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Abstract: Machine learning (ML) algorithms are increasingly applied in medical research and in
healthcare, gradually improving clinical practice. Among various applications of these novel methods,
their usage in the combat against antimicrobial resistance (AMR) is one of the most crucial areas
of interest, as increasing resistance to antibiotics and management of difficult-to-treat multidrug-
resistant infections are significant challenges for most countries worldwide, with life-threatening
consequences. As antibiotic efficacy and treatment options decrease, the need for implementation of
multimodal antibiotic stewardship programs is of utmost importance in order to restrict antibiotic
misuse and prevent further aggravation of the AMR problem. Both supervised and unsupervised
machine learning tools have been successfully used to predict early antibiotic resistance, and thus
support clinicians in selecting appropriate therapy. In this paper, we reviewed the existing literature
on machine learning and artificial intelligence (AI) in general in conjunction with antimicrobial
resistance prediction. This is a narrative review, where we discuss the applications of ML methods
in the field of AMR and their value as a complementary tool in the antibiotic stewardship practice,
mainly from the clinician’s point of view.

Keywords: machine learning; artificial intelligence; antimicrobial resistance; AMR; antibiotic
stewardship; clinical decision support tools

1. Introduction

In recent years, increasing antimicrobial resistance (AMR) has become a serious global
concern. After having been exposed to antibiotics, bacteria can quickly develop resistance
due to their short growth cycle and various adaptation mechanisms.

Multidrug-resistant, extensively resistant, or even pan-drug-resistant microorganisms
are commonly encountered in a hospital environment, especially in the critical care set-
ting [1,2]. According to estimates from the European Union/European Economic Area
(EU/EEA), every year, more than 670,000 infections are caused by bacteria resistant to
antibiotics, resulting in approximately 33,000 deaths [3]. The WHO European Region con-
tinues to experience high levels of antimicrobial resistance, particularly in the southern and
eastern parts. The increasing resistance of Klebsiella pneumoniae and Acinetobacter spp. to
third-generation cephalosporins and carbapenems and the rapid dissemination of resistant
isolates limit antimicrobial choices for patients infected with these pathogens [2,4]. Failure
to recognize a patient’s risk factors for infection with an antibiotic-resistant pathogen is the
root cause leading to inappropriate treatment and eventually to unfavorable outcomes [5].
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Several factors slow the development of new antibiotics, including a shortage of govern-
ment research resources due to the financial crisis and extensive regulatory procedures for
new drugs. More importantly, antibiotic development is no longer considered an econom-
ically viable investment in the pharmaceutical industry, because antibiotics are used for
a relatively short period of time, unlike drugs used to treat chronic diseases. The cost of
developing the latter is, first of all, much lower than that of antibiotics [6]. Therefore, over
the past 15 years, there has been a significant gap in the development and availability of
new antibiotics to address emerging resistance situations [4].

To deal with this rapidly growing problem, it is necessary to implement a multidisci-
plinary intervention known as an antimicrobial stewardship program (ASP) to optimize
antibiotic prescription through evidence-based clinical decisions, and limit AMR [7]. Con-
cerns are being expressed about the implications that the COVID-19 pandemic may have on
antimicrobial stewardship programs and the further increase in AMR [8]. Overburdening of
healthcare systems, increased workload of medical and nursing staff, and depletion of struc-
tural resources are some of the factors that potentially affect AMR hospital transmissions.
Excessive and frequently unnecessary broad-spectrum empirical antibiotic prescribing in
COVID-19hospitalized patients is commonly observed, exposing patients and the commu-
nity to an increased risk of multidrug-resistant infections [9].

At the same time, the global increase in the use of electronic health records (EHR) has
resulted in massive amounts of routinely available electronic patient and microbiological
data that could be used to support individualized antimicrobial stewardship [10]. In
previous years, a large proportion of clinical and laboratory data was disregarded or
not collected at all. Several factors contributed to this limitation, including the size and
complexity of the data, as well as the absence of techniques for collecting and storing them.
Machine learning (ML), through complex processes, facilitates the optimal use of these data
for evidence-based decision-making. From a large amount of clinical and laboratory data,
machine learning can automatically extract meaningful rules, which, combined with the
vast advances in computer processing power, are enabling the development of predictive
tools [11].

Artificial intelligence (AI), through its ability to process data and information and
turn it into insight and knowledge, facilitates data analysis that exceeds human mind
capabilities and solves the problem of limited rational decision-making due to insufficient
information and time constraints. AI, when properly designed, can also be free of behavioral
constraints, including irrational deviations from guidelines, peer influence on hierarchical
cultural norms, and fatigue. Algorithms can learn objectively and are often able to make
more accurate predictions than those observed in everyday practice. In view of its potential
promise in AMR, ML could greatly improve research efficiency, allowing scientists to focus
on more complex scientific matters [12].

In this paper, we reviewed the existing literature on machine learning applications
with respect to antimicrobial resistance prediction. This is a narrative review, where we
discuss the applications of ML methods in the field of AMR and their value as an adjunct
tool in the antibiotic stewardship practice, mainly from the clinician’s perspective. Recently,
a systematic review of the literature with meta-analysis was published on the topic of
ML-driven prediction of AMR [13]. In the current review, we have updated the literature
search up to December 2022, and we principally emphasize the clinical context of ML
applications, addressing healthcare professionals not quite familiar with AI technologies.
Previous high-quality reviews exploring ML applications in the field of infectious disease
mainly concentrate either on genomic-based technologies or on technical features of ML
algorithms [11,14–16].

2. Materials and Methods
2.1. Search Strategy and Selection Criteria

We investigated Medline/Pubmed up to December 2022 for original studies containing
the keywords ((machine learning) AND (antimicrobial) AND (resistance) AND (hospital))
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NOT (DNA) NOT (sequencing) NOT (peptides) NOT (molecules) NOT (genome) NOT
(discovery)). As seen in the flow diagram (Figure 1), our research initially revealed eighty-
nine studies. Thirty-nine studies were excluded by title screening. By abstract screening,
twenty-one studies were also excluded. In this review, we included prospective and
retrospective original studies in English that used ML algorithms to predict AMR in
primary, secondary, and tertiary care, including intensive care, based on demographic,
clinical, laboratory, and microbiological data to support clinical decisions. Investigations
with ML systems that use genomic data (e.g., genome sequencing), as well as investigations
aiming at the development of novel anti-infective agents through ML algorithms, were not
included in this review. Twenty-nine studies exploring ML performance in AMR prediction
were reviewed.
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2.2. Popular Machine Learning (ML) Algorithms in the Field of AMR

Supervised machine learning algorithms are commonly used with linear and logistic
regression, k-nearest neighbors (k-NN), support vector machine (SVM), decision tree (DT),
random forest (RF), and gradient boosting machine (GBM), the most prevalent algorithms,
followed by neural networks and deep learning approaches. The area under receiver
operating curve characteristic (AUROC) is the main performance metric used in ML-driven
prediction models. Other performance metrics include accuracy, sensitivity, specificity,
positive and negative predictive values, precision, recall, and F1 measure, all of which,
however, can be derived from a confusion matrix, a simple tabular structure that essentially
summarizes the hits and misses of a learning algorithm.

3. Machine Learning (ML) Applications in the Field of AMR

There is growing evidence that, despite increased resistance to antibiotics, machine
learning can help doctors select proper anti-infective treatment, based on patient demo-
graphics and past clinical histories [17]. During the past 20 years, the use of AI applications
in several healthcare areas has increased significantly. As conventional computing methods
are no longer suitable to handle and analyze big data, the exploitation of existing large med-
ical databases by the use of ML has highlighted their value and, therefore, they have started
to proliferate. Most machine learning (ML) systems in the field of antimicrobial resistance
place an emphasis on research, medication development, or clinical microbiology [10].
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More specifically, ML methods have been developed to analyze bacterial genomes,
forecast medication susceptibility, recognize epidemic patterns for surveillance purposes,
or propose new antibacterial treatments or vaccines [1]. In addition to developing new
antibiotics, optimizing the use of current drugs has also been a key priority in stopping the
spread of AMR, as one of the main drivers of AMR is the inappropriate use of antibiotics [4,5].

Several patient characteristics including comorbidities, demographics, previous in-
fection history, antibiotic treatments, and hospital admissions have been associated with
multidrug-resistant (MDR) infections in a number of studies [18,19]. The identification
of risk factors, however, does not necessarily translate into highly accurate predictions.
Several studies have therefore focused on using machine learning to improve clinical
decision-making and antibiotic selection, particularly in the context of choosing empirical
therapy [20]. Machine learning methods are first trained on multiple patient records and
antibiotic resistance measures. A trained outcome model can predict a resistance profile
based on patient clinical and microbiological data, and the results are used to select the
most appropriate antibiotic regimen to treat an infection. A separate group of patient data
is used to assess the accuracy of this trained model, comparing predicted and observed
resistance outcomes.

3.1. Diagnosis of AMR

Currently, AMR is principally diagnosed using two techniques in clinical microbiol-
ogy [11]. One is classical culture-based antimicrobial susceptibility testing (AST), and the
other is whole-genome sequencing for antimicrobial susceptibility testing (WGS-AST) [1].
Although the former approach is simpler and easier to use, it typically requires a day or
more to produce the results, which significantly lengthens the empirical antibiotic regimen
and raises the possibility of treatment failure due to ineffective therapy or the threat of
antibiotic resistance caused by broad-spectrum antibiotics.

The implementation of ML methods has substantially reduced the time of bacterial sus-
ceptibility profiling to less than three hours for the flow-cytometry AST method (FAST) [21]
and only 30 min for the infrared (IR) spectrometry [22]. While these ML-assisted diagnostics
can accelerate antimicrobial susceptibility testing, they require costly infrastructure and
expert personnel to be carried out.

Although matrix-assisted laser desorption/ionization coupled to time-of-flight mass
spectrometry (MALDI-TOF MS) is widely recognized as a reference method for the rapid
and inexpensive identification of microorganisms in routine laboratories, little attention has
been paid to its ability to determine AMR. Some recent studies have evaluated its potential
use in conjunction with machine learning to detect AMR in clinical pathogens. [23,24].
Some ML-based MALDI algorithms are available for micro-organism identification and are
also FDA approved, as, for example, the MALDI Biotyper CA (MBT-CA) System (Bruker
Daltonics Inc, Billerica, MA) that was approved by FDA in 2013 [24].

Kirby–Bauer disk-diffusion and microdilution antibiograms are recommended as
reference methods by the European committee on antimicrobial susceptibility testing
(EUCAST) and the Clinical and Laboratory Standards Institute (CLSI) for determining
antimicrobial resistance [25]. Results are usually qualitative and classified into categories,
i.e., susceptible or resistant, depending on the breakpoint calibrated by the EUCAST, or
expressed as minimum inhibitory concentrations (MICs) [25].

Although these conventional methods are effective, they are cumbersome, time-
consuming, and do not enable the rapid choice of an effective targeted anti-infective
treatment [23]. As the results cannot be obtained sooner than 48 h after receiving a sample,
prolonged use or overuse of broad-spectrum antibiotics may result. For some pathogens,
an even longer incubation time (72 h or more) is required [25]. Hence, rapid, accurate, low-
cost diagnostic tests are needed to optimize antimicrobial use and minimize the potential
selective pressures.

Whole genome system (WGS)-based diagnostic approaches are being used to overcome
these limitations, especially for viral infections and tuberculosis, where culture-based
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microbiological diagnostics are either not applicable or time-consuming [1]. WGS can
potentially alleviate many of these concerns by offering the potential to predict AST results
by identifying the presence or absence of resistance genes, as well as mutations in relevant
genes, from which clinicians can infer the activity of antibiotic agents [26]. However,
the integration of WGS diagnostics in routine antibiotic surveillance and daily clinical
practice has several challenges, especially in limited resource settings. These methods are
more expensive and more complex to implement than standard antibiotic susceptibility
testing [1].

The development of molecular tests has significantly contributed to rapid diagnostic
testing and timely identification of pathogens and antibiotic resistance patterns, but their
high costs and limited availability prevent them from being widely used. In this context,
ML-driven predictive models of antimicrobial resistance may serve as a bridge between
specimen collection and results from molecular and genotypic susceptibility analysis,
facilitating time-sensitive empirical antibiotic choices.

3.2. Prediction of AMR

Accurate prediction of resistance against different antibiotics is directly beneficialfrom
the patient’s point of view, because it helps avoid treatment failures. Such a prediction
could have additional long-term benefits, for example, enabling the use of more targeted
antibiotics, decreasing the need to use multiple antibiotics to cure the same infection, and
lowering the risk of onward transmission. Machine learning algorithms have the potential
to help clinicians predict antimicrobial resistance.

Besides the detection of antimicrobial resistance phenotypes, different ML mod-
eling tools have been applied by several researchers to predict antibiotic susceptibil-
ity patterns of pathogens, allowing for the selection of the most appropriate treatment.
Goodman et al. used recursive partitioning to build a decision tree for the prediction of
extended-spectrum β-lactamase (ESBL) production in Escherichia coli and Klebsiella spp.
bacteremia based on patient epidemiological and microbiological data [27]. Sousa et al. per-
formed a prospective study to validate the decision tree (DT) designed by Goodman et al. in
a cohort of bacteremic patients in a region with a high prevalence of ESBL [28]. In contrast
with the earlier study, all types and species of β-lactamase producing Gram-negative bacilli
were included. After increasing the cut-off values of certain variables associated with
resistant infections, a modified DT was obtained with significantly improved performance
compared to the original one. An analogous method was used by Guillamet et al. for the
prediction of resistance to piperacillin–tazobactam, cefepime, and meropenem in patients
with Gram-negative bloodstream infection. In their study, a good overall agreement in accu-
racies between multivariable logistic regression models and clinical decision trees that were
developed using a recursive partitioning algorithm (Chi-squared automatic interaction
detection) was observed [29].

Moran et al. assessed the accuracy of an open-source machine learning algorithm
(XGBoost), trained in predicting antibiotic resistance for three Gram-negative bacterial
species isolated from patients’ blood and urine within 48 h of hospital admission [20].
The ML algorithm performed better than medical staff and a simple risk assessment tool.
According to the authors, a point-of-care decision support system with real-time, tailored
therapy recommendations based on interim diagnosis and patient risk factors has a specific
role to play, although generalizability is limited as the algorithm was trained to predict
resistance only in selected cases and specific antibiotics.

McGuire et al. demonstrated that clinical data retrieved from the EHR of the patients
could be used to train an ML algorithm and predict the presence of carbapenem resistance
at the time of culture collection [5]. The predictive model generated rather low sensitivity
and positive predictive values (30%), but a high negative predictive value of 99% (AUROC
0.846). The authors suggest that although ML certainly cannot substitute rapid molecular
testing, it may be able to empower the appropriate selection of antimicrobials in advance, in
case of real-time integration into the EHR. Henderson et al. evaluated an ML classification
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model to discriminate possible predictors of MDR Enterobacterales infection in human
immunodeficiency virus (HIV)-infected patients, who, compared to the general population,
present increased vulnerability [30]. In the study population, the outcome of interest
was rare, which restricted the performance of the classification algorithms as well as the
number of predictors to be analyzed as a result. Garcia-Vidal et al. employed an ML
approach with input data from the hospital EHRs in a cohort of hematological patients
at the onset of febrile neutropenia to predict which patients would necessitate broad-
spectrum coverage for multidrug-resistant Gram-negative bacteria (MDR-GNB), enabling
a personalized antibiotic approach that allows to avoid antibiotics in case they are not
necessary [31]. In a recent conference paper, it was suggested that a Random Forest classifier
implemented in EHR data extracted by a feature selection (FS) process could provide early
detection of MDR infections among intensive care unit (ICU) patients with an accuracy of
77% [32].

Recently, Feretzakis et al. evaluated five ML algorithms to identify predictors of antibi-
otic susceptibility using simple patient demographics, culture, and antibiotic susceptibility
test results of patients being treated in medical wards [33]. The authors suggest that clini-
cians can make empirical treatment decisions based on insights gained from applying ML
algorithms to local antimicrobial susceptibility data, with the best ML model achieving an
accuracy of 75.8%. A low-cost method (which can be a simple database) that requires a basic
microbiology Laboratory Information System and can be applied in ICUs, where AMR
constitutes a serious threat, is proposed [34]. An ICU antimicrobial susceptibility dataset
was used to evaluate a collection of very popular learning classifiers. Multilayer perceptron
and J48 (C4.5) algorithms surpassed other models in terms of AUROC with values of
0.726 and 0.724, respectively. Further limiting the assessment to specific multidrug-resistant
Gram-negative pathogens significantly increased the accuracy of ML models (AUROC
0.933), which could lead to an evidence-based clinical decision regarding empirical antibi-
otic selection [35]. The authors of a study conducted in a University Hospital in Spain
propose a strategy based on feature selection and ML techniques to detect antimicrobial
resistance to Pseudomonas [36]. They conclude that in clinical settings, ML algorithms such
as LR, k-NN, DT, RF, and MLP can accelerate the workflow. The performance metrics of the
ML algorithms are clearly reported in the aforementioned studies, but in most cases, ML
algorithms’ performances were not evaluated against empirical clinical decisions made by
physicians. Table 1 summarizes the performance of different machine learning algorithms
for the prediction of AMR across examined studies.

3.3. Machine-Learning-Assisted Antibiotic Prescription

It is common for non-infection specialists to treat infections in hospitals. The physi-
cians are encouraged to follow local antimicrobial guidelines and evidence-based policies.
However, adherence to the prescribing policies tends to be deficient. Human and behav-
ioral factors influence the doctor’s prescribing decisions. On the other hand, clinicians are
frequently urged to overuse antibiotics due to worries about the high mortality linked to
delayed prescribing in diseases such as sepsis, the increase in drug-resistant infections, and
the lack of accurate diagnostics to enable dynamic decision-making [5,8]. In a cohort of
over a thousand critically ill patients with Gram-negative bacteremia, a fourfold increase in
mortality was attributed to the failure of administering an in vitro active antibiotic treat-
ment within six hours of septic shock, emphasizing the need for timely and appropriate
antibiotic treatment [7].
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Table 1. Performance of machine learning across different studies in predicting antibiotic susceptibility patterns.

Authors Year of Publication Medical Setting Geographical Setting Input Data ML Algorithms Performance Evaluation Bacterial Species

Goodman et al. [27] 2016 Hospital admissions USA Blood cultures/AST Recursive partitioning, DT PPV 0.908-NPV 0.919
Escherichia coli,

Klebsiella pneumoniae,
Klebsiella oxytoca

Vazquez-Guillamet
et al. [29] 2017 Hospital admissions USA EHR data/Blood cultures/AST Recursive partitioning, DT AUC 0.61–0.80 GNB

Sousa et al. [28] 2019 Hospital admissions Spain Clinical/demographic data/Blood
cultures/AST DT AUC 0.76 BL-GNB

Moran et al. [20] 2020 Hospital admissions and
primary care UK Blood/urine cultures XGBoost AUC 0.70

Escherichia coli,
Klebsiella pneumoniae and
Pseudomonas aeruginosa

Feretzakis et al. [33] 2020 Medical wards Greece Demographics/Cultures/AST/Bacterial
Gram stain/Type of sample MLR AUC 0.758 All isolated

bacterial species

Feretzakis et al. [34] 2020 Intensive Care Unit Greece Demographics/Cultures/AST/Bacterial
Gram stain/Type of sample LR, RF, k-NN, J48, MLP AUC 0.726 All isolated

bacterial species

Feretzakis et al. [35] 2021 Intensive Care Unit Greece Demographics/Cultures/AST/Bacterial
Gram stain/Type of sample

JRip, RF, MLP, Class. Regr,
REPTree

F-measure 0.884, AUC
0.933

Pseudomonas aeruginosa,
Acinetobacter baumannii,

Klebsiella pneumoniae

Martínez-Agüero
et al. [36] 2019 Intensive Care Unit Spain Demographics/Clinical data/Type of

sample/Cultures/AST LR, k-NN, DT, RF, MLP Accuracy for quinolone
resistance 88.1 ± 1.6

Pseudomonas,
Strenotrophomonas,

Enterococcus

McGuire et al. [5] 2021 Hospital admissions USA

Demographic, medication, vital sign,
laboratory, billing code, procedure,

culture, and sensitivity data
(67 features)

XGBoost AUC 0.846 Bacterial isolates with CR

Pascual-Sánchez
et al. [32] 2021 Intensive Care Unit Spain EHR data LR, DT, RF, XGBoost, MLP AUC 0.76 MDR bacteria

Garcia-Vidal et al.
[31] 2021 FN Hematological Patients Spain EHR data RF, GBM, XGBoost, GLM AUC 0.79 MDR-Pseudomonas aeruginosa/

ESBL-E

Henderson et al.
[30] 2022 HIV patients USA EHR data PLR, naïve Bayes, gradient

boosting, SVM, RF AUC 0.70 MDR-E

EHR: electronic health record, AST: antibiotic susceptibility testing, DT: decision tree, PPV: positive predictive value, NPV: negative predictive value, RF: random forest, XGBoost:
eXtreme Gradient Boosting, MLR: multinomial logistic regression, MLP: multilayer perceptron, JRip (RIPPER): repeated incremental pruning to produce error reduction, Class. Regr.: a
classifier using regression, k-NN: k-Nearest Neighbors, GBM: gradient boosting machine, SVM: support vector machines, GLM: generalized linear model, AUROC: area under receiver
operating curve, CR: carbapenem resistance, ESBL: extended-spectrum beta-lactamase, BL: beta-lactamase, GNB: Gram-negative bacteria, MDR-E: multi-drug-resistant Enterobacterales,
PLR: penalized logistic regression, FN: febrile neutropenic, HIV: human immunodeficiency virus.
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A strategy for combating inappropriate antibiotic prescriptions in community and
nursing home-acquired urinary tract infections (UTIs) is described by Yelin et al. [37].
The resistance of cultured bacteria from UTIs to six commonly prescribed antibiotics was
associated with a number of demographic factors, including a residency in a nursing home,
alongside with history of UTIs and prior antibiotic prescriptions. Despite acknowledged
biases in the study design, computer-driven drug recommendations seem to reduce the
proportion of inappropriate prescriptions to 5%, compared with physicians prescribing
inappropriately 9% of the time. A major drawback of the method is its inability to select the
narrowest-spectrum antibiotic, among those with the lowest resistance. Similar approaches
could be used to treat other bacterial infections when detailed patient data are available, as
has recently been suggested for bloodstream infections in a hospital setting [38].

Kanjilal et al. applied a machine learning approach to hospital electronic health record
data to predict the likelihood that first- and second-line antibiotics would be resistant
to uncomplicated UTIs [39]. Using the algorithm, the least broad-spectrum antibiotic
was recommended for each isolate. Compared to clinicians, the pipeline reduced both
broad-spectrum and ineffective antibiotic prescriptions for UTIs in the cohort of patients,
indicating clinical potential. In stone disease patients with UTI, Tzelves et al. described
a method that uses readily available data from the Laboratory Information System and
compared several classifiers following a tenfold cross-validation approach on two different
versions of a single dataset; the first contained only information of Gram stain, while the
second had knowledge of bacterial species [40]. The best classifier achieved an accuracy
of 77% with only pathogen Gram stain known, and nearly 87% after identifying specific
microorganisms. Using statistical learning techniques, a series of predictive models was
developed by another group of researchers to estimate the probability of susceptibility to
five commonly used antibiotics for in-hospital UTIs, with modest performance [41]. The
goal of these studies is to provide insight into the proper selection of the right antibiotic. In
comparison to retrospective clinician prescription, antibiotic prescribing policies supported
by machine learning predictions have shown improved effectiveness [39].

However, most of these data-driven predictive models lack generalizability and should
be retrained in different healthcare settings due to the dynamic nature of bacterial infections,
differences in local susceptibility patterns, and the inconsistency of patient variables in
electronic medical records [42]. With increasing antibiotic consumption, resistance patterns
can change over time, requiring periodic retraining [4].

Another study analyzed the performance of antibiotic selections informed by per-
sonalized antibiograms in comparison with antibiotic selections made by clinicians; it
also systematically evaluated the trade-off in performance when fewer broad-spectrum
antibiotics are selected. By reducing the unnecessary use of broad-spectrum antibiotics
that breed resistant organisms, empiric precision antibiotic prescribing with personalized
antibiograms could improve patient safety and antibiotic stewardship [43]. In the study of
Rich et al., the boosted logistic regression (BLR) models yielded the highest discriminative
performance as compared to the decision tree (DT) and random forest (RF) models, yet
the clinical decision support system developed in this study was moderately predictive
of antibiotic-resistant UTIs (AUROC 0.57–0.66) [44]. Still, when resistance testing is not
possible or not rapid enough, these models can inform decision-making.

Another major concern is the emergence of resistant infections despite susceptibility-
matched treatment, often caused by a different strain than the original infection, as demon-
strated by Stracy et al. [45]. Combining patients’ microbiome profiles and data on antibiotic
use for urinary tract and wound infections, the researchers built an ML-driven algorithm
for patient-specific recommendations to minimize antimicrobial resistance at the individual
patient level.

In the aforementioned studies, algorithms and models have been developed for pre-
dicting antibiotic resistance based on epidemiologic factors. However, it remains largely
unstudied whether they will affect antimicrobial prescribing when implemented into clin-
ical practice [46]. Recently, a case-based-reasoning algorithm was incorporated into a
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hospital’s information system and was evaluated using real-world patient data to investi-
gate the potential impact of the system on antibiotic prescribing practices. The algorithm
provided appropriate antibiotic recommendations that were significantly narrower in
spectrum compared to choices being made in current clinical practice by physicians [47].
Avoiding unnecessary antibiotic prescriptions is also of major importance for the promotion
of antimicrobial stewardship. Wong et al. developed an ML-assisted mobile application to
help inexperienced or busy Emergency Department doctors in Singapore decide whether
to prescribe antibiotics for uncomplicated upper respiratory tract infections (URTIs) [48].
Likewise, in COVID-19 hospitalized patients, a supervised ML algorithm was successfully
used to detect bacterial co-infections or secondary infections, thus supporting antibiotic pre-
scribing decisions or recommending antibiotic discontinuation [49]. However, investigating
ML applications to support diagnostic decisions is beyond the scope of this review.

Table 2 summarizes the performance of machine learning algorithms for antibiotic
prescription assistance across different studies.

3.4. Machine Learning-Assisted Clinical Decision Support Systems (ML-CDSS)

As antibiotic resistance is a major cause of mortality, it is imperative that researchers
develop rapid and efficient methods to guide the rational administration of antibiotics,
collectively known as antimicrobial stewardship programs (ASPs) [3,7]. Antibiotic prescrip-
tions can result in the selection of drug-resistant organisms, affecting not only individual
patients but also a patient’s microbiome and society as a whole [4]. It is often difficult to
make consistent decisions during infection management due to the dynamic nature of the
situation. Integrating broad and complex information is essential to making responsible
prescribing decisions [15,16]. Besides the evidence-based guidelines, there are several
clinical decision support systems (CDSS) and biomarkers that are commonly used to guide
treatment. In a recent review, various uses of machine learning for clinical decision support
in infectious diseases were identified, including the support of diagnosis, the severity of
disease prediction, and selection of appropriate antimicrobial treatment [14]. Currently
used CDSS are computer-assisted expert systems, based on human expertise (knowledge-
based), subsequently translated into rules that are manually programmed in the system,
trying to simulate or reproduce the decision-making ability of an expert on a specific
task [14,18,19]. In contrast to expert systems, ML-assisted CDSS are able to automatically
learn and improve from data (data-based), define their own rules, and interpret unknown
situations [14,15].

The development of ML-CDSS using minimum variables may be beneficial when data
are not readily available across certain areas or when resources are limited [34]. Particular
attention should be paid to which variables are used by the ML-CDSS to predict their
outcome. Moreover, it is difficult to develop and validate ML-CDSS without high-quality
clinical data. It is essential to build a comprehensive clinical database so that clinicians can
use future machine learning tools with confidence.

Decision support models for empiric treatment of sepsis can integrate predictors of
antibiotic resistance and permit rapid antibiotic de-escalation without endangering timely
and sufficient treatment [50]. Moreover, previous antibiotic susceptibility results provide
potent information to predict resistance to existing infections [51]. Sick-Samuels et al.
constructed a decision tree by using recursive partitioning to predict the risk of broad-
spectrum antibiotic (BSA) resistance in a cohort of septic pediatric patients based on five
distinctive risk factors [52]. Nearly half of high-risk BSA-resistant episodes were incorrectly
categorized as low-risk episodes, and 9% were incorrectly categorized as high-risk episodes.
This could have resulted in either undertreatment or overtreatment, depending on the
situation. An alternative approach could improve the sensitivity of the prediction algorithm
by capturing additional patient characteristics or variables.
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Table 2. Performance of machine learning-Assisted Antibiotic Prescription across different studies.

Author Year of Publication Medical Setting Geographical Setting Input Data ML Algorithms Performance Evaluation Bacterial Species

Yelin et al. [37] 2019 Community and
nursing-home Israel Demographics/Urine cultures/Past

antibiotic prescriptions LR and GBDT models
AUC 0.7 for

amoxicillin-CA to 0.83 for
ciprofloxacin

E. coli, K. pneumoniae and
P. mirabilis

Hebert et al. [41] 2020 In-hospital patients USA Demographics/Urine cultures/Past
antibiotic prescriptions PLR AUC 0.65 to 0.69 Bacterial isolates from

urine cultures

Tzelves et al. [40] 2022 Emergency
department/urology ward Greece Demographics/Gram stain/Bacterial

species/Sample type/AST
MLR with a ridge

estimator

AUC 0.768 (unknown
bacteria)

AUC 0.874 (known
bacteria)

Bacterial isolates from
urine cultures

Kanjilal et al. [39] 2020 In-hospital and outpatients USA Demographic/Urine cultures/Past
antibiotic prescriptions LR, DT, RF AUC 0.56–0.64 Bacterial isolates from

urine cultures

Lewin-Epstein et al. [42] 2021 In-hospital patients USA Electronic health record
data/Antibiotic susceptibility results

LASSO logistic regression,
NN, GBDT, ensemble †

AUC 0.73–0.79 (unknown
bacteria)

AUC 0.8–0.88 (known
bacteria)

Bacterial isolates from
blood/urine/other

cultures

Corbin et al. [43] 2022 Emergency Department USA Electronic health record
data/Antibiotic susceptibility results

LASSO/Ridge logistic
regressions, RF, and GBDT AUC 0.64–0.74

Bacterial isolates from
blood/urine/other

cultures

Rawson et al. [47] 2021 Hospital admissions United Kingdom Clinical, microbiological, prescribing
information

Case-Based Reasoning
(CBR)

OR: 1.77; 95% CI:
1.212–2.588; p < 0.01

Escherichia coli bloodstream
infections

Rich et al. [44] 2022 In-hospital and outpatients USA
Demographics, previous diagnoses,

prescriptions, and antibiotic
susceptibility tests

DT, boosted logistic
regression (BLR), RF AUC 0.57–0.66 Bacterial isolates from

urine cultures

GBDT Gradient Boosting Decision Trees, † Ensemble of all 3 algorithms, PLR: penalized logistic regression MLR: multinomial logistic regression NN: neural networks, DT: decision tree,
RF: random forest, LR: logistic regression, URTI: upper respiratory tract infections, GNB: Gram-negative bacteria, BSIs: bloodstream infections, AUC: area under curve.
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In a retrospective study carried out in a children’s hospital in Cambodia, Oonsivalai
and colleagues, propose a patient-level data-driven decision support system using a variety
of machine learning techniques [38]. Mainly targeting ceftriaxone, a third-generation
cephalosporin, the most frequently prescribed empirical antibiotic in practice at their study
site, they specifically concentrate on the value of using the predictive models to identify
patients at high risk of being infected with organisms resistant to it. The age of the patient,
an age-adjusted weight score, and whether the infection was acquired in the hospital or
in the community were revealed to be the most crucial factors for predicting antibiotic
susceptibility. These are objective variables that are frequently collected in most therapeutic
settings. The models’ other variables can also be quickly and inexpensively gathered using
brief questionnaires. The calculations that underlie the predictions can easily be carried
out remotely using any Internet-connected device in a matter of seconds on a low-cost
computer. This makes the strategy extremely suitable for settings in low- and middle-
income countries (LMIC), which often have the largest illness burden and the most urgent
issues with antibiotic resistance [45].

In a recent study, Liang et al. developed an ML-driven predictive model for the timely
prediction of carbapenem-resistant (CR) GNB carriage among ICU patients within one
week [53]. CR-GNB carriers can be predicted in real time, helping medical staff implement
more targeted nosocomial prevention and control measures to avoid transmission. Probably
the biggest highlight of the study is that it was prospectively validated for 4 months, which
means that the model has been used in a clinical setting, having an accuracy of 84%.
However, it is hard to determine whether developing the model is more effective than
implementing other infection prevention tools.

Goodman et al. examined two methodologies for the development of clinical decision
support tools: a conventional logistic regression-derived clinical risk score versus an
ML-derived decision tree [54]. Although the performance metrics of the models for the
prediction of ESBL bloodstream infection were comparable, the decision tree was more
user-friendly, with fewer variables for the end user, whereas the risk score presented better
discrimination and bigger flexibility for adjusting sensitivity and specificity.

Another group of researchers showed that deep neural networks outperformed mul-
tivariable logistic regression in predicting the generation of ESBL in community-onset
Enterobacteriaceae bacteraemia. The large number of features used for training the model
could be a potential drawback of this study [55]. For this reason, the authors suggest the
integration of this deep neural network model into the electronic health system to facilitate
automatic recovery and calculation of patient parameters. This would allow clinicians
to make effective use of stored digital personalized health data, otherwise discarded in
conventional linear statistical models.

Multivariate associations rule mining methods—a subset of unsupervised ML tech-
niques originally used in market-basket analysis—may efficiently identify and quantify
correlations between resistance patterns, enabling the identification and tracking of clin-
ically relevant MDR through comparisons between relevant subsets of isolates. In the
clinical context, the application of association rule mining in the antimicrobial susceptibility
dataset could also offer better antibiotic treatment policies [56,57]. However, in the context
of this study, we have not invested in reviewing unsupervised techniques, mainly because
these tend to be associated with earlier phases of ML projects, where the application goal is
still elusive and the data analysts are still searching for the exact nature of the problem to
be solved; for the time being, this is less of an issue of the AMR domain, where assessing
resistance is widely accepted as a clear goal.

Table 3 summarizes the performance of machine learning-assisted clinical decision
support systems (ML-CDSS) across different studies.
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Table 3. Performance of machine learning-assisted clinical decision support systems (ML-CDSS) across different studies.

Author Year of Publication Medical Setting Geographical Setting Input Data ML Algorithm Performance Evaluation Bacterial Species

Oonsivalai et al. [38] 2018 Hospital admissions Cambodia
Clinical, demographic and

living condition
information

LR, DT, RF, Boost, SVM,
k-NN AUC: 0.74–0.85 Bacterial isolates in

blood cultures

Elligsen et al. [50] 2021 Hospital admissions Canada

Demographics, acquisition
of bacteremia, previous

hospital/ICU admission,
AST, antibiotic
prescriptions

LR models
Antibiotic de-escalation (29
vs. 21%; OR = 1.77; 95% CI,

1.09–2.87; p = 0.02)

GNB bloodstream
infections

Sick-Samuels et al. [52] 2019 Pediatric hospital USA Demographic, clinical, and
microbiological data Recursive partitioning, DT AUC 0,70 GNB BSIs

Cazer et al. [56] 2021 Hospital admissions USA
Bacterial isolates, infection

site, AST, resistance
phenotypes

Association Mining Average cLift: 5 Staphylococcus aureus
isolates

Sakagianni et al. [57] 2022 Intensive Care Unit Greece Demographics/bacterial
species/sample type/AST Association Mining Max Lift: 3.44

Pseudomonas aeruginosa,
Acinetobacter baumannii,

Klebsiella pneumoniae

Feretzakis et al. [58] 2021 Medical wards Greece
Demographics/Gram

stain/bacterial
species/sample type/AST

Microsoft Azure AutoML
(StackEnsemble,
VotingEnsemble,

MaxAbsScaler, LightGBM,
SparseNormalizer,

XGBoost)

AUC: 0.822 Bacterial isolates

Lee et al. [55] 2021 Hospital admissions Hong Kong

Patient reference
number/Date of
culture/Bacterial

species/Sample type/AST

Adaptive boosting,
gradient boosting, RF,
SVM, K-NN and NN *

AUC: 0.761
Escherichia coli,
Klebsiella spp.,

Proteus mirabilis

Liang et al. [53] 2022 Intensive Care Unit China

Demographic data, vital
signs, basic and primary
diseases, important test

indicators, operation
histories and antibiotic use

RF, XGBoost, DT,
multiple LR AUC 0.78–0.91 CR-GNB carriage

Goodman et al. [54] 2019 Hospital admissions USA Blood cultures/AST LR, DT C-statistic LR:0.87 DT:0.77 ESBL bacteria

* SVM: support vector machine, NN: neural network, RF: random forest, LR: logistic regression, DT: decision tree, XGBoost: eXtreme gradient boosting, k-NN: k-nearest neighbours,
eCSR: expected cross-support ratio, cLift: conditional lift, CR-GNB: carbapenem-resistant Gram-negative bacteria, ESBL: extended-spectrum beta-lactamase, AST: antimicrobial
susceptibility test.
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3.5. Prediction of AMR in the Environment Employing AI/ML

The problem of AMR is multifactorial and arises from the interaction of bacterial
evolution, human behavior, and environmental factors that play a significant role in the
transmission of resistant bacteria and pathogen emergence [15]. There is no doubt that
AMR has expanded considerably beyond strictly medical settings to include relevant
aspects of the environment. Currently, there is a general consensus that intervention
strategies should not be limited to consider only human and veterinary medicine, but
that the environment should also be taken into account. Thus, an important challenge in
AMR control is estimating the prevalence of antibiotic resistance genes (ARGs) in source
environments. Furthermore, investigating the conditions and extent of environmental
selection for resistance is critical to allow preventive measures [59].

Machine learning and deep learning models have been validated for the prediction of
ARGs in various environmental sources, such as in recreational beaches, soil, wastewater,
and in several geographical regions [60,61]. Jang et al. studied neural network techniques
aiming to predict ARGs occurrence on beaches quickly and accurately, as well as to define
the environmental variables that influence these predictions [62].

4. Discussion

Early detection of AMR remains challenging despite rapid diagnostic advances. A
delay in diagnosis can prolong the period of ineffective antibiotic therapy. Statistical models
for predicting drug resistance can play an important role, especially in settings where rapid
diagnostic tests are unavailable or are difficult to perform due to a lack of resources.

While traditional regression techniques (linear/logistic) are long-established for the
development of predictive models and risk scores, ML approaches based on complex
patient data and medical information are increasingly gaining ground in clinical prediction,
given their flexibility, practicality, and the ability to handle a large number of predictors [63].
However, in terms of validity and accuracy, there is no clear-cut evidence that ML-based
prediction outperforms conventional statistical approaches. Christodoulou et al., in a
previous systematic review, compared the performance of traditional statistical methods
(e.g., logistic regression) with ML algorithms for the development of clinical prediction
models with binary outcomes. In studies with a low risk of bias, the difference in the logit
area under the ROC curve between LR and machine learning was 0.00 (95% CI −0.18 to
0.18) [64]. In the field of AMR prediction, the results from a recent meta-analysis were
inconclusive regarding the performance benefit offered by ML algorithms compared to
risk scores developed by classical statistical methods [13]. Depending on the situation
and the type of predictive problem, ML algorithms may have advantages over traditional
regression models.

There is often a lack of ML expertise among healthcare professionals that can make it
difficult to construct and train a successful model, deploy it in production, and integrate it
with the clinical workflow [65]. For healthcare professionals with limited ML knowledge,
automated machine learning (AutoML) platforms may prove a valuable tool that can
provide fast and reliable results [65]. AutoML, a developing field that seeks to automatically
select, compose, and parametrize ML models in order to achieve the best performance on a
given dataset, has emerged as a way to make ML techniques more comprehensible and user-
friendly to non-experts [58]. However, as automation tools always attempt to hide some
complexity from the end user, it should not be surprising that the default configurations of
AutoML systems will not be suitable for all applications and, therefore, judicious usage
goes hand in hand with a fundamental understanding of the underlying algorithms to
avoid reaching erroneous conclusions. Ideally, by extracting actionable information from
the data, selecting features, and summarizing the results, the involvement of data scientists
can be important, especially during data preprocessing [58], but also during evaluation,
and could also help with up-skilling medical professionals by making them increasingly
confident to couple their everyday practice with ML assisted decision support.
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Despite satisfactory results achieved by most studies using ML methods for the predic-
tion of AMR, several issues exist that limit a wider ML adoption in clinical practice. Firstly,
the lack of high-quality data is a prerequisite for successful machine learning modeling
with accurate results. Data are usually obtained from electronic health records which
are frequently unreliable due to entry errors, duplicate records, or missing observations;
additionally, the cost of collecting, storing, curating, and analyzing data has to be taken into
account for investing in departmental, institutional or wider-area infrastructures [66]. The
second issue is the insufficient generalizability of many ML-based applications since they
are only capable of processing datasets drawn from the same distribution, and this poses
huge challenges for the AMR domain since any two hospitals are de facto different ecosys-
tems. Transfer learning and few-shot learning are, therefore, likely to become increasingly
relevant to future research in the field of AMR in order to make use of even limited data [15].
However, an additional real challenge stems from reality: the data in any given hospital
context might also reflect the singularities of the demographics of the human population
(for example, an industrial environment vs. an agricultural environment vs. an urban
one). For that reason, one has to also consider the extent to which ML models suffer from
biases (in the statistical sense) and whether such data flaws have to be tackled at the data
curation level (for example, by sampling techniques, which could address discrimination
concerns) or at the model level (by developing distinct models for different population
strata, which could address effectiveness concerns). Thus, because of underlying ethical
and medical issues, generalization of the findings of an interesting or promising experiment
to the deployment of tools or methods which will be acceptable at the (medical) practitioner
level, at the (hospital) administration level or at the (regulation) compliance level is a
complex problem.

Data volume and quality are substantial determinants of machine learning perfor-
mance. In a recently published systematic review, increased risk of bias due to retrospec-
tive methodology, nonhomogeneous data processing, and lack of external validation are
suggested as potential reasons for the current limited clinical applicability of ML-based
predictive algorithms [13]. In order for ML models to be adopted into daily routine, they
must be externally validated on different datasets and have end-point outcomes evaluated
in real-world studies or randomized controlled trials (RCTs) [67]. Essentially, this confirms
that ML-based tools and methods for medical use do not exist in a vacuum and must
be designed with a clear view of the targeted audience (the medical practitioner or the
trained patient), respecting the well-established procedures that, to date, shape the way
other medical discoveries eventually find their way to the market through regulation (for
example, FDA has initiated the process of admitting ML-based solutions in a variety of
settings, but AMR prediction is not yet one of them [68]).

5. Conclusions

Recently, there has been increased research interest in various ML applications in
the field of antimicrobial resistance prediction with promising results. In this review, we
examined the existing literature on the topic of AMR prediction using ML algorithms and
their potential role in the antimicrobial stewardship practice through accurate prediction
of multidrug resistance patterns, a more personalized antibiotic prescription, and the
development of accessible clinical decision support systems.

It is undoubtedly true that in the future, AI will enhance our ability to support
healthcare decision-making, but humans must still interpret information according to the
unique circumstances of each patient. Clinical decision-making is complex and the utility of
ML-driven approaches in real-world settings has to be proved before they can be integrated
into the clinical workflow.
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