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Abstract: Streptococcus pneumoniae (S. pneumoniae) remains one of the most important pathogens
causing childhood infections. The spread of antibiotic-resistant bacteria is a leading cause of treatment
failure in children. The purpose of this investigation is to report the antibiotic and multidrug resistance
(MDR) of S. pneumoniae strains isolated from healthy children throughout the years 2020–2022.
Antimicrobial susceptibility testing of S. pneumoniae strains in selected antimicrobials was performed
using disk diffusion and E-test methods on bloodMueller–Hinton agar. The antimicrobials tested
included oxacillin, amoxicillin, ceftriaxone, norfloxacin, gentamicin, vancomycin, erythromycin,
clindamycin, pristinamycin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. A
total of 201 S. pneumoniae strains were isolated from the nasopharynx of healthy children in Marrakesh,
Morocco. The highest rate of resistance of S. pneumoniae was found in penicillin (57.2%), followed by
tetracycline (20.9%), and erythromycin (17.9%). The rates of resistance to clindamycin, trimethoprim-
sulfamethoxazole, and chloramphenicol were 14.9%, 4%, and 1.5%, respectively. All isolates were
susceptible to norfloxacin, gentamicin, vancomycin, and pristinamycin. Approximately 17% of all
S. pneumoniae strains were resistant to at least three different antibiotic families. This study showed a
low rate of antibiotics resistance among nasopharyngeal S. pneumoniae strains, and it is thus essential
to monitor S. pneumoniae susceptibility in healthy children.
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1. Introduction

The human nasopharynx is the natural niche of Streptococcus pneumoniae [1]. S. pneu-
moniae is a Gram-positive bacterium responsible for a variety of invasive and non-invasive
diseases. In addition to this, it also constitutes a leading cause of morbidity and mortality,
especially among children younger than 5 years of age [2,3].Generally, children carrying
S. pneumoniae are mostly asymptomatic, but under some circumstances, they can develop
some serious infections, such as pneumonia, meningitis, bacteremia, otitis, and sepsis [4,5].

Antibiotics have solved the problem of treating different infectious diseases, but
the rapid rise in antibiotic resistance has affected their effectiveness in recent decades,
and even more so in recent years [6]. ßeta-lactams (ß-lactams) are first line antibiotics
prescribed for the treatment of S. pneumoniae diseases [7]. Macrolides, fluoroquinolones,
lincosamides, tetracyclines, and vancomycinare prescribed in cases of ß-lactams resistance
and for individuals reporting ß-lactam allergy [8,9].
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The spread of antibiotic resistance is actually known as a serious health issue. An
increase in morbidity and mortality rates was observed due to pneumococcal disease
caused by multidrug-resistant S. pneumoniae [10]. Excessive use and misuse of antibiotics
are two factors that promote the increase in resistance rate and the spread of MDR bacterial
isolates. S. pneumoniae is one of the Gram-positive-resistant bacteria responsible for a wide
variety of severe infections [11,12]. MDR strains of S. pneumoniae have been reported in
all parts of the world [13].Penicillin non-susceptible pneumococcus (PNSP) is one of the
most frequent profiles of resistance among S. pneumoniae isolates. Since the first report
in 1960s, PNSP strains have become common across the world [14]. In addition, PNSP
strains are mostly known to be associated with other antimicrobial agents (e.g., macrolides,
lincosamides, tetracyclines).

To the best of our knowledge, there are little data concerning S. pneumoniae antibiotic
non-susceptibility in carriage after the introduction of pneumococcal conjugate vaccine
10-valent (PCV10). In Morocco, PCV10 (1, 4, 5, 6B, 7F, 9V, 14, 19F, 18C, and 23F) was
introduced into the national immunization program (NIP) in July 2012 for all children.

In the present study, we aim to determine the antibiotic resistance and MDR profiles
of S. pneumoniae strains isolated from healthy children in Marrakesh, Morocco.

2. Results
2.1. Characteristics of Study Population

The general characteristics of the children population are presentedin Table 1. In
total, 645 nasopharyngeal swabs were collected from healthy children aged between 6 and
60 months. A higher proportion of females were recruited (54.7%; 350/645) with a sex
ratio of 1.19. The median age of the included children was 18 months (interquartile range
(IQR): 12.0–33.2). The portion of the recruited children who had received an antibiotic
treatment during the last three months was 31% (200/645). Nearly half of the included
children (49.8%; 321/645) were fully vaccinated by PCV10. S. pneumoniae colonization of
the nasopharynx was found in 239 (37.1%) of the 645 healthy children.

Table 1. Characteristics of study participants.

Characteristic of Children Study Population Children with Carriage
of S. pneumoniae

Total, n (%) 645 (100) 239 (37.1)

Gender
Male, n (%) 295 (45.7) 132 (44.7)

Female, n (%) 350 (54.7) 107 (30.6)

Age in months, median (IQR) 18 (21.5) 18 (23)

Antibiotic treatment ≤3 months, n (%) 200 (31) 57 (28.5)

Fully vaccinated, n (%) 321 (49.8) 112 (34.9)
n = total number; %: percentage; IQR: interquartile range.

2.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility of 201 S. pneumoniae was tested against eleven antibi-
otics (twenty-eight S. pneumoniae strains were non-viable after conservation at −80 ◦C). The
overall resistance rate to different antibiotics was as follows: 57.2% (115/201) to oxacillin;
20.9% (42/201) to tetracycline; 17.9% (36/201) to erythromycin; 14.9% (30/201) to clin-
damycin; 11% (22/201) to pristinamycin; 4% (8/201) to trimethoprim-sulfamethoxazole;
and 1.5% (3/201) to chloramphenicol. All isolates were susceptible to norfloxacin, gentam-
icin, and vancomycin. More details regarding the non-susceptibility rates of the S. pneumo-
niae isolates are listed in Table 2.



Antibiotics 2023, 12, 442 3 of 12

Table 2. Antimicrobial susceptibility of S. pneumoniae strains isolated from the healthy children’s
nasopharynx in Marrakesh, Morocco.

Type of ATB Disk Content Breakpoints
EUCAST

Total Number of
the Isolates S (N) S (%) R (N) R (%)

OXA 1 µg ≤20–>20 mm 201 86 42.8 115 57.2

AMX - MIC ≤ 1–2 mg/L 115 90 78.6 24 21.4

CFR - MIC ≤ 0.5–2 mg/L 115 99 85.7 16 14.3

NOR 10 µg ≤10–>10 mm 201 201 100 - -

GEN 500 µg ≤17–>17 mm 201 201 100 - -

VAN 5 µg ≤16–>16 mm 201 201 100 - -

ERY 15 µg ≤22–>19 mm 201 165 82.1 36 17.9

CLN 2 µg ≤19–>19 mm 201 171 85.1 30 14.9

PTN 15 µg ≤19–>19 mm 201 179 89 22 11

TET 30 µg ≤25–>25 mm 201 159 79.1 42 20.9

CHL 30 µg ≤21–>21 mm 201 198 98.5 3 1.5

SXT 1.25/23.75 µg ≤13–>10 mm 201 193 96 8 4

ATB: antibiotic; N: total number; S: susceptible; R: resistant (intermediate + resistant); %: percentage; OXA:
oxacillin; AMX: amoxicillin; CFR: ceftriaxone; NOR: norfloxacin; GEN: gentamicin; VAN: vancomycin; ERY: ery-
thromycin; CLN: clindamycin; PTN: pristinamycin; TET: tetracycline; CHL: chloramphenicol; SXT: trimethoprim-
sulfamethoxazole.

Concerning the oxacillin-positive isolates, the rate of resistance to amoxicillin (oral
administration, MIC>1) was 21.4%. Among amoxicillin-resistant strains, 14.3% were highly
resistant, with MIC values in the range ≤3–8 mg/L. However, the rate of ceftriaxone
intermediate resistance was 14.3%. None of the oxacillin-positive isolates were resistant to
ceftriaxone (indications other than meningitis, MIC >2 mg/L). The macrolides-resistant
phenotypes are presented in Table 3. The MLSB phenotype (co-resistance to erythromycin
and clindamycin) was reported in 22/201 (10.9%) of the S. pneumoniae strains, while 13/34
(38.2%) were MLSB constitutive (negative D-test) and 9/34 (26.4%) were MLSB inducible
(positive D-test). The M phenotype (resistance only to erythromycin) was reported in
12/201 (6%) of the strains.

Table 3. Macrolides-resistant phenotypes of S. pneumoniae strains isolated from the healthy children’s
nasopharynx in Marrakesh, Morocco.

Erythromycin-Resistant Strains (N=34)

N %

Clindamycin-resistant strains 22 64.7

D-test positive 9 26.4
D-test negative 13 38.2

Clindamycin-susceptible strains 12 35.9

Pristinamycin-resistant strains 22 64.7

Pristinamycin-susceptible strains 12 35.9

2.3. Multidrug Resistance among S. pneumoniae Isolates

The antibiotic resistance profiles of the S. pneumoniae isolates are presented in Table 4.
Oxacillin, amoxicillin, and ceftriaxone were classified as ß-lactams. In contrast, ery-
thromycin, clindamycin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole
were classified as macrolides, lincosamides, tetracyclines, phenicols, and a folate pathway
inhibitor, respectively.
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Table 4. Antibiotic resistance profile of S. pneumoniae strains isolated from the healthy children’s
nasopharynx in Marrakesh, Morocco.

Profile of Resistance
S. pneumoniae Isolates

N %

Coresistance

ß-lactams, Macrolides 3 1.5

ß-lactams, Lincosamides 2 1

ß-lactams, Tetracyclines 6 3

Macrolides, Tetracyclines 2 1

ß-lactams, Folate pathway inhibitor 1 0.5

Multiresistance

ß-lactams, Macrolides, Tetracyclines 5 2.5

ß-lactams, Macrolides, Lincosamides 1 0.5

Macrolides, Lincosamides, Tetracyclines 1 0.5

ß-lactams, Tetracyclines, Folate pathway inhibitor 2 1

ß-lactams, Macrolides, Lincosamides, Tetracyclines 3 1.5

ß-lactams, Macrolides, Lincosamides, Streptogamines 3 1.5

ß-lactams, Macrolides, Lincosamides, Streptogamines,
Tetracyclines 17 8.5

Macrolides, Lincosamides, Streptogamines, Phenicols 1 0.5

ß-lactams, Macrolides, Lincosamides, Streptogamines,
Phenicols 1 0.5

N: total number; %: percentage.

MDR was defined as resistant to at least two different families of antimicrobials.
The rate of MDR was 17% (34/201). The most common MDR profile was ß-lactams,
macrolides, lincosamides, streptogramins, and tetracyclines (8.5%; 17/34). MDR among
oxacillin-positive strains were mostly associated with non-susceptibility to macrolides
(25.9% compared to3.4% of oxacillin negative S. pneumonia strains).

2.4. Resistance Profiles of Oxacillin-Positive Strains to Antibiotics

Statistical analyses showed that the rates of non-susceptibility of oxacillin-positive
isolates, compared to other antibiotics, were higher than those observed in susceptible
strains. In fact, a statistical difference in non-susceptibility to erythromycin, clindamycin,
pristinamycin, and trimethoprim-sulfamethoxazole was found between oxacillin-negative
and oxacillin-positive strains (p < 0.05). The non-susceptibility rates of oxacillin-positive
and oxacillin-negative strains to different antibiotics tested are reported in Table 5.

Table 5. Non-susceptibility rates of oxacillin-positive and oxacillin-negative strains to other antibiotics.

Oxacillin-Positive Oxacillin-Negative X2 p-Value

ERY 31 (86.1%) 5 (13.9%) 15.213 <0.001

CLN 26 (86.7%) 4 (13.3%) 12.706 <0.001

PTN 19 (95.4%) 3 (4.6%) 8.723 <0.05

TET 32 (76.2%) 10 (23.8%) 8.022 <0.05

CHL 2 (66.6%) 1 (33.4%) 0.118 0.732

SXT 57 (75%) 19 (25%) 1.109 <0.05

2.5. Serotype Distribution

A total of 24 distinct serogroups/types were found among 131 S. pneumoniae iso-
lates. Serotypes 14 (n =25; 19.1%), 3 (n =7; 5.3%), 15A/15F (n =7; 5.3%), 9A (n =6; 4.6%),
11F/11B/11C (n =6; 4.6%), and 23B (n =6; 4.6%) were commonly isolated, covering approxi-
matively 43.5% of all strains. A total of 18 strains were non-typeable as they showed no
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agglutination, but the PCR cpsA reaction was positive. Based on the serotypes contained
in the vaccines, the coverage rates of PCV10 and PCV13 were 25.2% (33/149) and 34.4%
(45/149), respectively. In addition, non-vaccine serotypes (NVS) constituted 65.6% (86/149).
The distribution of the serotypes is shown in Figure 1.
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Figure 1. Serotype distribution of S. pneumoniae strains isolated from the healthy children’s nasophar-
ynx in Marrakesh, Morocco.

Among the 131 S. pneumoniae isolates serotyped, 76 (58%) were oxacillin-positive.
Serotype 14 (26.3%) was the most common serotype that was oxacillin-positive. All S. pneu-
moniae strains detected as serotypes 1, 17A, 19F, and 23F were oxacillin-positive. In addition,
the rate of oxacillin-positive isolates among NVS was important (57.9%). More details
regarding the capsular serotypes associated with an oxacillin-positive profile are indicated
in Figure 2.
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Figure 2. Serotype distribution of S. pneumoniae strains according to oxacillin susceptibility.

In general, serotypes 1, 3, 9A, 10B/10C, 14, 15A/15F, 19F, 19B/19C, and 23B were
found to be resistant to at least one antimicrobial. In contrast, serotypes 6A, 6B, 9V, 18,
19A, and 23F were found to be susceptible to all antimicrobials. The highest resistance
rate to nearly all antimicrobials was observed in serotype 19F. More details regarding the
distribution of S. pneumoniae serotypes according to antimicrobials resistance are presented
in Table 6.
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Table 6. Distribution of S. pneumoniae serotypes according to antimicrobial resistance.

Capsular Serotypes Total (N)
Antimicrobials

Erythromycin Lincomycin Tetracycline Chloramphenicol SXT

PCV10

1 1 1 100% 0 0% 0 0% 0 0% 0 0%

6B 2 0 0% 0 0% 0 0% 0 0% 0 0%

9V 1 0 0% 0 0% 0 0% 0 0% 0 0%

14 25 1 4% 1 4% 4 16% 0 0% 3 12%

18 2 0 0% 0 0% 0 0% 0 0% 0 0%

19F 1 1 100% 1 100% 1 100% 0 0% 0 0%

23F 1 0 0% 0 0% 0 0% 0 0% 0 0%

PCV13

3 7 3 43% 1 14% 3 43% 0 0% 0 0%

6A 4 0 0% 0 0% 0 0% 0 0% 0 0%

19A 1 0 0% 0 0% 0 0% 0 0% 0 0%

Non-PCV

6D 2 0 0% 0 0% 0 0% 0 0% 0 0%

8 2 0 0% 0 0% 0 0% 0 0% 0 0%

9A 6 1 17% 0 0% 1 17% 0 0% 0 0%

10B/10C 3 2 67% 0 0% 2 67% 0 0% 0 0%

10F 1 0 0% 0 0% 0 0% 0 0% 0 0%

11A 2 0 0% 0 0% 0 0% 0 0% 0 0%

11F/11B/11C 6 0 0% 0 0% 0 0% 0 0% 0 0%

12 1 0 0% 0 0% 0 0% 0 0% 0 0%

15A/15F 7 1 14% 0 0% 1 14% 0 0% 0 0%

15B/15C 4 0 0% 0 0% 0 0% 0 0% 0 0%

17A 1 0 0% 0 0% 0 0% 0 0% 0 0%

17F 3 0 0% 0 0% 0 0% 0 0% 0 0%

19B/19C 4 0 0% 1 25% 0 0% 0 0% 2 50%

23B 6 1 17% 0 0% 1 17% 0 0% 0 0%

SNV 38 4 11% 2 5% 7 18% 0 0% 0 0%

NT 18 5 28% 6 33% 2 11% 2 11% 2 11%

3. Discussion

The study describes the resistance rate of S. pneumoniae strains isolated from healthy
children in Marrakesh, Morocco. In our country, as in the majority of regional countries,
antibiotics are easily obtained without prescription from pharmacies. Incorrect use of antibi-
otics can potentially promote rates of MDR in children and make treatment of S. pneumoniae
infections more difficult.

An oxacillin disk (1ug) is usually used to determine S. pneumoniae isolates with de-
creased susceptibility to penicillin (PNSP) [15]. The rate of oxacillin-positive S. pneumoniae
strains isolated from healthy children was 57.2%. This rate was comparable to the rate of
PNSP found in Indonesia (40%) [16] and Belgium (17.7%) [17]. In contrast, it was lower
than that found in Brazil (71.4%) [18]. In addition, our results showed that oxacillin-positive
strains were associated with resistance to amoxicillin and ceftriaxone, in concordance with
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the findings reported in France by C. Plainvert et al. [19]. PNSP screening in carriage is of
particular interest because of the rapid spread of PNSP strains worldwide [20]. Furthermore,
penicillin, and cephalosporins are the preferred treatment for pneumococcal diseases.

Erythromycin belongs to the macrolides class of drugs and is classified as an alternative
to penicillin for the treatment of pneumococcal diseases [21]. The main mechanism of
resistance to macrolides in S. pneumoniae is due to ribosomal methylation, mediated by
erm(B) [22] or efflux pumps by mef(E)/mel(msr(D)) [23]. Erythromycin resistance has been
recorded as the most prevalent form of antibiotic resistance around the world in recent
years [22]. In this study, 17.9% of S. pneumoniae were non-susceptible to erythromycin. This
rate of resistance to erythromycin remained low compared to other studies conducted in
Thailand (18.4%), Cyprus (27.5%), Egypt (40%), and Indonesia (87%), where erythromycin
is probably frequently used as treatment [24–27].

On the other hand, the predominant MLSB-constitutive phenotype was observed in
38.2% of the strains tested, followed by the MLSB-inducible phenotype, which was detected
in 26.4% of pneumococcal strains. Only 6% of the strains exhibited the M phenotype. A
study conducted in North Lebanon showed that the MLSB-constitutive phenotype (68.9%)
was the most frequent phenotype in erythromycin-resistant pneumococci [28]. In line with
this, another study performed in Iran revealed that the MLSB-constitutive phenotype was
observed in 84% of the isolates [29].

Fluoroquinolones are the second alternative used for the treatment of respiratory
diseases. In our study, all pneumococcal isolates were fully susceptible to fluoroquinolones.
However, recent work examining S. pneumoniae isolates collected from different sites
in Jordan showed an interesting rate of fluoroquinolone non-susceptibility (83.8%) [30].
Similarly, other studies reported the spread of resistance to fluoroquinolones in the United
States and Korea [31,32]. This high rate of susceptibility in our study could be due to the
fact that the study included healthy young children (6 to 60 months).

MDR remains a growing global issue in both developed and developing countries.
The overuse of antimicrobial agents is a major contributor to the emergence of MDR
pneumococci. The increase in the rate of MDR S. pneumoniae strains could have several
impacts, such as higher medical costs, treatment failure [22], and increased mortality [11].
It is known that the nasopharyngeal carriage of S. pneumoniae in children increases the
risk of pneumococcal diseases and the spread of antimicrobial-resistant S. pneumoniae.
In this study, MDR was mostly detected among oxacillin-positive isolates compared to
oxacillin-negative isolates. The majority of oxacillin-positive isolates are typically resistant
to other class of antibiotics, such as macrolides and tetracyclines. In the present study, the
rate of MDR S. pneumoniae strains was 17%.This rate of MDR was lower than other rates
reported in published studies. MDR was found with rates of 31.6% in Thailand [26], 33.3%
in Ethiopia [33], 46.1% in China [34], and 80% in Vietnam [35].The rate of S. pneumoniae
resistant isolates has increased worldwide [11]. However, the antimicrobial susceptibility
testing carried out in this current study showed low levels of resistance, as previously
reported in a Moroccan study conducted among children with invasive diseases [36]. This
downward trend in resistance was observed for tetracycline, erythromycin, clindamycin,
trimethoprim-sulfamethoxazole, and chloramphenicol. This finding suggests that PCV10
reduces antibiotic resistance among children.

Furthermore, our study showed that non-vaccine serotypes were found to be frequent
in carriage. This result was in agreement with earlier studies in countries that have
introduced pneumococcal vaccinations [24,37,38]. 9A, 11F/11B/11C, 15A/15F, and 23B
were the most frequent non-vaccine serotypes detected in healthy children. In Cyprus,
the non-vaccine serotypes detected in a study that included 1105 healthy children, aged
between 6 and 36 months, were 15A, 6C, 23B, and 15B [39]. Among Bangladeshi children, 34,
15B, 17F, and 35B were the predominant non-vaccine serotypes, accounting for 43.6% [40].
The distribution of pneumococcal non-vaccine serotypes varies across studies due to many
factors, such as age, country, study period, and time of vaccine introduction.



Antibiotics 2023, 12, 442 8 of 12

Concerning the distribution of S. pneumoniae serotypes according to antimicrobial
resistance, serotype 14 was found to be the most common oxacillin-positive serotype,
consistent with results from a study conducted by Yahiaoui et al. [41]. Similarly, a study
conducted in Russia among children revealed that the highest PNSP rate was observed
among serotypes 14, 23F, 6B, 10A, and 19F [42]. In addition, it is important to note that
serotype 19A was less common in our study (one oxacillin-positive isolate susceptible to all
other antibiotics). However the emergence of serotype 19A with a high level of resistance
was reported in the PCV10 era in Brazil [43].

This study has limitations. We only included healthy children in Marrakesh, which
may affect the representativeness of the entire Moroccan child population. Therefore, a
national study from more public health centers is recommended.

4. Methods
4.1. Study Design and Population

This prospective study was conducted in public health centers in Marrakesh, Morocco.
Healthy asymptomatic children, aged less than five years old, visiting public health centers
for vaccinations were randomly selected. A healthy child was defined as a child presenting
with no fever, no signs of respiratory infections, and no antibiotic consumption during the
last seven days. A questionnaire containing demographic, socio-economic, and clinical
data was completed. The collection of nasopharyngeal specimens was performed using
a sterilized flocked nylon swab (COPAN swab collection, 482CE), placed in a medium
containing skim-milk tryptone glucose glycerol. One nasopharyngeal swab was collected
for each child. Swabs were sent to the Microbiology-Virology Laboratory of Faculty of
Medicine and Pharmacy in Marrakesh, Morocco. The study period spanned the years
2020–2022. Only children with a S. pneumoniae-positive culture were recruited in this study.

4.2. Ethical Permission

The Ethics Committee of the University Hospital Center of Mohammed VI in Mar-
rakesh, Morocco approved this study (Reference number 26/2022). Written informed
consent was obtained and signed by the parents or legal guardians of each child before
collecting nasopharyngeal specimens. The study was performed anonymously.

4.3. Identification of S. pneumoniae Isolates

Nasopharyngeal specimens were initially cultured on colistin nalidixic acid agar (Bio-
life, Milano, Italia), supplemented with 5% blood and incubated overnight at 37 ◦C in a 5%
CO2 atmosphere. S. pneumoniae isolates were identified based on typical colony morphol-
ogy (dark green colonies with depressed centers), alpha hemolysis, Gram-positive staining,
negative catalase reaction, optochin susceptibility, bile solubility, and an agglutination
test Slidexpneumo-Kit (Bio Mérieux, Craponne, France). S. pneumoniae colonies were then
transferred into brain heart infusion broth (Biokar, Allone, France), supplemented with
15% glycerol and kept at −80 ◦C until use.

4.4. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility was tested on Mueller–Hinton agar (Biokar, Allone,
France), supplemented with 5% sheep blood using the disk diffusion method (Kirby-
Bauer). ß-lactams resistance in S. pneumoniae was firstly determined using an oxacillin
disk (OXA; 1 µg), according to EUCAST (2022) recommendations. Instead, for strains with
an oxacillin zone diameter <20mm, minimum inhibitory concentrations (MICs) of amoxi-
cillin and ceftriaxone were tested.The MICs were checked using E-teststrips (Bio Mérieux,
Craponne, France), graduated from 0.016 to 256 mg/L.The S. pneumoniae isolates were
considered sensitive, intermediate, and resistant with the following reading: ≤1 mg/L,
1.5–2 mg/L, and >2 mg/L, respectively, for amoxicillin; and ≤0.5 mg/L, 0.75–2 mg/L,
and >2 mg/L, respectively, for ceftriaxone. Antimicrobial susceptibility was also tested
against norfloxacin (NOR; 10 µg), gentamicin (GEN; 500 µg), vancomycin (VAN; 5 µg), ery-
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thromycin (ERY; 15 µg), clindamycin (CLN; 2 µg), pristinamycin (PTN; 15 µg), tetracycline
(TET; 30 µg), chloramphenicol (CHL; 30 µg), and trimethoprim-sulfamethoxazole (SXT;
1.25/23.75 µg). In 5% CO2, plates were incubated for 18–24 h at 37 ◦C.

In case the S. pneumoniae strain was resistant to erythromycin, D-testing was per-
formed to detect the following phenotypes: MLSB-inducible phenotype; MLSB-constitutive
phenotype; and M phenotype. On Mueller–Hinton agar (Biokar, Allone, France) supple-
mented with 5% sheep blood, an erythromycin disk (15 µg) was placed 12 mm away from
a clindamycin disk (2 µg) and incubated overnight for 20–24 h. A positive D-test means a
flattened zone of the clindamycin disk was observed.

4.5. Capsular Typing

The detection of S. pneumoniae serogroups was performed using the IMMULEX PNEU-
MOTEST agglutination test (Staten Serum Institut, Copenhagen, Denmark). The serotyping
was performed usingreal-time polymerase chain reaction (RT-PCR) following the recom-
mendations published by the Centers for Disease Control and Prevention (CDC). Quellung
reaction was accomplished for serotyping serogroups 9, 6, and 23.

4.6. Statistical Analyses

Data were entered and analyzed using the SPSS/PC 23.0 program (SPSS Inc., Chicago,
IL, USA).Participant characteristics were expressed by counts and percentages, or median
and interquartile range. The χ2 test was done to compare the non-susceptibility of oxacillin-
positive and oxacillin-negative strains to other antibiotics. A p-value under 0.05 (p ≤0.05)
was considered statistically significant.

5. Conclusions

This study presents epidemiological data on the resistance of nasopharyngeal strains
of S. pneumoniae isolated from healthy children in Marrakesh, Morocco. Our results show
a low carriage of resistant MDR strains to antibiotics frequently used in the treatment of
pneumococcal infections and a decrease in the rate of PCV10 vaccine, alongside an increase
in non-vaccine serotypes after the widespread use of PCV10.Therefore, it is necessary to
act on the parameters that maintain this low rate of resistance, namely self-medication
of the population and the irrational use of antibiotics. For this, the establishment of an
appropriate law to control the non-regulatory sale of antibiotics without a prescription
from pharmacists is strongly recommended. The development of a permanent awareness
program for private practitioners, the prescription of antibiotics, and the implementation
of a hospital antibiotic stewardship program are also recommended. It is also necessary to
promote the role of the National Pneumococcal Observatory as a federator in the continuous
surveillance of antibiotic resistance to S. pneumoniae from carriage and clinical isolates.
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