and remains a challenge for future studies.

Keywords: renal elimination; COVID-19; intensive care units; machine learning; external validation;
augmented renal clearance

1. Introduction

Augmented renal clearance (ARC) is common in critically ill patients, with a re-
ported prevalence varying between 20 and 65% [1]. While there is no generally ac-
cepted ARC definition, it is commonly defined by creatinine clearance (CrCl) higher than
130 mL/min/1.73 m2 [1], measured within the past 8 to 24 h window depending on the
urine collection time [2]. As the kidneys are an important route for drug elimination,
ARC leads to decreased exposure to commonly used antibiotics such as beta-lactams
and vancomycin [3–5] as well as anticoagulants [6]. Consequently, increased antibiotic
doses are necessary for patients with ARC to increase exposure and decrease the risk of
treatment failure [7].
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Given the impact of ARC on renal drug clearance, many prediction models for ARC
have been developed during the past few years [8–10]. The ARC score developed by
Udy et al. is a point-based scoring system to predict ARC based on the adjusted odds
ratios [8]. This model demonstrated decent predictive performance with an area under
the receiving operating characteristics curve (AUROC) of 0.89 in a cohort of 71 critically ill
sepsis and trauma patients. Additionally, the Augmented Renal Clearance of Trauma in
Intensive Care (ARCTIC) score proposed by Barletta et al. is also point-based [9]. Recently
externally validated [11], the ARCTIC score showed decent discrimination with an AUROC
of 0.765 and 0.748 in the trauma and medical/surgical subgroups, respectively. Finally, the
ARC predictor that was developed to predict the presence of ARC on the next intensive
care unit (ICU) day outperformed the two existing models (ARC Score [8] and ARCTIC
Score [9]) in the validation cohort [10] and has been made publicly available as an online
calculator [12]. Although the ARC predictor showed promising results, its performance
in other independent patient populations remains to be investigated before it can be
recommended for broad clinical use [13].

Since the beginning of 2020, ICUs worldwide have been overwhelmed by a large
number of critically ill coronavirus disease 19 (COVID-19) patients. More than 525 million
people have been infected, and over 6 million people have died from COVID-19 [14].
Patients with COVID-19 mainly present with respiratory failure, but many critically ill
COVID-19 patients also suffer from kidney dysfunction, with an acute kidney injury (AKI)
prevalence of 18–81% [15]. On the other side of the renal function spectrum, ARC is
common in critically ill COVID-19 patients, with a prevalence of 25–72% [16]. While the
epidemiology of ARC has been described in critically ill COVID-19 patients [16–20], the
performance of prediction models for ARC has not been reported in this patient population.
Therefore, we aim to externally validate the ARC predictor in previously unseen critically
ill COVID-19 patients.

2. Results
2.1. Study Cohort

In total, 120 patients (1064 patient-days) were included, and ARC was found on at least
one ICU day in 57 (47.5%) patients, corresponding to 246 patient-days (23.1%) (Figure 1).
The descriptive statistics per patient and per patient-day are shown in Table 1 and Table S1
from supplementary. Seventy-two percent of the study cohort were male patients. Baseline
serum creatinine (SCr) was missing in 178 (16.7%) patient-days, corresponding to 20 (16.7%)
patients, and imputed with a median baseline SCr of 0.86 mg/dL. The median (interquartile
range (IQR)) age was 67 (59–75) years, the median (IQR) body mass index (BMI) was 28.7
(25.8–33.1) kg/m2, and the median (IQR) ICU length of stay (LOS) was 14 (9–24) days.
Patients with ARC were significantly younger (61 (57–67) vs. 73 (65–78) years, p < 0.01), had
a lower baseline SCr (0.9 (0.7–0.9) vs. 0.9 (0.9–1.1), p < 0.01), and a lower Acute Physiology
and Chronic Health Evaluation II (APACHE II) score (18 (13–23)) vs. 19 (17–27), p < 0.01).
In ARC patients, the median (IQR) first day of ARC was day 1 (1–2) from ICU admission,
the median (IQR) percentage of ARC days was 61.5% (25.0–100.0%), and the median (IQR)
days with ARC was 2 (1–6) days (Figure S1 from supplementary). Patient-days with ARC
had significantly higher CrCl (152.7 (138.3–175.6) vs. 74.8 (52.3–102.2) mL/min/1.73 m2,
p < 0.01). In comparison with the original ARC predictor development cohort, this study
cohort consisted of 10% more men (72.5 vs. 62.5%), had comparable ages (67 vs. 65 years),
and showed an ICU LOS almost twice as long (14 vs. 8 days).
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Figure 1. Consort diagram. ESKD, end-stage kidney disease; CrCl, creatinine clearance; KRT, kidney 
replacement therapy; SCr, serum creatinine; ICU, intensive care unit. 

Table 1. Patient characteristics and clinical outcomes (per patient). 

Variables 
All Patients 

(n = 120) 
ARC 

(n = 57, 47.50%) 
Not ARC 

(n = 63, 52.50%) 
p-Value 

Age, years, median (IQR) 67 (59–75) 61 (57–67) 73 (65–78) <0.01 
Sex male, number (%) 87 (72.5) 40 (70.2) 47 (74.6) 0.59 

Height, m, median (IQR) 1.7 (1.6–1.8) 1.8 (1.7–1.8) 1.7 (1.6–1.8) 0.03 
Weight, kg, median (IQR) 85.0 (71.5–104.0) 86.0 (70.0–104.0) 85.0 (73.5–101.5) 0.63 

BMI, median (IQR) 28.7 (25.8–33.1) 28.1 (26.1–32.8) 29.0 (25.8–34.3) 0.71 
Baseline serum creatinine, 

mg/dL, median (IQR) 
0.9 (0.8–1.0) 0.9 (0.7–0.9) 0.9 (0.9–1.1) <0.01 

APACHE II score, median (IQR) 19 (15–25) 18 (13–23) 19 (17–27) <0.01 
Day from ICU admission, day, 

median (IQR) 
6.0 (3.5–10.0) 6.5 (4.0–10.0) 6.0 (3.2–10.5) 0.73 

Creatinine clearance, 
mL/min/1.73 m2, median (IQR) 

91.3 (54.7–132.5) 133.8 (106.4–165.0) 55.9 (27.8–81.9) <0.01 

Length of stay in ICU, days, 
median (IQR) 

14 (9–24) 15 (8–24) 14 (10–24) 0.11 

BMI, body mass index; APACHE II score, Acute Physiology and Chronic Health Evaluation II score; 
IQR, interquartile range. 

2.2. ARC Predictor External Validation Performance 
The discrimination of the ARC predictor was comparable to the discrimination in the 

original study (AUROC: 0.86 vs. 0.89) but the calibration was slightly less (calibration 
slope (CS): 1.18 vs. 0.95; calibration-in-the-large (CITL): 0.14 vs. 0.12) (Figure 2). At the 
classification threshold of 20% (as proposed in the original study), the sensitivity, 
specificity, positive predictive value, negative predictive value, positive likelihood ratio, 
and negative likelihood ratio were 72.36%, 81.17%, 53.61%, 90.71%, 3.84, and 0.34, 
respectively (Figure 3), in comparison with 87.9%, 76.9%, 48.3%, 96.3%, 3.8, and 0.16, 
respectively, in the original study. The decision curve analysis demonstrated clinical 
usefulness across a broad range of classification thresholds (4.04–81.82%), similar to the 
original study (1–71%). The ARC predictor showed a higher area under the precision-
recall curve (AUPRC) of 0.62 than the baseline AUPRC of 0.23 (Figure S2 from 
supplementary). The probability predictions for ARC were significantly higher in patients 
and patient-days with ARC compared with the probability predictions for ARC in patients 
and patient-days without ARC (Figure 4). On each ICU day within the first two weeks of 
ICU admission, predicted probabilities were significantly higher in patient-days with 
ARC than in patient-days without ARC (Figure S3 from supplementary). 

Figure 1. Consort diagram. ESKD, end-stage kidney disease; CrCl, creatinine clearance; KRT, kidney
replacement therapy; SCr, serum creatinine; ICU, intensive care unit.

Table 1. Patient characteristics and clinical outcomes (per patient).

Variables All Patients
(n = 120)

ARC
(n = 57, 47.50%)

Not ARC
(n = 63, 52.50%) p-Value

Age, years, median (IQR) 67 (59–75) 61 (57–67) 73 (65–78) <0.01

Sex male, number (%) 87 (72.5) 40 (70.2) 47 (74.6) 0.59

Height, m, median (IQR) 1.7 (1.6–1.8) 1.8 (1.7–1.8) 1.7 (1.6–1.8) 0.03

Weight, kg, median (IQR) 85.0 (71.5–104.0) 86.0 (70.0–104.0) 85.0 (73.5–101.5) 0.63

BMI, median (IQR) 28.7 (25.8–33.1) 28.1 (26.1–32.8) 29.0 (25.8–34.3) 0.71

Baseline serum creatinine, mg/dL,
median (IQR) 0.9 (0.8–1.0) 0.9 (0.7–0.9) 0.9 (0.9–1.1) <0.01

APACHE II score, median (IQR) 19 (15–25) 18 (13–23) 19 (17–27) <0.01

Day from ICU admission, day,
median (IQR) 6.0 (3.5–10.0) 6.5 (4.0–10.0) 6.0 (3.2–10.5) 0.73

Creatinine clearance,
mL/min/1.73 m2, median (IQR) 91.3 (54.7–132.5) 133.8 (106.4–165.0) 55.9 (27.8–81.9) <0.01

Length of stay in ICU, days,
median (IQR) 14 (9–24) 15 (8–24) 14 (10–24) 0.11

BMI, body mass index; APACHE II score, Acute Physiology and Chronic Health Evaluation II score; IQR,
interquartile range.

2.2. ARC Predictor External Validation Performance

The discrimination of the ARC predictor was comparable to the discrimination in
the original study (AUROC: 0.86 vs. 0.89) but the calibration was slightly less (calibration
slope (CS): 1.18 vs. 0.95; calibration-in-the-large (CITL): 0.14 vs. 0.12) (Figure 2). At the
classification threshold of 20% (as proposed in the original study), the sensitivity, specificity,
positive predictive value, negative predictive value, positive likelihood ratio, and negative
likelihood ratio were 72.36%, 81.17%, 53.61%, 90.71%, 3.84, and 0.34, respectively (Figure 3),
in comparison with 87.9%, 76.9%, 48.3%, 96.3%, 3.8, and 0.16, respectively, in the original
study. The decision curve analysis demonstrated clinical usefulness across a broad range
of classification thresholds (4.04–81.82%), similar to the original study (1–71%). The ARC
predictor showed a higher area under the precision-recall curve (AUPRC) of 0.62 than the
baseline AUPRC of 0.23 (Figure S2 from supplementary). The probability predictions for
ARC were significantly higher in patients and patient-days with ARC compared with the
probability predictions for ARC in patients and patient-days without ARC (Figure 4). On
each ICU day within the first two weeks of ICU admission, predicted probabilities were
significantly higher in patient-days with ARC than in patient-days without ARC (Figure S3
from supplementary).
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days with and without ARC and (b) patients with and without ARC during their ICU stay, with
predicted probabilities average over their ICU stay, regardless of the presence of ARC on that day.ARC,
augmented renal clearance.
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2.3. ARC Predictor Feature Importance

The SCr on the previous day was the most important feature, followed by the day
from admission, age, and sex, with a median permutation importance of 0.28, 0.10, 0.04,
and 0.02, respectively (Figure S4 from supplementary). Since all patients were admitted
due to respiratory insufficiency resulting from COVID-19, they were all without trauma
or cardiac-surgery-related diagnoses on ICU admission and thus of zero permutation
importance for these two features.

3. Discussion

In this external validation study, we found that the previously built ARC predictor had
good performance in predicting the presence of ARC on the next ICU day in critically ill
COVID-19 patients. Specifically, the robustness of the ARC predictor was confirmed by the
comparable AUROC of the ARC predictor in this study compared to those of the original
study and by the significantly higher predicted probabilities in patients and patient-days
with ARC. The calibration plot expressed that the ARC predictor slightly underestimated
the ARC risk in this population. Nevertheless, the decision curve analysis showed a
similarly wide clinical-usefulness range, and the default classification threshold of 20%
(that maximized the sensitivity and specificity in the original study) was still able to attain
clinical usefulness. These results demonstrate the potential of the ARC predictor for risk
stratification and drug-dose adjustment in this critically ill COVID-19 population.

Even though the discrimination was similar in this cohort to the cohort in the original
study, and the clinical-usefulness range was wide, the calibration was slightly different
compared with the original study. This was expected and may be explained by the signifi-
cantly different patient characteristics between this critically ill COVID-19 cohort and the
original ARC predictor development cohort. The development cohort included trauma
and cardiac surgery patients but no COVID-19 patients. These patients have a different
clinical presentation and course during their ICU stay compared with other critically ill
patients [21]. Nevertheless, COVID-19 patients might experience systemic inflammatory
response syndrome, which can (in-)directly overlap with the mechanism of ARC [16] and
consequently increase ARC risk. In addition, a specific pathophysiological mechanism
might play a role here, as viral particles have been found in the kidneys of COVID-19
patients. We also found a lower sensitivity of the ARC predictor in this cohort than in the
original cohort. Both the calibration curve and the lower sensitivity indicate that the ARC
predictor underestimates the risk of ARC.

Based on the permutation importance plot, the SCr of the previous day was the most
important feature, which was reasonable because it directly and quickly reflected the
time-variant kidney function. The second most important feature was the day from ICU
admission. We found that ARC occurred relatively early after ICU admission, which is
opposed to the findings of Beunders et al., who found that ARC occurred late on median
(IQR) day 28 (21–42) following ICU admission during COVID-19 infections [17], but is
in line with the findings of previous studies in general ICU patients (the highest ARC
prevalence was observed on day 5) and critically ill COVID-19 patients (the median (IQR)
first day of ARC was day 2 (3–5) of ICU stay) [1,19]. Next, age was ranked as the third
most important feature, which was expected since age has consistently shown a significant
inverse association with ARC in many studies [7,9,10,22–33]. Age might be more relevant
in this patient population since it has been noticed that some COVID-19 variants are more
prevalent in young patients [34,35]. In addition, sex was an important feature, which is not
unexpected as there is a well-known association between the male sex and the occurrence
of ARC [7,9,10,23,25,27–29,32]. Finally, the permutation importance plot revealed that
these four ARC predictor features had positive permutation importance and were thus all
effectively contributing to the final robust predictive performance.

Our study has many strengths. First, we reported all key measures to evaluate the
model’s performance, namely the discrimination, calibration, and clinical usefulness [36].
Second, the study was reported using the Transparent Reporting of a Multivariate Pre-
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diction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines (Table S2 from
supplementary) [37]. Third, this study was based on a large high-quality COVID-19 cohort
without any missing value in the ARC predictor features, and thus no imputation methods
were applied. Consequently, the presented results are reliable and trustworthy. Fourth,
the reported permutation importance helped to understand the contribution of each ARC
predictor feature in this study cohort. Finally, the higher predicted probabilities in patients
and patient-days with ARC were explicitly investigated, either as a whole during the
entire ICU stay, regardless of the ICU days or on each ICU day within two weeks after
ICU admission.

However, our study also has several limitations. First, this is a retrospective study, so
we were not able to assess whether the ARC predictor could help achieve pharmacokinetic
targets, optimize renally cleared drug dosage, and/or improve patient outcomes. Second,
this is a single-center Belgian study, while the optimum is to validate the ARC predictor
performance in a larger multicenter international setting. Third, there might be a selection
bias resulting from the exclusion criteria where patient-days with the need for temporary
kidney transplant therapy (KRT), unavailable SCr on the previous day, and/or unavailable
CrCl on the present ICU day were removed. However, these inclusion/exclusion criteria
were necessary to ensure that only reliable CrCls were used for performance evaluation
and were the same as in the original study. Finally, future studies are needed to assess
whether the ARC predictor can improve the drug dosage of antibiotics and low-molecular-
weight heparins.

4. Materials and Methods
4.1. Study Databases with Inclusion and Exclusion Criteria

Model validation was performed on adult COVID-19 pneumonia patients who had
a positive polymerase chain reaction (PCR) for Severe Acute Respiratory Syndrome coro-
navirus 2 (SARS-CoV-2) on a respiratory sample and who were admitted to critical care
in the University Hospitals Leuven from February 2020 to January 2021. Ethical approval
was obtained from the Ethics Committee (EC) Research UZ/KU Leuven (S66365) with the
study title “Machine learning tools in critically ill COVID-19 patients: external validation
of the Acute Kidney Injury and Augmented Renal Clearance predictors” on 8 April 2022.
The need for informed consent form was waived due to the noninterventional nature of
the study. The study was conducted in compliance with the principles of the Declaration
of Helsinki and its later revisions. Patients were excluded if they had end-stage kidney
disease defined as chronic hemodialysis and/or kidney transplant upon ICU admission.
Patient-days were excluded if they had (1) no available SCr measured on the ICU day prior
to the day for which the prediction was made, (2) no measured CrCl on the ICU day for
which the prediction was made, (3) KRT on the day for which the prediction was made,
(4) onset of intermittent dialysis during the previous ICU days, (5) incomplete ICU day
(day 0), and/or 6) KRT on the day prior to the day for which the prediction was made.

4.2. ARC Definition

Daily CrCl was measured for each ICU day based on the daily 24 h urine output (UO),
urinary creatinine (UCr), and SCr with correction for an average body surface area: CrCl
(mL/min/1.73 m2) = UCr (mg/dL) × 24 h UO (ml/day)/SCr (mg/dL)/1440 (min/day)
× 1.73/(0.007184 × height (cm)0.725 × weight (kg)0.425). If more than one value was avail-
able on the same ICU day, the mean was applied for UCr and SCr, and the summation was
applied to UO. ARC was defined as a measured CrCl larger than 130 mL/min/1.73 m2.
Data were retrieved from the patient data management system database (Microsoft SQL
Server®; Microsoft®, Redmond, Washington, WA, USA). After the application of the exclu-
sion criteria, there were no patient-days with missing values for any ARC predictor feature.
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4.3. ARC Predictor

The ARC predictor is a model developed by Gijsen et al. [10] to predict ARC on
the next ICU day based on six routinely collected clinical variables: age, sex, day from
ICU admission, SCr of the previous day, trauma-related diagnosis on ICU admission
(True/False), and cardiac surgery related diagnosis on ICU admission (True/False), by
using a generalized estimating equation (GEE) logistic regression with backward feature
selection. The ARC predictor calculates the predicted probability with the provided six
features, which can then be translated into a prediction for ARC on the next ICU day
according to a prespecified classification threshold. This classification threshold is set by
default at 20%, which maximized sensitivity and specificity in the original study, although
the threshold can also be manually adapted.

4.4. Evaluation Metrics for Predictive Performance

For better interpretation and comparison with the original study, model performance
was evaluated by using the same evaluation metrics: receiving operating characteristics
(ROC) curve (including AUROC, sensitivity, specificity, positive predictive value, negative
predictive value, positive likelihood ratio, and negative likelihood ratio), calibration plot
(including CS and CITL) [38], and decision curve analysis [39]. The precision–recall (PR)
curve (including AUPRC) was also examined. To further investigate the importance of
each ARC predictor feature and to examine whether all features were still predictive
for this study cohort, 100 repetitions of AUROC-based permutation importance were
measured [40]. A boxplot was used to compare the predicted probabilities between (i) the
patient-days with and without ARC during the entire ICU stay and on each ICU day within
two weeks after ICU admission; (ii) the patients with and without ARC where the predicted
probabilities were averaged over their ICU stay, regardless of the presence of ARC on
that day. Additionally, the percentage of ARC days and the number of ARC days in ARC
patients were investigated and visualized with a boxplot.

4.5. Descriptive Analyses and Software Used

All analyses were performed in Python 3.7.4 (Python Software Foundation, http://www.
python.org (accessed on 19 May 2022)) with SciPy version 1.7.3 (SciPy.org (accessed on
19 May 2022)) and Scikit-learn library 1.0.2 (scikit-learn.org (accessed on 19 May 2022)).
Descriptive statistics were used to describe the study population, with continuous data
presented as medians, and IQR and categorical data expressed as counts and percentages
(%). To evaluate the statistical significance of differences, a GEE model was used with the
patient identification number as the grouping variable. A two-tailed P-value less than or
equal to 0.05 was considered statistically significant.

5. Conclusions

In conclusion, we demonstrated the robustness of the ARC predictor to predict ARC
on the next ICU day in critically ill COVID-19 patients, based on six routinely collected
clinical variables in the ICU. Despite the promising performance, these findings should
be prospectively validated in independent patient populations before the ARC predictor
can be implemented for risk stratification or used to inform optimized dosing strategies in
routine clinical ICU practice.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics12040698/s1, Figure S1: Percentage of ARC days (left) and number
of days with ARC (right) in ARC patients; ARC, augmented renal clearance; Figure S2: Precision–
recall curve. AUPRC, area under the precision-recall curve. Baseline, the number of positive cases
(patient-days with the presence of augmented renal clearance) over the total number of patient-days;
Figure S3: Comparison of predicted probabilities of ARC on each ICU day between patient-days with
and without ARC, within the first two weeks of ICU admission. The black and grey numbers above
the figure indicate the numbers of patient-days with and without ARC on each ICU day, respectively.
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ARC, augmented renal clearance; Figure S4: Boxplots of permutation importance of all augmented
renal clearance predictor features with 100 repetitions. AUROC, area under the receiver operating
characteristics curve; Table S1: Patient characteristics and clinical outcomes (per patient-day); Table S2:
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) statement.
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