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Abstract: Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing
enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence
and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in
Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical
isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as
Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was
determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved
resistance genes were screened in the resistant isolates. The current results showed high resistance
rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent
phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes
in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for
methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-
encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation)
and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used
biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The
present findings showed a significant correlation between MLS resistance and reduced susceptibility
to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA
and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the
efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant
isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role
of efflux in developing cross-resistance to both MLS antibiotics and biocides.
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1. Introduction

Enterococci are facultatively anaerobic Gram-positive opportunistic bacteria that are
normally found in the human gastrointestinal tract and the female genital tract and abun-
dant in the environment, such as in soil and water [1]. According to Lancefield classification,
Enterococci were classified as group D Streptococci based on the carbohydrate substances
in their cell walls [2]. E. faecalis and E. faecium are the most important Enterococcal species
and are among the foremost causes of nosocomial infections, causing severe infections such
as septicemia and endocarditis [3,4]. The unusual adaptation conferred the survival and
persistence of Enterococci in adverse environments as inanimate surfaces in hospitals and
at sites of infections [3,5,6]. This survival ability allows Enterococci to interact with other
overtly resistant bacteria acquiring additional resistances on mobile elements. Noticeably,
a quarter of a genome of additional DNA obtained by mobile elements certainly allows
Enterococci to persist and spread in the hospital setting and resist antimicrobials causing
hostile infections [5,7–10]. The swift increase in the resistance among hospital-adapted
enterococci to a wide diversity of antimicrobials has rendered nosocomial infections a
leading therapeutic challenge [1,11–13].

Macrolide and lincosamide antibiotics are chemically distinct antibiotic groups but
have similar modes of action. For years, these antibiotics represented an alternative to
penicillin and cephalosporins; however, the development of macrolide resistance limited
the use of these antibiotics to certain indications [14–17]. Naturally occurring macrolides
comprise two amino or neutral sugars attached to a 14–16 membered lactone ring. Newer
semisynthetic macrolides had substitutions on the lactone ring that improved acid stability
and antimicrobial activity [18]. Lincosamides include the naturally occurring lincomycin
and its semi-synthetic derivative, clindamycin. Although lincosamides lack the lactone
ring of macrolides, lincosamides share the same mechanism of action as macrolides in tar-
geting 50S bacterial sub-ribosomal unit [14]. Macrolides and lincosamides inhibit bacterial
protein synthesis by reversibly binding to the 50S subunit of the bacterial ribosome, [14]
stimulating the dissociation of the peptidyl-tRNA from the ribosomes during elongation,
causing chain termination [18]. Another antibiotics class that reversibly binds to the 50S
bacterial ribosomal subunit is streptogramins [19]. Streptogramin antibiotics act by in-
hibiting bacterial protein synthesis and are divided into two groups, streptogramin A
and streptogramin B, which work together synergistically to produce a bactericidal ef-
fect [19,20]. Streptogramins are synthesized by different Streptomyces spp., where group A
streptogramins contain 23-membered unsaturated rings with lactone and peptide bonds,
and group B streptogramins are cyclic hexa- or hepta-depsipeptides produced [20].

Macrolide/lincosamide/streptogramin (MLS) resistance is increasing among the clin-
ical isolates of Gram-positive bacteria, and the multiplicity of resistance mechanisms of
these drugs results in a variety of resistance phenotypes [14]. Three different mechanisms
of the acquired MLS resistance have been found in Gram-positive bacteria: (1) target-site
modification by methylation or mutation of 23S rRNA, (2) efflux of the antibiotic, and
(3) drug inactivation. The most clinically important and widespread resistance mechanisms
are the methylation of the 23S rRNA ribosomal subunit and the drug efflux [14,18,21].
While modifications confer broad-spectrum resistance to macrolides and lincosamides,
enzymatic modification affects only structurally related antibiotics [14,21].

The improper use, either suboptimal or misuse, of antibiotics in human and veterinary
medicine is considered the major cause of antibiotic resistance [22,23]. Recently, the use
of biocides in many products as household products, plastics, cosmetics, etc., has been
reported as a risk factor contributing to antimicrobial resistance development in humans
and the environment [24]. Biocidal agents used for disinfection are usually not assumed
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to enhance the cross-resistance to antibiotics, although resistant or more tolerant bacteria
were isolated from in-vitro cultures after exposure to suboptimal or sublethal levels of
biocides [25]. The present study aimed to determine the most prevalent resistance patterns,
phenotypes, and the most predominant resistance genes to MLS antibiotics among the
collected clinical Enterococci isolates. Moreover, it is aimed to recognize the correlation
between the resistance to MLS and the susceptibility to frequently used biocides.

2. Results
2.1. Isolation and Identification of Enterococci spp.

Three hundred and twenty-five (35.6%) Gram-positive cocci isolates were recovered
from 913 clinical samples. One hundred and thirty-one from isolated Gram-positive
cocci (40.3%) showed darkening of the medium around the bacterial colonies, indicating
Enterococcus spp., and further biochemical identifications were conducted [26,27]. The
Enterococcal spp. isolates that did not ferment arabinose and showed growth in 0.04%
tellurite were considered E. faecalis. In contrast, the isolates that did not grow in 0.04%
tellurite and ferment arabinose were considered E. faecium. The Enterococcal spp. isolates
that showed darkening on bile esculin agar and showed variable results for other tests
listed in Table 1 were considered other Enterococci spp. Among 131 Enterococci isolates,
67 (51.1%), 52 (39.7%), and 12 (9.2%) were presumptively identified as E. faecalis, E. faecium,
or other Enterococci species, respectively (Figure 1).

Table 1. Biochemical characterization difference between E. faecalis and E. faecium.

Test E. faecalis E. faecium

Catalase − −
Oxidase − −
Motility Non-motile Non-motile

Growth in 6.5% NaCl + +
Growth at 45 ◦C + +

Lactose fermentation + +
Mannitol fermentation + +

Growth in 0.04% tellurite + −
Arabinose fermentation − +
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Figure 1. Incidence of Enterococcal spp. Among 913 clinical samples, 35.6% were Gram-positive
cocci that contained about 40.3% Enterococci spp. Further, the Enterococcal spp. were presumptively
distinguished into E. faecalis (51.1%), E. faecium (39.7%), or other Enterococci species (9.2%).



Antibiotics 2023, 12, 461 4 of 19

2.2. Susceptibility to MLS

The Enterococcal isolates were tested for their susceptibility to erythromycin, azithromycin,
clarithromycin, spiramycin, lincomycin, clindamycin, and quinupristin/dalfopristin by
disk diffusion method. Chi-square (χ2

(12) = 6.42, p = 0.89) is not statistically significant,
indicating no significant difference in the resistance of different Enterococci spp. to tested
antibiotics (Figure 2). The higher resistance values were observed for erythromycin and
lincomycin (about 76%). Furthermore, E. faecalis and E. faecium were more resistant than
other Enterococci spp. The detailed patterns of resistance to the MLS antibiotics are provided
in Table S1 and shown in Figure 3. Importantly, the resistance to all tested MLS antibiotics
was observed in 43 (32.8%) isolates, while 22 (16.8%) isolates were sensitive to all antibiotics.
The higher resistance rates were observed in all the tested macrolides; it was observed in
66 (50.4%) isolates. The resistance rates to streptogramins and lincosamides were 48% and
43.5%, respectively.
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Figure 2. Percentages of resistance to tested MLS antibiotics. The chi-square test was used to compare
the difference in the percentages of resistant isolates to tested antibiotics. There was no significant
difference in the resistance of different Enterococci spp. to tested antibiotics; (χ2

(10) = 4.98, p = 0.892).

2.3. MLS Resistance Phenotypes

One hundred and eight Enterococci isolates that showed resistance to macrolides, lin-
cosamides, and/or streptogramins were selected for further investigation of the resistance
phenotypes and genotypes. These isolates comprised 55 E. faecalis, 43 E. faecium, and
10 other Enterococci spp.

The inhibition zones between erythromycin, clindamycin, and lincomycin disks were
measured in mm, and the triple disk diffusion method was employed to determine the
resistance phenotype of the resistant isolates. The ingrowth within zones up to the edges
of each erythromycin, clindamycin, and lincomycin disk was considered constitutive
macrolide/lincosamide/streptogramin resistance (cMLS) phenotype. Flattening or blunt-
ing of the shape of the clindamycin zone indicates inducible macrolide/lincosamide/
streptogramin resistance (iMLS) phenotype. Isolates resistant to erythromycin only but
sensitive to clindamycin and lincomycin were considered to belong to M phenotypes.
Resistance to lincomycin with sensitivity to clindamycin and erythromycin was considered
an L phenotype (Figure 4). Out of the 108 selected isolates, 83 (76.8%), 19 (17.6%), 4 (3.7%),
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and 2 (1.9%) isolates showed cMLS, M, iMLS, and L resistance phenotypes, respectively, as
shown in Table 2.
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Figure 4. MLS resistance phenotypes. The inhibition zones to erythromycin (E), clindamycin (DA), and
lincomycin (L) were observed. (A) Constitutive macrolide/lincosamide/streptogramin resistance (cMLS)
phenotype: isolates resistant to the three drugs. (B) Inducible macrolide/lincosamide/streptogramin
resistance (iMLS) phenotype: isolates show flattening or blunting of the shape of the clindamycin zone
and are resistant to erythromycin and lincomycin. (C) M phenotypes: isolates resistant to erythromycin
only but sensitive to clindamycin and lincomycin. (D) L phenotype: isolates resistant to lincomycin
and sensitive to clindamycin and erythromycin. E: erythromycin, DA: clindamycin, and L: lincomycin.



Antibiotics 2023, 12, 461 6 of 19

Table 2. MLS phenotypes.

Isolates
Resistance Phenotype

Total
cMLS iMLS M L

E. faecalis 42 (76.4%) 2 (3.6%) 10 (18.2%) 1 (1.8%) 55
E. faecium 34 (79.1%) 1 (2.3%) 7 (16.3%) 1 (2.3%) 43
Other Enterococci 7 (70%) 1 (10%) 2 (20%) 0 10

Total 83 (76.8%) 4 (3.7%) 19 (17.6%) 2 (1.9%) 108
cMLS = Constitutive macrolides, lincosamides, and streptogramin B resistance phenotype. iMLS = Inducible
macrolide, lincosamide, and streptogramin resistance phenotype. M = Macrolides and streptogramin B or
macrolides resistance phenotype. L = Lincosamides inactivation resistance phenotype.

2.4. MLS Resistance Genotypes

Resistant bacteria employ several mechanisms to resist MLS antibiotics, including
(i) changing the antibiotic’s bacterial target by methylation of 23S rRNA, (ii) efflux, and
(iii) production of antibiotic’s modifying enzymes as esterase, adenylating, and phosphory-
lating enzymes [14,28]. In this context, the PCR was used to detect the erm genes (ermA,
ermB, and ermC), which are responsible for methylating the 23S rRNA protecting bacteria
from MLS antibiotics. The genes msrA, mefA, and mefE are efflux-encoding genes and are
responsible for pumping out MLS antibiotics. Furthermore, the genes encode the enzymes
that hydrolyze (ereA), adenylate (lnuA), or phosphorylate (mphC) MLS were detected.

The current finding revealed the detection of all the tested genes in the resistant
isolates, as shown in Figure 5A and detailed in Table S2. The most detected genetic base
of resistance was the methylation of 23S rRNA, as the erm genes were the most abundant
detected genes in 97.2% resistant isolates. The most detected erm gene is ermB which was
detected in 97.2% of resistant isolates, followed by ermA and ermC, which were found in
44.5% and 7.5% of resistant isolates. Interestingly, the coexistence of ermA, ermB, and ermC
genes was observed only in 5.6%, which all showed cMLS phenotype, while the coexistence
of ermA and ermB was observed in 44.5% (43.5% cMLS- and 1% iMLS-phenotypes) of
resistant isolates. On the other hand, the coexistence of ermB and ermC was observed
in 7.5% (5.6% cMLS- and 1.9% iMLS-phenotypes). It is worth mentioning that the only
erm gene detected in M-phenotype isolates was the ermB gene, while no erm genes were
detected in L-phenotype isolates. Meanwhile, the genes responsible for the breakdown or
efflux of MLS were detected at 67.6% or 66.7%, respectively. The esterase, adenylation, and
phosphorylation encoding genes ereA, lnuA, or mphC were found in 59.3%, 1.9%, or 13.9%
of the resistant isolates, respectively. The efflux encoding genes msrA, mefA, or mefE were
detected in 8.4%, 60.2%, or 61.1% of resistant isolates, respectively.

Furthermore, the prevalence of the resistant genes in different resistant phenotypes was
screened (Figure 5B). The ermB was observed in 100% of cMLS-, iMLS-, and M-phenotypes
and was absent in L-phenotype isolates. On the other hand, lunA and ereA genes were
only observed in L-phenotype isolates. While the erm genes and ereA gene were the most
detected in cMLS- and iMLS-phenotypes, the efflux genes and only the ermB gene were
predominant in M-phenotypes. In L-phenotypes, ereA and lnuA were the only detected
genes, 100% and 50%, respectively.

Additionally, the resistance-encoding genes were screened in the resistant strains of
each MLS antibiotic (Figure 5C). The ermB was the highest detected gene in the resistant
strains to tested macrolides, lincomycin, and streptogramin. The lnuA gene was detected
in the two strains resistant to lincomycin; one was cMLS-phenotype, and the other was
L-phenotype. In the clindamycin-resistant strains, the only detected genes were erm genes
and ereA genes. The efflux genes were observed mainly in the macrolide- and lincomycin-
resistant strains. The phosphorylation (mphC) was less detected in contrast to the hydrolysis
of lactone ring (ereA) as a mechanism to break down the MLS antibiotics.
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MLS in the different resistant isolates. The erm genes, particularly ermB, were the most predominant
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different antibiotics.

2.5. The Minimum Inhibitory Concentrations (MICs) of MLS and Biocides

The MICs (µg/mL) of the tested antibiotics were determined by the agar dilution
method. The MIC ranges, MIC50 and MIC90, are presented in Table S3. It is observed
that the lowest MIC that is required, 50% or 90%, inhibits bacterial growth observed
with clarithromycin, spiramycin, and quinupristin/dalfopristin. The MICs ranges were
0.125–1024 µg/mL for all the tested MLS antibiotics. Furthermore, the MICs of the resistant
isolates were detected against triclosan, cetrimide, glutaraldehyde, thiomersal, chlorocresol,
and povidone-iodine, which represent different biocides (Table S4). The MICs ranges
of triclosan, cetrimide, glutaraldehyde, thiomersal, chlorocresol, and povidone-iodine
to resistant isolates were 0.1–0.7 µg/mL, 0.5–10 µg/mL, 0.1–1.8 µg/mL, 0.2–7 µg/mL,
150–600 µg/mL, and 900–5600 µg/mL, respectively.

The Correlation between MLS Resistance and Reduced Susceptibility to Biocides

Enterococcal isolates were categorized as reduced susceptible or susceptible to the MLS
antibiotics or biocides relative to the biocides MIC50 [29]. The reduced susceptibility was
considered for isolates that were inhibited by antibiotics or biocides at concentrations above
MIC50. There were 38 isolates that showed higher MIC ≥MIC50 to all the tested antibiotics
and also to all biocides. To correlate between the resistance to antibiotics and the reduced
susceptibility to biocides for the isolates, the percentage of antibiotic-resistant isolates
among biocides susceptible (with MIC below MIC50) and biocides tolerant (with MIC above
MIC50) isolates were compared in the isolates that showed MIC ≥ MIC50 of antibiotics.
The chi-square test was used to compare the difference in the percentage of antibiotic-
resistant isolates with MIC above or below the MIC50 of tested biocides. Chi-square values
were statistically significant in most antibiotic-resistant isolates, indicating a significant
difference between biocide tolerant (MIC above MIC50) and susceptible (MIC below MIC50)
isolates. In other words, isolates that were inhibited by antibiotics at higher MIC ≥MIC50
were significantly inhibited by higher concentrations of biocides MIC ≥MIC50 (Figure 6).
It is worth mentioning that there was no significant correlation between the reduced
susceptibility to thiomersal and the resistance development to all tested MLS antibiotics, as
there was no significant difference between the numbers of isolates that showed MIC to
thiomersal <MIC50 and >MIC50 in all MLS resistant isolates.
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 Figure 6. The percentages of reduced susceptible isolates to biocides (MIC≥MIC50) in the antibiotics-
resistant isolates with MIC ≥MIC50. The chi-square test was used to compare the difference in the
percentage of antibiotic-resistant isolates with MIC above or below the MIC50 of tested biocides. It
was observed that in the antibiotic-resistant isolates, the percentages of reduced susceptible isolates
to all biocides except thiomersal were increased significantly. ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01,
***: p ≤ 0.001.

In addition, Pearson’s correlation coefficients between MIC values for MLS antibiotics
and biocides of individual isolates. There was a stronger correlation between increasing
MIC values for antibiotics and biocides (p < 0.05 was considered significant) (Figure 7).
Significantly, there were correlations between reduced susceptibility to cetrimide, glu-
taraldehyde, chlorocresol, and povidone-iodine and resistance to all tested antibiotics. The
reduced susceptibilities to triclosan and cetrimide were significantly correlated to all tested
antibiotics except clindamycin, and quinupristin/dalfopristin, respectively. Furthermore,
there was no significant correlation between reduced susceptibility to thiomersal and
resistance to all tested antibiotics in all resistant isolates.
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Figure 7. The Correlation between the reduced susceptibility to biocides and antibiotic resistance was
calculated. Pearson’s correlation coefficients of pairwise comparison were employed to assess the
correlation between MIC values for antibiotics and biocides of individual isolates, which showed MIC
≥MIC50. There were significant correlations between the numbers of resistant isolates to antibiotics
and the number of isolates with increased susceptibility to all biocides except thiomersal.

2.6. The Distribution of Resistant MLS Genes in the Resistant Isolates with MIC ≥MIC50

In order to explore the most involved resistance mechanism in the resistance to both
MLS antibiotics and biocides, the distribution of MLS genes was screened in the antibiotic-
resistant isolates with MIC ≥MIC50 and, at the same time, showed reduced susceptibility
to biocides with MIC≥MIC50. The genes involved in the three resistance mechanisms were
found in the highly resistant isolates. However, ermB, mefA, mefE, and ereA genes were the
most detected genes. Chi-square test was employed to statistically compare the incidence of
resistant genes in the highly resistant isolates (MIC ≥MIC50) and their incidence in the rest
of the resistant isolates. Considering that ermB was the most detected gene in all resistant
isolates, no significant difference existed between its incidence in the resistant and highly
resistant isolates with MIC ≥MIC50. Only the efflux encoding genes mefA and mefE were
significantly increased in the highly resistant isolates that showed higher MIC ≥MIC50,
which could indicate that the increased resistance is owed mainly to the enhancement of
the bacterial efflux to both MLS and biocides (Figure 8).
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Figure 8. The distribution of MLS genes in the highly resistant isolates that showed MIC ≥MIC50.
The efflux encoding genes mefA and mefE were significantly increased in the highly resistant isolates
(MIC ≥MIC50) than in other resistant isolates with MIC < MIC50. That could explain the increased
role of efflux in resistance to both antibiotics and biocides. * p < 0.05.
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2.7. Efflux Assay in MLS Resistant Isolates

One of the mechanisms that confer cross-resistance of bacteria to both MLS antibiotics
and biocides is the efflux mechanism. To evaluate the efflux efficiency, a quantitative assay
of ethidium bromide (EtBr) efflux was performed for selected 20 high-resistant isolates (MIC
> MIC50 for both antibiotics and biocides) against 20 resistant isolates with MIC < MIC50
for both antibiotics and biocides. The minimum concentration of EtBr producing maximum
fluorescence ranged from 0.25–2 µg/mL. The quantitative fluorometric efflux assay of
EtBr was performed for each isolate three repeats in the absence or presence of glucose
and verapamil at concentrations 450–750 µg/mL. The results were expressed as relative
fluorescence by comparing the fluorescence observed for the bacteria in the presence or
absence of glucose and the control in which the cells are exposed to conditions of minimum
efflux in the absence of glucose and the presence of verapamil. Each assay was performed
in triplicate, and relative fluorescence data are presented as the means± standard deviation.
The relative fluorescence (RF) values of the isolates with MICs to biocides >MIC50 were
significantly increased than the isolates with MICs < MIC50 (p < 0.0001), indicating the high
efflux activities in the isolates which were highly resistant to both antibiotics and biocides
(Figure 9).
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Figure 9. Increased efflux in highly resistant isolates. A quantitative fluorometric assay of EtBr
efflux was performed for 20 high-resistant isolates (MIC > MIC50 to MLS antibiotics and biocides)
against 20 resistant isolates (MIC < MIC50 to MLS antibiotics and biocides). The efflux assay was
performed at conditions that cause maximum accumulation of EtBr in the presence of efflux pump
inhibitor verapamil and limited energy supply (absence of glucose and low temperature). The efflux
of EtBr is presented in terms of relative fluorescence (RF), which is obtained from the comparison
between the fluorescence observed for the bacteria in the presence or absence of glucose and the
control in which the cells are exposed to conditions of minimum efflux in the absence of glucose and
presence of verapamil. All fluorescence readings were made at excitation and emission wavelengths
for EtBr (530 nm and 585 nm, respectively). All data were acquired in cycles of 60 s, during 1 h time
intervals, and at 25 ◦C. Each experiment was conducted in triplicate, and the results obtained were
averaged. The relative fluorescence was calculated for each isolate with MICs to biocides >MIC50

or <MIC50, and results were expressed as means ± standard deviation. *** p-value < 0.001 was
considered significant using Student’s t-test. Significantly, the efflux of EtBr was increased in the
isolates with MIC > MIC50, indicating high efflux activity that could explain high resistance to both
biocides and antibiotics.

3. Discussion

The current study aimed to determine the susceptibility of the local Enterococci clinical
isolates to MLS antibiotics to determine the most prevalent resistance phenotypes and
the most common genetic determinant of the resistance. About 40% of Gram-positive
isolates were identified as Enterococci spp.; the majority were E. faecalis and E. faecium
(51% and 40%, respectively). The antibiotic susceptibility testing revealed an increment of
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the resistance rates of the tested MLS, particularly macrolides, specifically erythromycin.
Clindamycin is a chlorinated derivative of lincomycin, and it is one of the 20 most important
antibiotics, which is abundantly prescribed for prophylaxis and treatment of anaerobic
infections that could explain the development of resistance to it [30]. Generally, Gram-
positive cocci, except Enterococci, are sensitive to lincomycin and clindamycin; however,
increased plasmid-mediated Enterococcal resistance traits could be recognized in clinical
isolates [30,31]. That agrees with our findings, which showed high resistance rates to
lincomycin and clindamycin (about 78% and 60%, respectively). Enterococcal resistance to
streptogramins has been observed worldwide [32–35], which complies with the present
findings, which showed about 35% resistance in all tested Enterococci isolates.

Although MLS antibiotics are chemically distinct, they are usually considered together
because most share overlapping binding sites on the 50S ribosomal subunit inhibiting the
translation process. These antibiotics bind within the exit tunnel adjacent to the peptidyl
transferase center and inhibit the progression of the nascent chain, making peptidyl-tRNA
drop-off [36]. Even though many bacterial species acquire resistance genes that confer
resistance to more than one MLS antibiotic [21], different antibiotics interact and bind with
different rRNA residues, which may explain why a bacterium may be resistant to one MLS
antibiotic but susceptible to another [37].

Three main mechanisms of acquired MLS antibiotics resistance have been described
in Gram-positive bacteria. The first mechanism protects the bacterial ribosome from the
drug binding by 23S rRNA methylation. It is a cross-resistance to all three structurally
different MLS antibiotics owed to erm genes and can be expressed constitutively or in-
ducible [21,38–43]. In the inducible resistance phenotype, bacteria produce inactive mRNA
that becomes active only in the presence of a macrolide inducer [14,18,21]. The strains
harboring an inducible erythromycin ribosome methylase (erm) genes are resistant to the
inducers (14- and 15-membered ring macrolides) but remain susceptible to non-inducer
macrolides (16-membered ring), lincosamides, and streptogramins B. In constitutive ex-
pression, active methylase mRNA is produced in the absence of an inducer, and the
strains express cross-resistance to MLS antibiotics [14,18]. Resistance to macrolides and lin-
cosamides can also be due to the mutations affecting 23S rRNA ribosomal proteins L4 and
L22 [44]. Clinical isolates that are constitutively resistant to MLS antibiotics are widespread,
particularly in methicillin-resistant strains [45]. Several studies monitored that the constitu-
tive phenotype (cMLS) appears to be the most predominant type in Enterococcal-resistant
isolates from patients [35,38,39,42,46]. The current findings revealed the prevalence of
cMLS resistance phenotype (76.8%), followed by M-, iMLS-, and L-phenotypes (19.7%,
3.7%, and 1.9%, respectively).

Target-site modification takes place through the mutation or methylation of 23S rRN
methyl transferase enzyme resulting in cross-resistance to MLS but not to oxazolidinones
giving the MLS phenotype [47]. The MLS phenotype is exhibited by 33 different erm genes
expressed constitutively or inducibly [18,21]. These genes are mostly borne on plasmids
and transposons that are self-transferable. Four major classes of erm genes were detected
in pathogenic bacteria: ermA, ermB, ermC, and ermF [18]. In this study, PCR screening for
selected erm genes revealed the presence of all tested genes ermB (97.2%), ermA (44.5%), and
ermC (7.5%). The ermA gene is commonly spread in methicillin-resistant isolates (MRSA)
and is horizontally transferred by transposons [14], which is why its presence was docu-
mented in Enterococci [48–51]. The ermB expression is induced by macrolides, lincosamides,
streptogramins [14,52], and even by ketolides [53,54]. This could explain the high frequency
of the ermB gene among Enterococci isolates, taking into consideration that the majority
of ermB-positive isolates displayed the cMLS phenotype [55,56]. Moreover, it has been
demonstrated that ermB expression is induced by a wide range of MLS antibiotics [52],
which agrees with the current data. The ermB gene was recognized in all the isolates that
showed iMLS-phenotype. Conversely to the ermB gene expressed by a wide range of MLS
antibiotics, ermC expression is induced by a few macrolides [57,58]. The ermC gene is mostly
responsible for erythromycin resistance and is transferred by plasmids [14], which complies
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with the present findings, which showed ermC in all erythromycin-resistant isolates are
mostly cMLS (5.6% cMLS- and 1.9% iMLS-phenotypes of all resistant isolates).

Gram-positive and -negative bacteria can resist diverse groups of antibiotics by produc-
ing drug-inactivating enzymes [59–61]. About 19 genes code esterase, lyases, transferases,
and phosphorylases enzymes which modify and inactivate MLS antibiotics by hydrolyzing
the lactone ring (ere genes), adenylating (lnu genes), acetylating (vat genes), or phosphory-
lating (mph genes) [21,62]. Unlike target modification, drug inactivation confers resistance
to the structurally related antibiotics only [18], but none of the inactivating enzymes are
unique to certain bacterial species [63]. Whereas esterase, phosphotransferases, acetyltrans-
ferases, hydrolases, and nucleotidyl transferases were identified in strains resistant to MLS
antibiotics, these inactivating enzymes confer resistance to erythromycin and other 14- and
15-membered macrolides but not to lincosamides that represented as L phenotype [18].

The ere genes, especially the ereA gene, are the most distributed MLS-inactivating
genes in both Gram-positive and -negative bacteria [21]. The current results revealed that
the ereA gene had been detected in 59.3% of resistant isolates showing the cMLS-, iMLS-,
and L-phenotypes isolates but not detected in M-phenotype isolates. The mphC gene has
been detected in 13.9% of the resistant isolates that showed either the cMLS phenotype or M
phenotype. Notably, the lnuA gene was only detected in 1.9% of isolates that showed cMLS-
or L phenotype that can be possibly explained as the lnu gene involves phosphorylation
and nucleotidylation of lincosamides resulting in high resistance to lincosamides but not
macrolides [64]. Considering that the resistance mediated by lnuA and/or lnuB genes
confer resistance to lincomycin but not clindamycin, it is expressed as L phenotype [14];
the lnuA gene was detected in all lincomycin-resistant isolates but not detected in any
clindamycin-resistant isolate.

The efflux mechanism in which the bacteria pump out one or more MLS antibiotics
is owed to about 17 efflux genes via either ATP-transporters or major facilitator trans-
porters [21]. However, efflux pumps are compartments of the bacterial cell wall, and their
responsible genes are located on the chromosomes; transferable elements are more often
involved in the enhanced efflux of MLS [50,65,66]. Based on the amino acid sequence and
source of energy, the bacterial efflux transporters are classified into five different superfami-
lies [13]. The active efflux of MLS antibiotics is responsible for partial cross-resistance to
14- and 15-membered macrolides and streptogramin B and is conferred most abundantly
msr, vga, mef, isa, and other genes [21,67]. The efflux resistance is inducibly expressed by
erythromycin and other 14- and 15-membered macrolides [14,21]. Clindamycin is neither
an inducer nor a substrate for the pump; thus, the efflux genes carrying strains are fully
susceptible [14]. The mef genes encode for efflux in macrolides and msr genes for efflux of
macrolides and streptogramin B; they have been involved in the active efflux of MLS in
Gram-positive cocci [65,68,69]. These genes may be located on the chromosomes but are
more often associated with transferable elements [50,65,66]. Our results showed that mefA,
mefE, and msrA were recognized in 60.2%, 61.1%, and 8.4%, respectively. Interestingly, all
isolates showed M phenotype carried msrA or/and mefA and mefE genes. These results are
in great accordance with other groups. Iannelli et al. and others showed that efflux pumps
encoded by mefA and its allele mefE genes are among the most common mechanisms of
resistance to macrolides (M phenotype) [14,28,69]. Furthermore, the msrA gene displays
the inducible resistance to erythromycin, while macrolide efflux affected by mef genes was
reported in Gram-positive cocci [50]. Efflux pumps responsible for macrolides resistance in
Enterococci include mefA and mefE pumps, which are involved in the intrinsic resistance to
lincosamides and streptogramins in E. faecalis [28].

In the current study, high resistance rates were not observed in MLS antibiotics but also
different biocides. Cross-resistance to antibiotics and biocides can be conferred by induction
of common resistance mechanisms [70], e.g., efflux pumps and transfer of resistance genes
for antimicrobials and antibiotics on mobile genetic elements [24,71]. In this direction,
it is intended to correlate the enhanced resistance to MLS antibiotics and biocides. The
correlation between the resistance to antibiotics and the reduced susceptibility to biocides
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for the isolates was determined by comparing the percentage of antibiotic-resistant isolates
among biocides less resistant (with MIC < MIC50) and biocide tolerant (with MIC ≥MIC50)
isolates [29]. Our results revealed a significant difference between biocide tolerant and
biocide susceptible isolates in MLS resistant isolates. However, there is a significant
statistical correlation between elevation in MICs to MLS and all biocides, except there was
no correlation between the increase of MICs to thiomersal and MICs of antibiotics. It can
be interpreted that thimerosal is not used frequently; it is used mainly as a preservative in
a number of biological products that do not enable Enterococci to develop resistance against
MLS antibiotics [72].

By screening the most abundant genes in the resistant isolates that are biocide tolerant,
the efflux genes mefA and mefE were significantly increased than those in biocide with
lower MICs. That indicates the possible roles of efflux in enhancing the resistance to
both biocides and MLS antibiotics. Efflux pumps are major protective components of the
bacterial cell wall that has been constitutively or inductively expressed and are responsible
for the intrinsic and acquired resistance of many bacterial species to antimicrobials [73].
Bacterial active efflux compromises the effectiveness of antimicrobials and is crucial in
cross-resistance to antibiotics and biocides [70,71,73,74]. In this direction, a fluorometric
assay of the EtBr efflux has been used to quantify the efflux of selected highly resistant MLS
isolates that showed higher MICs ≥MIC50 or lower MICs < MIC50 to biocides. EtBr efflux
has been assayed under limiting energy supply (absence of glucose and low temperature)
and in the presence and absence of the approved efflux pump inhibitor verapamil [75].
Significantly, the MLS isolates with higher MICs to biocides >MIC50 extruded EtBr more
than those with lower biocide MICs, indicating the essential role of efflux mechanism in
cross-resistance to both antibiotics and biocides. It has been approved that there is a direct
association between tolerance to biocides and antibiotic resistance since the mechanisms
contributing to both are similar to changes in the cell permeability or the synthesis of efflux
pumps [71,76].

4. Materials and Methods
4.1. Microorganisms

Nine hundred and thirteen clinical samples were collected from King Khalid Hospital,
Ha’il, Saudi Arabia, from June 2019 to January 2020. Patient consent was obtained accord-
ing to the hospital administration department’s routine hospital protocols in complete
compliance with Helsinki declarations without any risk, burden, or danger to patients. The
clinical specimens were collected from microbiological labs without direct patient contact.

4.2. Identification of Enterococcus spp.

The clinical specimens were cultivated on Bile esculin agar, Mannitol salt Agar, and
MacConkey agar (Oxoid, Hampshire, UK) to isolate the Enterococcus spp. Further biochemi-
cal tests were performed to confirm the identification and to differentiate between E. faecalis,
E. faecium, and other species of Group D Enterococci (Table 1) [26,27]. The biochemical tests
were performed according to Elmer et al. [77].

4.3. Determination of Antibiotic Susceptibility and MICs of Isolates

All Enterococcal isolates were tested for their susceptibility to selected antibiotics using
the disk diffusion method according to the Clinical and Laboratory Standards Institute
(CLSI, 2015) [78,79]. The MICs of the tested antibiotics or biocides were determined by
the agar dilution method according to CLSI, 2015. Furthermore, MIC50 and MIC90, the
concentration that inhabited 50% or 90% of isolates, were calculated by determining the
median, which corresponds to MIC50, and 90th percental, which corresponds to MIC90 [80].

4.4. Determination of MLS Resistance Phenotypes by Triple Disk Diffusion Test

The test was performed according to Novotna et al. (2005) [43]. Standardized suspen-
sions of the tested isolates (equivalent to the 0.5 McFarland) were prepared from overnight
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cultures in tryptone soya broth (TSB) and swabbed over the surface of Müeller-Hinton
(MH) agar plates. Erythromycin (15 µg), clindamycin (2 µg), and lincomycin (2 µg) disks
were placed in close proximity (20 mm) to each other over the agar surface. The plates were
incubated for 16–18 h at 37 ◦C and then examined for the shape of inhibition zones if any.
Significant ingrowth within zones up to the edges of each erythromycin, clindamycin, and
lincomycin disk was considered constitutive resistance (cMLS) phenotype. Any flattening
or blunting of the shape of the clindamycin zone indicates inducible resistance (iMLS) phe-
notype. Isolates resistant to erythromycin only but sensitive to clindamycin and lincomycin
were considered to belong to M phenotypes. Resistance to lincomycin with sensitivity to
clindamycin and erythromycin was considered an L phenotype.

4.5. PCR Detection of MLS Resistance Genes

PCR detection of MLS resistance encoding genes ermA, ermC, ermB, msrA, mefA, mefE,
ereA, lnuA, and mphC genes was performed. The crude DNA was extracted using a Qiagen
DNA extraction kit (Düsseldorf, Germany) [81] and stored at −80 ◦C [81,82]. The used
primers are listed in Table 3.

Table 3. Primers used in PCR for detection of resistance genes.

Gene Primer Primer Sequence (5′-3′) References

ermA
F AAGCGGTAAACCCCTCTGA

[83]
R TTCGCAAATCCCTTCTCAAC

ermB
F CTATCTGATTGTTGAAGAAGGATT

[49]
R GTTTACTCTTGGTTTAGGATGAAA

ermC
F AATCGTCAATTCCTGCATGT

[83]
R TAATCGTGGAATACGGGTTTG

msrA
F TCCAATCATTGCACAAAATC

[49]
R AATTCCCTCTATTTGGTGGT

mef A
F CGTAGCATTGGAACAGC

[84]
R TGCCGTAGTACAGCCAT

mef E
F CGTAGCATTGGAACAGC

[84]
R TCGAAGCCCCCTAATCTT

ereA
F AACACCCTGAACCCAAGGGACG

[85]
R CTTCACATCCGGATTCGCTCGA

lnuA
F GGTGGCTGGGGGGTAGATGTATTAACTGG

[68]
R GCTTCTTTTGAAATACATGGTATTTTTCGATC

mphC
F ATGACTCGACATAATGAAAT

[86]
R CTACTCTTTCATACCTAACTC

4.6. Evaluation of the Efflux in MLS Resistant Isolates with Higher MIC to Biocide

In order to evaluate the efflux efficiency, a quantitative assay of ethidium bromide
(EtBr) efflux was performed for selected isolates by fluorometric assay, according to
Paixao et al. [73]. Twenty isolates that showed high MLS MIC > MIC50 to both antibi-
otics and biocides were selected to be compared with 20 isolates with lower MIC < MIC50
to both antibiotics and biocides.

The MICs of selected isolates for EtBr and the efflux pump inhibitor verapamil were
determined by the broth microdilution method in 96-well microtiter plates according to the
CLSI, 2015. Moreover, the MIC of EtBr in the presence of 1/5 of the MIC of verapamil was
determined. In order to assure that the verapamil did not affect cellular viability, it was
used at concentrations that did not exceed 1/5 of its MIC.

The selected isolates were grown in 10 mL of Luria-Broth (LB) broth to absorbance
at 600 nm (OD600) of 0.6. The bacteria were then centrifuged at 14,000 rpm for 3 min.
The pellet was washed twice with the same volume of PBS, and the OD600 of the cellular
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suspension was adjusted to 0.3. The accumulation assays were performed in 96-well fluo-
rescence microtiter plates with a final volume of 100 µL. The conditions for the maximum
accumulation (presence or absence of 0.4% glucose) of EtBr were first determined. Fifty
µL of washed cell suspension was added to 50 µL of varying concentrations of EtBr in the
absence or the presence of 0.4% glucose, and fluorescence was measured. ELISA reader
800 TS (BioTek, Winooski, VT, USA) was used to monitor the accumulation and extrusion
of EtBr on a real-time basis. All the readings were made at excitation and emission wave-
lengths for EtBr (530 nm and 585 nm, respectively). All fluorescence data were acquired in
cycles of 60 s, during a 1 h time interval, and at 25 ◦C. Each experiment was conducted in
triplicate, and the results obtained were averaged.

After determining the optimum conditions for EtBr accumulation, the effect of ver-
apamil on the accumulation of EtBr was determined. A volume of 50 µL of washed cell
suspension was added to 50 µL PBS solutions containing EtBr (in sub-MIC) in the absence
and the presence of 0.4% glucose and verapamil at concentrations that did not exceed
1/4 MIC. The fluorescence was measured as mentioned above, and the effect of verapamil
on the fluorescence was determined. Each experiment was conducted in triplicate, and the
results obtained were averaged.

The tested isolates were grown in 5 mL of LB, incubated at 37 ◦C for 18 h, centrifuged
at 14,000 rpm for 5 min, and supernatants were discarded. The bacteria were loaded with
EtBr (in sub-MIC) at 25 ◦C at 200 rpm for 1 h. Then, the pellets were washed with cold
PBS and centrifuged at 13,000 rpm for 5 min. Supernatants were discarded, and each pellet
was resuspended in 1 mL of cold PBS. A volume of 50 µL of each washed cell suspension
was added in the 96-well microtiter plate containing (i) 50 µL of PBS without glucose,
(ii) 50 µL PBS with 0.4% glucose, or (iii) 50µL PBS without glucose and with verapamil in
concentrations that favor the maximum accumulation of EtBr. Aliquots of 100 µL were
assayed at 37 ◦C with continuous fluorescence measurement as described previously, and
each experiment was performed in triplicate. The efflux of EtBr is expressed in terms of
relative fluorescence (RF), which is obtained from the comparison between the fluorescence
observed for the bacteria in the presence or absence of glucose and the negative efflux
control in the absence of glucose and the presence of verapamil following the formula

RF =
Measured fluorescence in (PBS− glucose)¯Measured fluorescence in (PBS + glucose)

Measured fluorescence in (PBS − glucose + verapamil)

5. Conclusions

This study aimed to characterize the resistance to MLS antibiotics phenotypically
and genotypically. The target-site modification of bacterial 50S ribosomal subunit was the
most prevalent mechanism of resistance to MLS antibiotics. The constitutive resistance
to MLS was the most predominant phenotype. In consistence with this, rRNA methylase
erm genes ermB, A, and C were highly distributed among Enterococci isolates. The MLS-
inactivating enzymes encoding genes were detected in the tested isolates, particularly
esterase encoded by the ereA gene. On the other hand, the lnuA gene, which is mainly
associated with lincomycin resistance, was the least detected. While the least resistance of
tested isolates was detected against clindamycin, the higher rates were detected against
erythromycin, azithromycin, and clarithromycin, represented as MLS or M phenotypes.
There was a significant correlation between the reduced susceptibility of isolates to the
commonly used biocides and the resistance to MLS antibiotics. Importantly, the increased
efflux was observed phenotypically, and its encoding genes in the resistant MLS isolates
showed reduced susceptibility to biocides. That could indicate the increased role of efflux
in conferring resistance to both antibiotics and biocides.
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