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Abstract: Fungal infections are becoming one of the main causes of morbidity and mortality in
people with weakened immune systems. Mycoses are becoming more common, despite greater
knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal
medications used in clinical settings. Antifungal therapy is the mainstay of patient management
for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits
the range of available treatments. Additionally, several drawbacks to treating mycoses include
unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of
which continue to be significant issues in developing antifungal drugs. The emergence of antifungal
drug resistance has eliminated accessible drug classes as treatment choices, which significantly
compromises the clinical management of fungal illnesses. In some situations, the emergence of
strains resistant to many antifungal medications is a major concern. Although new medications
have been developed to address this issue, antifungal drug resistance has grown more pronounced,
particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover,
the mechanisms that cause resistance must be well understood, including modifications in drug target
affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug
levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal
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agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses
on the strategies by which we can overcome this serious issue of antifungal resistance in humans.

Keywords: antifungal; antifungal resistance; fungal infections; fungal treatments

1. Introduction

The human population has been plagued by various infectious diseases for a long time
and they remain one of the leading causes of death [1]. Fungal infections are not considered
a severe health issue, even though they affect over a billion people. Approximately 1
million individuals have invasive fungal infections (Aspergillus, Candida, Cryptococcus, and
Pneumocystis) worldwide, resulting in the death of 1.7 million people annually [2,3]. The
WHO has developed a priority list of fungi based on the severity of infection, the WHO
FFPL. This is the first global effort to systematically classify fungal pathogens. Nineteen
fungi were categorized into three priority groups (critical, high, and medium) in this list
considering their unfulfilled requirements in research and development and their signif-
icant role in public health [4]. Almost every person is affected by a superficial fungal
infection, which is easy to cure. However, individual infection by a specific invasive fungal
pathogen can be fatal due to a lack of definitive diagnosis and treatment [5]. For instance,
recent studies estimated ~300,000 cases of invasive Aspergillosis, 750,000 cases of Candidiasis,
and more than 900,000 cases of Mucormycosis infection annually [6,7]. Additionally, the
emergence of antifungal drug resistance in susceptible pathogens (the ubiquitous mould
Aspergillus fumigatus) and novel fungal species resistance to multiple antifungal drugs (for
example, the yeast Candida auris) are alarming critical concerns to human health world-
wide [8–11]. The inaccessibility of efficient therapeutics against such fungal infections and
the gain of resistance in fungi against antifungal agents is, therefore, contributing a hin-
drance to eradicating fungal infection while increasing the mortality rate [12]. In addition,
an increasing number of diseased populations, such as older people and immunodeficient
or seriously ill patients, such as AIDS, cancer, diabetic patients, and transplantation pa-
tients, are vulnerable to fungal disease, which provides a perfect niche for infection [13].
Additionally, fungal infections were connected with other bacterial and viral infections,
including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); immunocompro-
mised patients thereof are prone to invasive fungal infections [14]. For instance, the most
unambiguous indication of co-infection was the appearance of mucormycosis, a fungal
infection caused by Mucorales, in South Asian nations, particularly in India, following
the first wave of the coronavirus diseases 19 (COVID-19) caused by SARS-CoV-2. [15,16].
However, it appears that severe immunocompromised hosts (such as those who have un-
dergone organ transplantation, cancer, autoimmune disorders, immune system functional
limitations, or neutropenia), hyperglycaemia or poorly controlled diabetes mellitus, and
immunocompetence in post-traumatic cases are the leading causes of this infection [15].

Among the known fungal pathogens, drug-resistant pathogens in invasive fungal
infections are responsible for causing more than 50% of the mortality rate; therefore, it is es-
sential to understand the mechanism of drug resistance and the drawbacks of the currently
available antifungal treatments for the clinical management of fungal infections [5]. Recent
studies established that pathogenic fungi acquired various adaptive mechanisms to achieve
antifungal drug resistance, such as alteration of the target drug site, target overexpression,
upregulation of the multidrug transporters, biofilm formation, cell permeability, and stress
response [17]. For instance, fungi gained primary resistance against the chemical action of
antifungal drugs using intrinsic resistance parameters, including biofilm formation and
cell wall impermeability. After continuous exposure to antifungal agents, fungi acquired
secondary mechanisms to adopt resistance, termed acquired resistance, via genetic alterna-
tions to modify the target binding site or overexpression of the targeted proteins, or stress
response and stress response/epigenetic pathways alternation [18–21]. Additionally, fungi
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can also gain antifungal drug resistance via random mutations induced by the overuse of
antifungal functional groups, such as azole and echinocandins [22]. Therefore, a systematic
treatment for fungal infections is mainly based on four classes of antifungal drugs, i.e.,
polyenes, azoles, echinocandins, and antimetabolite agents (Figure 1) [19]. For example,
heptaene amphotericin B is a class of polygene which binds to ergosterol, a significant com-
ponent of the fungal cell membrane. It creates pores in the cell membrane to cause leakage
of intracellular ions. Such drugs have been documented for the fungicidal or fungistatic
activity against Aspergillus fumigatus, A. flavus, and Candida genera [23]. Likewise, azole
drugs interfere with the ergosterol biosynthesis by inhibiting the ergosterol biosynthesis of
the 14α-lanosterol demethylase in fungi and are reported with potential activity against
yeast and Aspergillus species [24]. Additionally, echinocandins (containing caspofungin,
micafungin, and anidulafungin drugs) are known to inhibit the synthesis of β-d-glucans in
fungi, which are essentially required for the formation of the fungal cell wall [25]. Similarly,
flucytosine, an antimetabolite agent that inhibits fungal growth by alternating in fungal
DNA and protein synthesis, is generally administered in conjunction with amphotericin B
to treat refractory Candida infections and Cryptococcal meningitis infections [26]. Pathogenic
fungi respond to these available antifungal agents effectively. Still, with prolonged usage
of these drugs and due to some external factors, the pathogen attains resistance, resulting
in no improvement in the infected individual even after treatment [27]. Other factors,
such as a defective host immune system, poor antifungal activity, and specific fungal
characteristics, such as antifungal tolerance and resistance, were also elucidated as critical
factors in promoting antifungal drug resistance or the failure of antifungal treatment [28].
It is also important to mention that over-using antifungal drugs increases the chance of
opportunistic pathogens attaining resistance [29]. So, it is essential to find specific and
practical strategies to treat drug-resistant fungi by analysing the molecular mechanism
leading to drug resistance, which can help identify new potential targets for developing
new antifungal drugs [30]. Hence, the present review gives a brief understanding of the
development of drug resistance in fungi against the commonly used antifungal agents and
potential strategies adopted to overcome antifungal resistance, mainly in humans.
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In this study, PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 20 June 2022)
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sciences and biomedicines. This search engine helps to screen the articles based on various
criteria such as year of publication, type of article, text available, and other additional filters
to make the screening of articles easier and accurate. Keywords ‘Antifungal’, ‘Antifungal
resistance’, ‘Fungal infections’, ‘Fungal treatments’, and ‘Antifungal agents’ were used
to search and collect the relevant literature from this database. Additionally, Clinical
Trials (https://clinicaltrials.gov/, accessed on 20 June 2022) database was also considered
as the secondary database to find the relevant information. Initially, the first search on
the mentioned databases was performed on 26 June 2022, and relevant articles, both
research and review papers, published between 2001 and 2022 were collected. Later, a
second literature collection was conducted on 1 July 2022, to update (1 October 2022), and
again, the most relevant publications were downloaded and considered in the present
review. Following that, the collected literature was screened using the multiple keywords
mentioned above to assemble the most pertinent publications.

2.2. Exclusion of Articles

Conclusively, the adopted methodology for the literature screening resulted in a collec-
tion of 7500 hits. This set of articles was further refined and articles containing information
about the non-antifungal drugs (1500 articles), such as antiparasitic drugs and diseases,
were excluded. Furthermore, from the available 6000 hits, another 4000 articles on antifun-
gal agents related to plants and animals (2500 papers) were also removed from the set of
selected papers. A set of articles containing incomplete information regarding antifungal
resistance and published in languages other than English (1000 publications) were also
excluded as they did not fulfil the selection criteria. Additionally, around 500 articles were
found to be duplicates.

2.3. Collection of Data from Relevant Articles

From the remaining 2000 eligible research and review papers, only 100 relevant papers
focusing on the inclusion criteria, such as evaluating antifungal resistance using in vitro and
in vivo methods, various mechanisms of antifungal drug resistance shown by prominent
fungal pathogens, and strategies used for the prevention of antifungal resistance, were
sorted for the present systematic review. As the current paper concentrates on antifungal
resistance in humans, 100 articles within the last 20 years were thus further sorted for a
new collection that discussed antifungal resistance or antifungal medication in humans.
To provide a comprehensive understanding of antifungal drug resistance, 60 articles were
consulted from these 100 selected publications that describe the categorisation of antifungal
medications, their mechanisms of action, the development of antifungal resistance, and
strategies to overcome antifungal resistance in humans for a detailed discussion. In addition,
some relevant articles were cited and discussed during the article revision. A systematic
flow representing the adopted methodology for selecting and refining the literature is given
in Figure 2.

https://clinicaltrials.gov/
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3. Results and Discussion

The overuse of existing antifungal medications in recent years has led to the evolution
of antifungal-resistant fungi or the emergence of novel fungal species with solid antifungal
tolerance [31]. As a result of its impact on human health, there is now a great deal of interest
in understanding antifungal resistance from various viewpoints. The existing antifungal
therapeutic agents are affected by other factors such as drug–drug interaction, toxicity, and
limitation in routes of drug administration [32]. In the last two decades, no new antifungal
classes have been available, and only a few new antifungal drugs of the existing class of
drugs are being approved for treatment. Identification of novel antifungal pathways and
drug targets is utilised for developing potential antifungal drugs with a novel mode of
action or for a new formulation of existing antifungals [33,34]. A brief insight into the
existing antifungal drugs and their resistance mechanisms will be helpful in the formulation
of new antifungal agents.

3.1. Antifungal Agents and Their Mode of Action

Antifungal agents can be divided into nonspecific and specific agents based on the
mode of action. Nonspecific antifungals mainly include disinfectants, antiseptics, and
essential oils that can be applied to treat skin and mucous antifungal infections. Specific
antifungals, also known as antimycotic drugs, have a particular mechanism of action [35].
For example, polyenes, antimetabolites agents, azoles, and echinocandins are the four
classes of specific antifungal drugs approved by the Food and Drug Administration (FDA)
for treating invasive fungal infections [36]. Only certain antifungals are taken into con-
sideration in the current investigation because they are commonly used to treat invasive
fungal infections.
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3.1.1. Polyenes

The first antifungal polyene—fungicidin, later called nystatin—was discovered in 1949.
More than 200 polyenes as fungal-specific antibiotics have been discovered and used to
treat fungal infections in humans [36,37]. These antifungal agents show fungicidal activity
against numerous species of Aspergillus, Candida, and Cryptococcus genera [17]. Generally,
polyenes possess a cyclic heptaene or polyketide core macrolactone ring (20–40 carbon
atoms including 3–8 conjugated double bonds) structure and are produced by the Gram-
positive bacterium Streptomyces nodosus. Based on the conjugated double bonds, polyenes
are characterised as trienes, tetraenes, pentaenes, hexaenes, heptaenes, etc. [38,39]. Approxi-
mately six polyenes were identified that could be used for antifungal therapy: amphotericin
B, nystatin, natamycin (also called pimaricin), candicidin, trichomycin, and methyl par-
tricin [37]. Amphotericin B (amphotericin B deoxycholate) is the most widely used and was
first approved by the FDA to treat invasive fungal infections but, due to low therapeutic
index and high nephrotoxicity, the usage of this drug has been limited [33,36]. To improve
drug quality and reduce drug toxicity, liposomal amphotericin B was introduced, where
the amphotericin B is induced into a small, unilamellar vesicle made up of a liposomal for-
mulation. The liposomal amphotericin B is much safer and less toxic than the conventional
amphotericin B and is used for the treatment of various fungal infections [40].

These antifungal agents exhibit two different modes of action against the fungi, i.e.,
(i) the polyenes incorporate into the fungal lipid bilayer and bind to the ergosterol molecule.
This results in pore formation in the fungal cell wall and causes leakage of essential ions
(K+, Mg2+, Ca2+, and Cl−) and energy molecules (glucose), leading to the death of fungal
cells; (ii) polyenes instigate reactive oxygen species (ROS) production and accumulation in
fungi, which causes substantial damage to the fungal protein, mitochondria, cell membrane,
and DNA [41]. Another mode of action of polyene is the extraction or ergosterol adsorption
from the membrane leading to membrane destabilisation and membrane protein function
disturbance [42] (Table 1, Figure 3).
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3.1.2. Antimetabolite Agents (5-Fluorocytosine)

Antimetabolites are structurally characterized as analogues of essential metabolites
but cannot be consumed by the human body [43]. The common classes of antimetabo-
lites include purine antagonists (6-mercaptopurine) [44] and pyrimidine antagonists
(5-fluorouracil) [45]. Some natural products, such as vinca alkaloids and taxol, have been
reported as antimetabolites in disease management [46,47]. Some antimetabolites are
also available for use against invasive fungal infections in humans. The best example is
5-fluorocytosine, a synthetic analogue of cytosine, which was first synthesized in 1957 as an
antitumor drug and later approved by the FDA as an antifungal drug for humans in 1968
(Figure 4). Flucytosine effectively treats fungal infections caused by Cryptococcus neoformans,
Candida spp., and Cryptococcal meningitis [48–50]. It is also used with amphotericin B to treat
systemic mycoses, and this association also reduces the rate of nephrotoxicity in patients
compared to treatment of amphotericin B alone [51,52]. Additionally, the combination of
these drugs has a higher efficacy rate [53]. Typically, when the drug enters the fungus, the
drug gets activated into 5-fluorouracil(5-FU) by the fungal cytosine deaminase enzyme
and impedes DNA and RNA synthesis via intracytoplasmic conversion. For instance,
5-fluorouracil (5-FU) is converted into 5-fluorouridine monophosphate (5FUMP) with the
help of uracil phosphoribosyltransferase (FUR1) and then 5-fluorouridine triphosphate to al-
ter the RNA synthesis as well as protein synthesis [54–56]. Moreover, fluoro-deoxyuridylic
acid, the modified form of 5-fluorouracil (5-FU), also inhibits DNA synthesis and causes
DNA damage by the inhibition of thymidylate synthase [55] (Table 1).
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3.1.3. Azole

Azoles, a broad-spectrum class of antifungals, were discovered in 1944 and approved
for human use in the 1950s [36]. Based on the number present in the aromatic ring of azoles,
they are classified into three groups: imidazoles, triazoles, and tetrazoles. Imidazoles have
two nitrogen atoms in the azole ring, and triazoles have three nitrogen atoms in the azole
ring [57]. Miconazole, clotrimazole, econazole, ketoconazole, tioconazole, sulconazole,
serconazole, and luliconazole represents the imidazole-based azole drugs and terconazole,
fluconazole, isavuconazole (isavcuconazonium—prodrug of isavuconazole), itraconazole,
voriconazole, posaconazole, eficonazole, and albaconazole represents the triazole group of
drugs [58]. Tetrazole, a recently developed compound under the azole group, shows broad
spectrum activity against fungal species, but its usage is limited as most of the drugs are
under trial stage and need to be approved by worldwide agencies [59,60]. Tetrazoles, which
include one carbon and four nitrogen atoms, are a subclass of doubly unsaturated aromatic
heterocycles with a five-membered ring. In nature, they do not exist [61]. Modified tetra-
zoles named quilseconazole (VT-1129) and oteseconazole (VT-1161) are the latest developed
inhibitors of lanosterol 14α-demethylase encoded by the Cyp51 gene [54,62]. They are
designed to overcome the problem of drug–drug interaction, a significant limitation of
the azole class of antifungal drugs. These are developed by Mycovia Pharmaceuticals
(previously known as Viamet Pharmaceuticals), Inc. (Durham, NC, USA) by replacing the
triazole metal binding group with a tetrazole. This modification results in the develop-
ment of more specific compounds in the inhibition of the Cyp51 gene and shows minor
drug–drug interaction [63,64]. The FDA approved quilseconazole as an orphan drug for
the treatment of cryptococcal meningitis, and oteseconazole is approved for the treatment
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of recurrent vulvovaginal candidiasis (RVVC) [54,65,66]. Quilseconazole and oteseconazole
show antifungal activity against Candida and Cryptococcus species [67]. Drugs under the
azole group inhibit the 14α-lanosterol demethylase enzymes, causing a disturbance in
ergosterol biosynthesis, a significant cell membrane component. As a result, the fungal cells
experience depletion of ergosterol and accumulation of toxic 14-methylated sterols, leading
to cell lysis and death [68]. Azoles displays fungicidal and fungistatic activity against fungi
from genera Candida, Cryptococcus, Coccidioides, Aspergillus, yeasts, and moulds. Voricona-
zole, isavuconazole, and itraconazole are the most preferred drugs for the treatment of
invasive aspergillosis and fluconazole is one of the most safest and effective drugs used for
the treatment of candida endophthalmitis [69–73] (Table 1) (Figures 5–7).
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3.1.4. Echinocandins

Echinocandins, cyclic amphiphilic peptides with long lipophilic side chains, are the
most recent class of antifungal drugs for the treatment of fungal infections; for exam-
ple, caspofungin, micafungin, and anidulafungin belong to echinocandins, which are
approved by the FDA and the European medicine agency for intravenous administra-
tion [74]. Echinocandins act as non-competitive inhibitors of β-1,3 glucan synthase, an
essential enzyme complex responsible for cell wall synthesis in fungi [75]. This enzymatic
disruption by echinocandins results in a leaky fungal cytoplasm and alters osmotic pressure,
followed by fungal cell lysis, demonstrating fungicidal activity [76–79]. This fungicidal
activity of echinocandins has been observed in the fungal species of Candida and Saccha-
romyces. Notably, due to the absence of cell walls in mammalian cells, it is less toxic and
has significantly less drug–drug interaction than other antifungal drugs, but they show
low penetration into brain and CSF, due to which they are not preferred for the treatment
of fungal infection in these tissues [76,80]. Echinocandins also demonstrated fungicidal



Antibiotics 2023, 12, 608 10 of 24

activity against Candida spp. and fungistatic activity via inducing structural alterations in
the fungus against Aspergillus spp. [81–84] (Table 1) (Figure 8).

Antibiotics 2023, 12, 608 10 of 24 
 

 
Figure 7. Two-dimensional structure of drugs under tetrazole group. 

3.1.4. Echinocandins 
Echinocandins, cyclic amphiphilic peptides with long lipophilic side chains, are the 

most recent class of antifungal drugs for the treatment of fungal infections; for example, 
caspofungin, micafungin, and anidulafungin belong to echinocandins, which are ap-
proved by the FDA and the European medicine agency for intravenous administration 
[74]. Echinocandins act as non-competitive inhibitors of β-1,3 glucan synthase, an essential 
enzyme complex responsible for cell wall synthesis in fungi [75]. This enzymatic disrup-
tion by echinocandins results in a leaky fungal cytoplasm and alters osmotic pressure, 
followed by fungal cell lysis, demonstrating fungicidal activity [76–79]. This fungicidal 
activity of echinocandins has been observed in the fungal species of Candida and Saccha-
romyces. Notably, due to the absence of cell walls in mammalian cells, it is less toxic and 
has significantly less drug–drug interaction than other antifungal drugs, but they show 
low penetration into brain and CSF, due to which they are not preferred for the treatment 
of fungal infection in these tissues [76,80]. Echinocandins also demonstrated fungicidal 
activity against Candida spp. and fungistatic activity via inducing structural alterations in 
the fungus against Aspergillus spp. [81–84] (Table 1) (Figure 8).  

 
Figure 8. Two-dimensional structure of drugs under the echinocandin antifungal group. 

3.2. Resistance to Antifungal Agents 
Antifungal resistance is an emerging worldwide issue due to new resistant variants 

of the existing fungal pathogens, for example, Aspergillus fumigatus and Candida auris 
[9,85]. To reduce toxicity in a host cell, the antifungal drug must act towards specific tar-
gets, which are not conserved between the fungi and the human host [17]. To overcome 
the issue of drug resistance, it is essential to understand the mechanism of drug resistance 

Figure 8. Two-dimensional structure of drugs under the echinocandin antifungal group.

3.2. Resistance to Antifungal Agents

Antifungal resistance is an emerging worldwide issue due to new resistant variants of
the existing fungal pathogens, for example, Aspergillus fumigatus and Candida auris [9,85].
To reduce toxicity in a host cell, the antifungal drug must act towards specific targets,
which are not conserved between the fungi and the human host [17]. To overcome the
issue of drug resistance, it is essential to understand the mechanism of drug resistance to
antifungal drugs. Intrinsic and acquired resistance are two significant consequences of
long-term treatment and a high range of prophylaxis [54]. The following sections briefly
describe the mode of resistance gain in the fungi against four different classes of specific
antifungal drugs.

3.2.1. Polyene Resistance

Mechanisms of resistance to polyenes involve modification in the fungi membrane
sterols, instigating antioxidant mechanisms to halt the damage caused by oxidative stress,
and alternations in the ergosterol biosynthetic genes. Notably, twenty-five different genes
are deciphered to play a significant role in regulating ergosterol biosynthesis (Table 1). For
example, alternations (ERG3, ERG5, and ERG11), deletion (ERG11), and mutation (ERG3,
ERG5, and ERG11) in the genes encoding respective enzymes were found to decrease the
efficacy of amphotericin B in the treatment of infection caused by Candida species [86].
Mutation in the MEC3, a gene responsible for DNA damage homeostasis, also contributes
to the high MIC of polyene in C. auris [87]. Moreover, overexpression of the molecular
chaperones, such as the heat shock proteins (Hsp90 and Hsp70) family, further contributes
to the development of intrinsic resistance in Aspergillus terreus against amphotericin
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B [88,89]. Alteration in the fungal cell wall composition, significantly increasing the 1,3-
α-glucan and 1,3-β-glucan fraction, also contributes to amphotericin B resistance. This
condition was seen in the amphotericin-B-resistant strains of C. tropicalis. The increase
in the 1,3-β-glucan is seen to be responsible for strengthening the immune response and
survival of resistant strains [90].

3.2.2. Antimetabolite Agent Resistance

Flucytosine drugs make the pathogen easily resistant to the drug when used as
monotherapy [91]. This is mainly used in combination therapy, along with amphotericin
B and triazoles. It was found that some Candida spp. and Saccharomyces cerevisiae were
resistant to this due to alternation in the FCY2, FCY1, and FUR1 genes (Table 1), which are
required for the uptake and conversion of flucytosine [92]. Another resistance mechanism
reported is the upregulation of pyrimidines in de novo synthesis, leading to functional
disturbance in uridine monophosphate pyrophosphorylase [91].

3.2.3. Azole Resistance

The most common mechanism in azole resistance is the alternation or overexpres-
sion of the ERG11, Cyp51A, and Cyp51B genes, which encode the lanosterol 14-alpha-
demethylase enzyme belonging to the cytochrome P450 family [93]. For instance, overex-
pression of ERG11 is due to the functional mutation in the Upc2 transcriptional activator in
C. albicans [29]. Similarly, A. fumigatus becomes resistant to azole when alternation occurs
in the Srb transcriptional factor, HapE modification, Cyp51B overexpression, and biofilm
formation [18,94,95]. Upregulation of the ABC (adenosine triphosphate binding) cassette
also causes acquired resistance to azole in C. albicans and C. glabrata [29]. The mutation
of the RAD50 gene in the double-strand break repair (DSBR) and the MSH2 and PMS1
genes of mismatch repair (MMR) of the DNA repair pathway are responsible for inducing
fluconazole resistance in fungi. Additionally, cerebellar degeneration-related protein 1
and 2 (CDR1, CDR2) and SNQ2 are the transporters responsible for resistance to azole
in fungi. For instance, when the SNQ2 transporter is removed from these groups, it was
found to restore azole susceptibility, making it an essential factor in azole resistance [96].
Additionally, azole resistance was observed in Candida dubliniensis, a pathogenic yeast with
phenotypic characteristics similar to Candida albicans, which mainly infects patients with
HIV/AIDS. C. parapsilosis, C. tropicalis, and some non-albicans species were also found to
be resistant against azoles and typically gained azole resistance by drug efflux, drug target
modification, and alternation in the ergosterol biosynthesis [97,98] (Table 1).

3.2.4. Echinocandin Resistance

The echinocandin resistance mainly occurs due to the amino acid substitution or
point mutation in the FKS1 and FKS2 subunits in glucan synthase [99]. In C. albicans,
the change occurs in Ser641 and Ser645 and in C. glabrata, it is seen in Ser629, Phe659, and
Ser663; both these changes lead to resistance [100]. Resistance mediated by FKS2 is only
seen in C. glabrata and can be reversed using the calcineurin inhibitor tacrolimus [18,29].
In A. fumigatus, in vitro resistance of echinocandin was found when induced with the
substitution of Ser678 in FSK1 [94] (Table 1).
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Table 1. List of all four groups of antifungal agents and their resistance mechanism.

Antifungal Agents Mode of Action
Example of
Antifungal Resistant
Species

Resistance Mechanism Reference

Polyenes

• Amphotericin B
• Nystatin
• Natamycin

# Cell membrane
disruption by binding to
ergosterol.

# Excessive production
and accumulation of
reactive oxygen species
(ROS) causing damage
to the cell membrane,
DNA, fungal protein,
and mitochondria

Candida species, and
Aspergillus terreus

Alternation (ERG3, ERG5, and
ERG11), deletion (ERG11), and
mutation (ERG3, ERG5, and
ERG11) genes encoding for C-5
sterol desaturase, C-22 sterol
desaturase, and sterol
14-demethylase are
responsible for the regulation
of ergosterol biosynthesis.

[36,41,93]

Antimetabolite agent

• Flucytosine

Inhibits RNA and protein
synthesis by binding
5-fluorouracil(5-FU) to the
RNA strand.

Candida spp.

Alternation in the FCY2, FCY1,
and FUR1 genes that are
responsible for the uptake and
conversion of flucytosine.

[54,55,92]

Azole

• Imidazole

# Miconazole
# Clotrimazole
# Econazole
# Ketoconazole
# Tioconazole
# Sulconazole
# Sertaconazole
# Luliconazole
# Tinidazole
# Enilconazole
# Parconazole
# Eberconazole
# Lanoconazole
# Fenticonazole
# Bifonazole
# Sulconazole
# Lombazole
# Sertaconazole
# Oxiconazole
# Butaconazole
# Isoconazole
# Flutrimazole
# Ornidazole
# Metronizadole

• Triazoles

# Itraconazole
# Fluconazole
# Voriconazole
# Posaconazole
# Isavuconazole
# Fosravuconazole
# Albaconzole
# Letrozole
# Anastrozole

• Tetrazole

# Quilseconazole
(VT-1129)

# Oteseconazole
(VT-1161)

Inhibition of fungal lanosterol
14α-demethylase cytochrome
P450 51, P450 3A4, P450 2D6,
P450 2C8, P450 2A6, P450 2E1
P450 2C9, etc., that disrupts
the ergosterol biosynthesis
leading to cell death and lysis.
Some of these drugs also
targets DNA, bile salt export
pump, P-glycoprotein 1,
Hydroxycarboxylic acid
receptor 2, oxygen-insensitive
NADPH nitroreductase.

C. albicans, C. glabrata,
C. dubliniensis
A. fumigatus, yeast,
Trichophyton rubrum

Alternation and
overexpression of ERG11,
Cyp51A, and Cyp51B encodes
for lanosterol
14-alpha-demethylase enzyme.

[65,67,70,
71,93,101,
102]

Echinocandin

• Caspofungin
• Micafungin
• Anidulafungin

Inhibits β-1,3 glucan synthase,
an essential enzyme complex
responsible for cell wall
synthesis in fungi.

C. glabrata and
A. fumigatus

Amino acid substitution or
point mutation in the FKS1
and FKS2 genes present in the
glucan synthase

[75,99]
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3.2.5. Other Mechanisms Involved in Drug Resistance

(a) Biofilm formation

Biofilms are a surface-associated microbial communities attached by a self-made extra-
cellular matrix [103]. The biofilm formation helps the organism withstand antimicrobial
agents’ attack and survive severe environmental conditions [104]. In the case of fungal
pathogens, such as C. albicans, biofilm formation is involved in the pathogenicity and
death of patients [105,106]. Researchers found that C. auris adheres to a polymeric surface
that further develops into a biofilm and can resist various antifungal agents, especially
caspofungin, which are very effective against Candida biofilms [107]. Fungal biofilms also
show resistance to echinocandin and azole antifungal drugs [108,109].

(b) Modification of drug targets

The drug targets are modified by specific genetic changes that lead to a reduction
in the affinity of drugs. For example, modification of echinocandin drug targets confers
drug resistance [110]. Mutation in the FKS gene that encodes β-D-glucan synthase leads
to substituting amino acids that result in the target site modification [111,112]. The drug
affinity becomes reduced by several folds due to the change of targets. The mutation in the
ERG11 also results in amino acid substitutions that are responsible for azole resistance, and
this further decreases the affinity of the azoles to the target site [113,114].

(c) Efflux pump

Fungal efflux is responsible for regulating the environment and removing toxic sub-
stances, including antifungal agents. The overexpression of various drug transporters leads
to the efflux of the drug and also prevents the accumulation of antifungal medications in
the cytosol [115]. Two major efflux pumps involved in drug resistance are the ATP-binding
cassette (ABC) superfamily and the major facilitator superfamily (MFS). Among azole-
resistant (AR) clinical isolates of C. albicans, CDR1 and CDR2 are two promiscuous ABC
proteins that are upregulated [116,117].

3.3. Strategies to Overcome Resistance

A deeper understanding of antifungal resistance is important for developing effective
counterstrategies to overcome it. With the emergence of antifungal resistance, the chances
of survival of opportunistic pathogens have also increased, so it is important to find various
practical approaches to eradicate drug resistance issues in pathogenic fungi.

3.3.1. Development of a New Antifungal Drug

Developing new antifungal drugs is one of the most essential strategies to reduce
the risk of antifungal resistance. Several drugs have been identified and synthesized
by researchers, which are currently in the preclinical and clinical trial stages. Some of
the compounds have similar properties but may have better efficacy than the existing
compound and some of the compounds may have a new mechanism of action.

(a) SUBA-itraconazole and VT-1598

The super bioavailable itraconazole (SUBA-ITC) is approved by the FDA and used as
a first-line antifungal agent for the treatment of allergic bronchopulmonary aspergillosis
(ABPA) and other fungal infections in children [118]. This antifungal formulation was
developed by Mayne Pharma L.td., mainly to enhance the bioavailability of itraconazole. It
also ensures the bioavailability by solid dispersion in a pH-dependent matrix and interferes
with the cytochrome P450 activity to reduces the rate of ergosterol synthesis. This antifungal
formulation also showed broad-spectrum activity against Blastomycosis sp., Histoplasmosis
sp., and Aspergillosis sp. [54,119].

Mycovia Pharmaceuticals has created VT-1598, the most recent tetrazole inhibitor of
lanosterol 14-demethylase encoded by the Cyp51 gene. VT-1598, which is still in Phase I of
the clinical study, is effective against moulds, including Aspergillus species, Coccidioides
species, and Rhizopus arrhizus [102,120] (Table 2) (Figure 9a).
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(b) Rezafungin and Ibrexafungerp

Rezafungin, developed by Cidara Therapeutics, belongs to the class of echinocandins
that inhibits 1,3-β-D-glucan synthesis and has been granted orphan drug designation by
the FDA for the treatment of vulvovaginal candidiasis. It has been reported effective
against Candida sp., Aspergillus sp., and Pneumocystis sp. [119,121]. Ibrexafungerp, an
FDA-approved antifungal triterpenoid, was developed by SCYNEXIS Inc. and mainly
inhibits 1,3-β-D-glucan synthesis. Both rezafungin and ibrexafungerp have low toxicity,
are highly bioavailable, and significantly inactivate the Candida sp., including C. glabrata
and C. auris [122] (Table 2) (Figure 9d,e).

(c) Olorofim

Another drug in development is olorofim, which comes under a new class of antifungal
drugs called orotomides and is in the Phase II stage of a clinical trial. This class has a novel
mode of action, where it inhibits the dihydroorotate dehydrogenase enzyme, an important
enzyme in pyrimidine biosynthesis in fungi, to disturb the nucleic acid and cell wall
synthesis. This class of antifungal has been reported with potential efficiency against
Aspergillus sp. and Scedosporium sp. [32,123] (Table 2) (Figure 9c).

(d) Amphotericin B Cochleate (CAMB)

The amphotericin B cochleate (CAMB), an oral formulation of amphotericin B, is
a new drug derived from the polyene class and is under the Phase II stage of clinical
trials, developed by Matinas BioPharma. CAMBs are formulated using phosphatidylserine
along with phospholipid-calcium and are stable against degradation in the gastrointestinal
tract. This formulation was successfully reported to treat C. albicans infection in a murine
model [124] (Table 2).

(e) MGCD290

MGCD290 is an orally administered drug that inhibits the Hos2 fungal histone deacety-
lase (HDAC) enzyme as well as affects the non-histone protein such as Hsp90. This formu-
lation was developed by Mirati Therapeutics, Inc. and is under Phase II clinal trial against
fungal infection. This drug is co-administrated with both azole and echinocandins, and is
known for fungicidal activity against Candida sp. and Aspergillus sp. [119] (Table 2).

(f) Fosmanogepix (APX001)

Fosmanogepix is a glycosylphosphatidylinositol inhibitor developed by Amplyx Phar-
maceuticals which is currently in Phase II clinical trials. It is metabolized into its active form,
manogepix, which targets the enzyme Gwt1, responsible for the glycosylphosphatidyli-
nositol (GPI) anchor biosynthesis [125,126]. Fosmanogepix was also reported to actively
inhibit the growth of yeast, moulds, Candida sp., Cryptococcus sp., Coccidioides sp., and
Aspergillus sp. [127] (Table 2) (Figure 9b).

(g) VL-2397

VL-2397, also known as ASP2397, was isolated from Acremonium sp. and formulated
by Vical Pharmaceuticals. Fungi uptakes this drug through the siderophore iron transporter
1 (Sit1), leading to disruption of the intercellular process. It was reportedly effective against
Aspergillus fumigatus under Phase II of clinical trials [121,128,129] (Table 2).
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Table 2. List of new antifungal drugs.

New Antifungal
Agents Developed Mode of Action Developer Activity Against Clinical Trial Stage Reference

VT-1598 Inhibits lanosterol
14α-demethylase

Mycovia
Pharmaceuticals,
Durham, NC, USA

Moulds, Aspergillus
spp., Rhizopus
arrhizus, and
Coccidioides

Phase I [102,120]

SUBA-itraconazole

Enhance the bioavailability of
itraconazole by its solid
dispersion in a pH-dependent
matrix.

Mayne Pharma Ltd.,
Salisbury South,
Australia

Aspergillus spp.,
Blastomyces
dermatitidis

FDA-approved [118]

Rezafungin Inhibition of 1,3-β-D-glucan
synthesis

Cidara Therapeutics,
San Diego, CA, USA

Candida spp.,
Aspergillus spp., and
Pneumocystis spp.

FDA-approved as an
orphan drug for the
treatment of
vulvovaginal
candidiasis

[119,121]

Ibrexafungin Inhibition of 1,3-β-D-glucan
synthesis

SCYNEXIS Inc.,
Jersey City, NJ, USA Candida spp. FDA-approved [122]

Olorofim
Inhibition of dihydroorotate
dehydrogenase responsible
for pyrimidine biosynthesis.

Shionogi & Co., Ltd.
And F2G Ltd., Osaka,
Japan and
Manchester, UK

Aspergillus and
Scedosporium spp. Phase II [123]

Amphotericin B
Cochleate (CAMB) Cell wall disruption Matinas BioPharma,

Bedminster, NJ, USA. C. albicans Phase II [124]

MGCD290

Inhibits Hos2 fungal histone
deacetylase (HDAC) and also
affects non-histone protein
Hsp90

Mirati Therapeutics,
Inc., San Diego, CA,
USA

Candida and
Aspergillus spp. Phase II [119]

Fosmanogepix
(APX001)

Inhibition of glycosylphos-
phatidylinositol.

Amplyx
Pharmaceuticals,
San Diego, CA, USA

Yeast, moulds,
Candida, Cryptococcus,
Coccidioides, and
Aspergillus spp.

Phase II [125,126]

VL-2397 Unknown
Vical
Pharmaceuticals,
San Diego, CA, USA

Aspergillus fumigatus. Phase II [128,129]

T-2307 Fungal mitochondrial
disruption

Toyama Chemical
Co., Tokyo, Japan.

Candida spp.
Cryptococcus and
Aspergillus spp.

Phase I [130]

(h) T-2307

This arylamide compound developed by Toyama Chemical Co., Toyama, Japan, is
in Phase I of clinical trials. The structure of this drug is similar to that of aromatic di-
amidines [131]. It mainly disrupts fungal mitochondrial membranes and is effective against
Candida sp., Cryptococcus sp., and Aspergillus sp. [130,132] (Table 2) (Figure 9f).

(i) Retinoids and All-trans retinoic acid (ATRA)

Retinoids and all-trans retinoic acid (ATRA) are derived from Vitamin A. Studies have
proved that these compounds have antifungal properties and can effectively treat various
skin and systemic fungal infections. These compounds have shown a broad spectrum of
activity against yeast, Candida albicans, and Aspergillus fumigatus [133,134]. Vitamin
A serum is eligible for clinical practice to prevent skin and systemic fungal infection in
psoriatic patients when treated with IL-17 inhibitor [135].
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3.3.2. Combination Therapy

Combination therapy is an effective approach to antifungal drug resistance and mainly
helpful in extending the useful life of existing drugs. The combination of two drugs can be
a much more effective way of killing the pathogen, reducing the pathogen population, and
minimizing the chances of experiencing acquired resistance mutation [136,137]. Combina-
tion therapy also reduces the individual dosage of the drug, the length of treatment, and
drug toxicity [136]. For instance, combination of amphotericin B and fluorocytosine is the
best example of combination therapy for the treatment of persistent Cryptococcal meningitis
and Candida fungal infections [138].

3.3.3. Antifungal Stewardship

Antifungal stewardship refers to the method in which the diagnostics method and
the usage and dosage of antifungal drugs are combined to obtain a gained better clinical
outcome, which can reduce the emergence of resistance in fungi [139,140]. As antifungal
management is mainly based on the guidelines used for the treatment and diagnostic tests
that are safe for the patient, the combination of health professionals and public health
centres following the guidelines for proper care of patients formed a stewardship team to
execute the program [141,142]. However, several health centres lack antifungal stewardship
due to unavailability or lack of access to long-term diagnostic tools, and, hence, failed to
manage and execute the program. Thus, it is recommended for each and every health care
centre and institution to conduct antifungal stewardship programs that contain guidelines
and diagnostic tests to guide patients about the treatment duration, as well as guidance
from the specialists and pharmacists to adopt the dosage and mode of administration of
drugs [143]. The Mycoses Study Group Education and Research Consortium (MSGERC)
has designed a set of core recommendations that can uplift the practice of antifungal
stewardship. Their core recommendation includes integration of antifungal stewardship
goals into hospital strategic management policies with the proper guidance of a senior
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leader and a core team. The core team should have the knowledge of and clinical expertise
in invasive fungal infection management. The team should be able to develop collaborative
strategies with the help of clinical specialists for better antifungal therapies. They also
recommend proper diagnostic testing for Candida and Aspergillus species [140]. A study
conducted by Valerio and team on antifungal stewardship in tertiary care institutes found
that the annual antifungal drug expenditure was reduced within 2 years of implementation
of an antifungal stewardship program. Along with that, the number of incidences was also
reduced. This study helped to understand that the impact of antifungal stewardship can be
an efficacious and cost-effective approach [144]. Considering all these factors, antifungal
stewardship can significantly contribute to the prevention of drug resistance in fungi.

3.3.4. Potential Drug Targets to Overcome Antifungal Resistance

A better understanding of the drug resistance mechanism can assist in finding new
drug targets which can be targeted for the designing and development of novel antifungal
drugs. For instance, Hsp 90 of fungi are one major drug target, as they contribute to the
cellular stress response in fungi [145]. However, incompetence in the Hsp90 function
leads to resistance development in fungi against the azole and echinocandin classes [146].
Thus, inhibition of Hsp90, such as that exhibited by geldanamycin, was adopted to reduce
resistance to caspofungin in A. fumigatus [147]. Additionally, calcineurin is another drug
target which is required for growth, virulence, and drug resistance development in fungi
such as C. albicans, A. fumigatus, and C. neoformans [148,149]. Hence, such essential enzymes
of the fungi can be targeted for the designing and development of new antifungal agents to
escape the drug resistance in pathogenic fungi.

3.3.5. One Health Approach in Combating Antifungal Resistance

The “One health” concept identifies that human, animals, and the environment are
all indistinguishably connected and influential to one another [150]. This concept was
first designed to combat the health of humans, plants, and animals during the emergence
of the SARS-CoV and influenza virus in the year 2003–2004 and gained importance with
the evolution of antimicrobial resistance in humans [151]. The number of patients who
are highly susceptible to fungal infections is increasing as a result of changes in medical
care, and this problem is made worse by the fact that our meagre supply of antifungal
medications is being threatened (or compromised) by the emergence of drug-resistant
fungi strains, which in some cases are linked to antifungal agents used in agriculture. The
“One Health” idea seeks to educate scientists and decision-makers about these recognized
and newly developing fungal dangers to global health by stressing the convergence of
these dynamics. [150]. The American Academy of Microbiology organized a colloquium in
October 2017 to address this issue, assembling a multidisciplinary and worldwide team of
experts. This gathering took place ten years after the Academy hosted the first of its kind
in 2007. One Health: Fungal Pathogens of Humans, Animals, and Plants, a new report,
emphasizes the field’s extraordinary advancements and offers updated suggestions to deal
with problems in public health and science in the modern world [150]. For instance, this
concept has been used to closely analyse azole fungicide resistance in the environment
and to reduce the burden of environmental resistance [152]. The “One Health” approach
focuses on finding and prioritizing effective research methodologies that can be useful in
developing various preventive guidelines and fill the major gaps in antifungal resistance
conditions, as they can also originate from the environment, as well as from hospital
facilities [8,153].

4. Conclusions

The rise in fungal infections has paradoxically advanced medicine. As a result, the
frequent utilization of antifungal agents has also been transpired. In clinical setups, re-
searchers and clinicians are facing the serious threat of antifungal resistance. Thus, along
with the old strategies, some new methods are gaining popularity to tackle the growing
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drug resistance in fungi, as these new methods are more robust, and the accuracy lever
is higher compared to the traditional ones. Additionally, new combinational therapies
and drug trials are coming to light which will lead us closer to winning the war against
antifungal resistance with better drugs with lower toxicity, fewer cross-interactions with
side proteins, and higher specificity to the target sites. Ultimately, elucidating strategies to
combat fungal pathogens in humans may cast light on how fungal infections that pose a
worldwide danger to biodiversity can be defeated.
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