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Abstract: Multidrug-resistant (MDR)/extensively drug-resistant (XDR) Pseudomonas aeruginosa is
emerging as a major threat related to adverse patient outcomes. The goal of this review is to describe
evidence-based empiric and targeted treatment regimens that can be exploited when dealing with sus-
pected or confirmed infections due to MDR/XDR P. aeruginosa. P. aeruginosa has inherent resistance to
many drug classes, the capacity to form biofilms, and most importantly, the ability to quickly acquire
resistance to ongoing treatments. Based on the presence of risk factors for MDR/XDR infections
and local epidemiology, where large proportions of strains are resistant to classic beta-lactams, the
recommended empirical treatment for suspected P. aeruginosa infections is based on ceftolozane-
tazobactam or ceftazidime-avibactam. Where local epidemiology indicates low rates of MDR/XDR
and there are no risk factors, a third or fourth generation cephalosporin can be used in the context of
a “carbapenem-sparing” strategy. Whenever feasible, antibiotic de-escalation is recommended after
antimicrobial susceptibility tests suggest that it is appropriate, and de-escalation is based on different
resistance mechanisms. Cefiderocol and imipenem-cilastatin-relebactam withstand most resistance
mechanisms and may remain active in cases with resistance to other new antibiotics. Confronting
the growing threat of MDR/XDR P. aeruginosa, treatment choices should be wise, sparing newer
antibiotics when dealing with a suspected/confirmed susceptible P. aeruginosa strain and choosing
the right option for MDR/XDR P. aeruginosa based on specific types and resistance mechanisms.

Keywords: Pseudomonas aeruginosa; resistance; treatment; multidrug-resistant bacteria; extensively
drug resistant

1. Introduction

Pseudomonas aeruginosa is a Gram-negative rod commonly associated with nosocomial
infections. In the 2017 global priority list of pathogens, the World Health Organization
(WHO) ranked Pseudomonas aeruginosa in the category of highest priority [1]. It is also part
of the ESKAPE pathogens, a set of six microorganisms (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobac-
ter spp.) with peculiar features in terms of increasing resistance patterns; indeed, ESKAPE
are not only growing in terms of the quantity of resistance, i.e., increasing incidence, but
also due to quality because of the development of new resistance mechanisms [2]. Pseu-
domonas aeruginosa was the fifth most common cause of hospital-acquired infections (HAI)
in a point prevalence study from 28 European countries in 2016–2017, with a prevalence of
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7.1%. In this study, HAI had an overall prevalence of 6.8%, of which 33.1% were attributed
to multidrug-resistant (MDR)/extensively drug-resistant (XDR) pathogens [3]. The preva-
lence of P. aeruginosa may be up to 23% in patients with intensive care unit (ICU)-acquired
infections [4] and the prevalence of resistant P. aeruginosa may reach 48.7% in the ICU [5]. As
reported by the U.S. Centers for Disease Control and Prevention (CDC), 32,600 hospitalized
patients were infected by MDR P. aeruginosa in 2017 [6].

MDR/XDR P. aeruginosa has become a major threat related to healthcare with negative
consequences in terms of increased mortality, morbidity, and healthcare costs [7–9]. The
treatment of these infections remains challenging and requires top skills in the context of
antimicrobial stewardship programs.

Accordingly, the goal of this review is to critically reappraise the most recent available
evidence in order to describe potential empiric and targeted treatment regimens that can
be used for P. aeruginosa infections that are suspected or confirmed to be MDR/XDR. We
also summarize de-escalation strategies based on antimicrobial susceptibility results and
the mechanisms of resistance.

2. Search Strategy and Design of the Review

The authors conducted an extensive literature review by utilizing the MEDLINE/Pubmed
and Cochrane library databases and searching for articles regarding P. aeruginosa epidemi-
ology, infection syndromes, resistance mechanism, diagnosis, treatment, both empirical
and targeted (definitive) regimes, and outcomes. In order to better put into context the data
on treatment choices, we also briefly recap the most important microbiological features
of Pseudomonas aeruginosa. The search terms included a combination of the word P. aerug-
inosa/MDR P. aeruginosa in addition to one of the following: “treatment”, “risk factors”,
“biofilm”, “new beta lactams”, ” antimicrobial susceptibility testing”, and “resistance mech-
anisms”. While we searched for studies regardless of their language, only studies reported
in English were included.

3. Pseudomonas aeruginosa Information Path: Walking in the Right Direction
3.1. Resistance Patterns and Infection Syndromes

As per Magiorakos’s definition, MDR Pseudomonas is defined as being not susceptible
to at least one antibiotic in at least three antibiotic classes to which it is usually susceptible,
while XDR Pseudomonas is defined when there is non-susceptibility to at least one antimi-
crobial agent in all but two or fewer antimicrobial classes [10]. In 2018, a new concept of
“difficult-to-treat resistance” (DTR) was introduced [11]. DTR is defined as P. aeruginosa
exhibiting non-susceptibility to all of the following: ceftazidime, cefepime, piperacillin-
tazobactam, imipenem-cilastatin, meropenem, ciprofloxacin, levofloxacin, and aztreonam.
According to data published by the European Centre for Disease Prevention and Control
(ECDC) in 2020, 30.1% were resistant to at least one antibiotic among carbapenems, fluo-
roquinolones, ceftazidime, piperacillin-tazobactam, and aminoglycosides, whereas 17.3%
were resistant to two or more antibiotics [12].

As observed, 9.4% of the isolates from 29 European countries were resistant to amino-
glycosides, 15.5% were resistant to ceftazidime, 17.8% were resistant to carbapenems, 18.8%
were resistant to piperacillin-tazobactam, and 19.6% were resistant to fluoroquinolones [12]
(Figure 1). Countries with a higher prevalence of P. aeruginosa were also those with the
highest prevalence of Gram-negative resistance, probably due to shared risk factors.

Usually, the most common infections due to PA are respiratory tract infections, includ-
ing hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP), urinary
tract infections (UTI), bloodstream (BSI), and skin and soft tissue infections. The most
common types of P. aeruginosa infection are lower respiratory tract infections; it has a
prevalence of 10–20% in VAP, which is the second most common pathogen after S. aureus.
Mortality in VAP and bloodstream infections due to P. aeruginosa may be as high as 40% [13]
(Figure 2). P. aeruginosa is the most common cause of otitis externa and keratitis and is also
a common pathogen in diabetic foot infections and endocarditis [14–16].
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3.2. P. aeruginosa Diagnosis
3.2.1. Planktonic form: Bacterial Identification and Antibiotic Susceptibility Testing

Samples presumptively positive for P. aeruginosa are grown and developed on a routine
basis from a MacConkey medium; if they exhibit lactose non-fermenting, pale colonies
and are oxidase-positive, they can be considered suspects for P. aeruginosa. Suspected
colonies can be rapidly identified using matrix-assisted laser desorption/ionization time
of flight (MALDI-TOF). Antimicrobial susceptibility tests (ASTs) can be performed using
disk diffusion (Kirby–Bauer) and broth microdilution (BMD) according to current guide-
lines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) or
Clinical and Laboratory Standards Institute (CLSI) [17,18]. Moreover, AST can be per-



Antibiotics 2023, 12, 399 4 of 19

formed using automated systems, such as Vitek 2, or gradient tests, including E-tests.
Typical antibiotics tested are grouped into different categories: β-lactams (ceftazidime,
cefepime, piperacillin-tazobactam, and aztreonam); fluoroquinolones (levofloxacin and
ciprofloxacin); aminoglycosides (amikacin, gentamicin, and tobramycin); carbapenems
(imipenem-cilastatin, meropenem, and doripenem); and colistin [19]. Resistance should be
defined as when an isolate is resistant to an antibiotic to which it was previously susceptible.
The strains with intermediate susceptibility to antimicrobial agents are now considered
susceptible if an elevated exposure to the antibiotic can be attained. Based on the AST re-
sults, P. aeruginosa should be classified into carbapenem-resistant, fluoroquinolone-resistant,
aminoglycoside-resistant, cephalosporin-resistant, and piperacillin/tazobactam-resistant,
using the most current standard definitions, or phenotypes (Table 1) [20].

Table 1. Pseudomonas aeruginosa resistance based of antibiotic classes.

Individual Antimicrobials Tested against P. aeruginosa
Phenotype Resistant to at least 1 of the below compounds

Carbapenem-
resistant Imipenem-cilastatin Meropenem Doripenem

Cephalosporin-
resistant Ceftazidime Cefepime

Fluoroquinolone-
resistant Ciprofloxacin Levofloxacin

Aminoglycoside-
resistant Amikacin Gentamycin Tobramycin

Ureido
penicillin-resistant Piperacillin Piperacillin-

Tazobactam

Regarding new antibiotics, a study on 200 P. aeruginosa isolates assessed the efficacy
of the Vitek-2 automatic system, disk diffusion, and gradient tests in detecting antibi-
otic resistance in comparison to the gold standard BMD, and the study showed that
ceftazidime/avibactam disk diffusion and gradient tests had a good performance, whereas
ceftolozane-tazobactam gradient tests performed better compared to disk diffusion and
Vitek-2 [21]. For meropenem-vaborbactam, both Etest and Vitek-2 proved to be accu-
rate [22,23]. BMD remains the gold standard for Cefiderocol as gradient strips are discour-
aged and many cefiderocol-resistant isolates may fail the diagnosis with disc diffusion [24].
Moreover, AST for colistin, a classic antibiotic used to treat Pseudomonas spp. infections,
is usually carried out with BMD due to the low accuracy of automated systems and poor
diffusion in disk and gradient tests, which underestimate the MIC of colistin, thereby
overestimating colistin activity [25,26].

In 2019, a new concept of “intermediate susceptibility” was introduced as being
susceptible with increased drug exposure. This means that with the optimization of
PK/PD parameters, increased doses, or the optimized mode of antibiotic administration, a
microorganism could be considered susceptible to that antibiotic despite the MIC ranging
between S and R breakpoints according to EUCAST criteria [27].

Recently, EUCAST has defined new breakpoints for susceptibility according to MIC
for P. aeruginosa. Most antibiotic classes have an arbitrary breakpoint <= 0.001 mg/L (which
is generally lower than the actual MIC of most agents) classifying all these antibiotics
as susceptible with increased exposure. In Table 2, we list antipseudomonal antibiotics
and current MIC breakpoints according to EUCAST 2023 compared to 2019 EUCAST
criteria when the new definition was introduced [28]. The antibiotic classes affected
by this change are mostly beta lactams, including ceftazidime, cefepime, piperacillin-
tazobactam, aztreonam, imipenem-cilastatin, and fluoroquinolones such as ciprofloxacin
and levofloxacin. They are now mostly “susceptible with increased exposure” since their
actual MIC in clinical practice is always higher than the susceptibility breakpoint.
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Table 2. Antipseudomonal agents and the dynamics of their MIC breakpoint change.

Traditional Antibiotics
EUCAST

2019 *
EUCAST
2023 ** New Antibiotics

EUCAST
2019 *

EUCAST
2023 **

MIC Breakpoints MIC Breakpoints
S≤ R> S≤ R> S≤ R> S≤ R>

Beta Lactams
Cephalosporin

Ceftazidime 8 8 0.001 8 Ceftazidime-Avibactam 8 8 8 8
Cefepime 8 8 0.001 8 Ceftolozane-Tazobactam 4 4 4 4

Cefiderocol 2 2
Ureidopenicillin

Piperacillin/tazobactam 16 16 0.001 16
Carbapenem

Imipenem-cilastatin 4 4 0.001 4 Imipenem-Cilastatin-Relebactam
Meropenem 2 8 2 2/8 Meropenem-Vaborbactam 8 8 8 8

Doripenem 0.001 2

Monobactam
Aztreonam 16 16 0.001 16 Aztreonam-Avibactam

Other antibiotics
Polymixin

Colistin 2 2 4 4
Fluoroquinolones

Ciprofloxacin 0.5 0.5 0.001 0.5

Levofloxacin 1 1 0.001 2
Aminoglycosides

Gentamycin 4 4 IE IE Plazomicin
Amikacin 8 16 16 16

Tobramycin 4 4 2 2
Fosfomycin

Abbreviations: EUCAST, European Committee on Antimicrobial Susceptibility Testing; IE, insufficient evidence; S,
susceptible; R, resistant. * EUCAST breakpoint when the new intermediate definition was introduced. ** Current
EUCAST breakpoints.

Further tests such as molecular and PCR-based methods can be applied in diagnoses to
obtain early results, including the identification of the implied pathogens, or to investigate
the resistance profiles of specific isolates; this method can be used to detect the presence
of specific resistance enzymes such as Ambler class C beta-lactamases (AmpC), Klebsiella
pneumoniae carbapenemase (KPC), New Delhi Metallo-ß-lactamase (NDM), Verona Integron-
encoded Metallo-β-lactamase (VIM), imipenemases (IMP), Guiana extended-spectrum
β-lactamase (GES), or oxacillinases (OXAs).

3.2.2. Sessile form: Biofilm Detection

All mentioned methods use the planktonic (free-living) form of P. aeruginosa bacteria.
Biofilm-forming bacteria have in contrast different resistance characteristics compared to
their planktonic counterpart in terms of different architectures of bacterial cooperation,
gene expression, and biochemical activity [29]. Biofilm is a never-ending cycle composed
of more than one type of bacteria/microbe organized in sessile forms covered by a matrix
of extracellular polymeric substances (EPS) [30]. As observed, 90% of the P. aeruginosa
biofilm is composed of a matrix of polysaccharides, extracellular DNA (eDNA), proteins,
and lipids, making an efficient barrier to antibiotic entry [31–33]. Biofilm is known as “the
city of microbes” [34], with the matrix being the “house of the biofilm cells” [35]. When
bacteria switch to biofilm growth types, sessile forms may undergo major phenotypic
changes [36–38], with an increase in the gene expression of efflux pumps, cell wall compo-
nents, and peptidoglycan synthesis [39,40]. In fact, it was shown that the MIC of different
antibiotics within biofilms may increase by 10–1000-fold [41].

Biofilm production is also implicated in multidrug-resistant P. aeruginosa (MDR-PA).
A study showed that cephalosporins and carbapenems and biofilm-producing P. aerugi-
nosa exhibited a 50% susceptibility rate compared to the non-biofilm-producing strains
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showing a 100% and 81.8% sensitivity, respectively [42]. Biofilm was shown to affect
antimicrobial resistance also in other types of bacteria [43,44]. Various methods can be
used to detect biofilm formation in P. aeruginosa, with some having a better performance
than others [45,46]. Some tests are time-consuming, and omic tools may require qualified
technical expertise [47]. However, from tube adherent to microtiter assays, MALDI-TOF
and omic analyses are not part of standardized protocols [47,48]. Moreover, currently, the
implementation of standardized breakpoint values to assess the MIC of different antibiotics
within biofilms remains an unmet need [47].

3.3. Risk Factors for P. aeruginosa/Resistant P. aeruginosa Infection

Risk factors for P. aeruginosa infections are burns, open wounds, and post-surgery
status for soft tissue infections; urinary catheter for urinary tract infections; immune
compromise for bloodstream infections; and old age, chronic obstructive pulmonary disease
(COPD), cystic fibrosis, and mechanical ventilation for respiratory infections [49].

For respiratory infections, factors associated with P. aeruginosa community-acquired
pneumonia (PA-CAP) were prior PA colonization/infection, prior tracheostomy, bronchiec-
tasis, severe COPD, and prior invasive respiratory or vasopressor support (IRVS), while
factors associated with MDR-PA CAP were tracheostomy, previous colonization/infection,
and IRVS [50]. The longer duration of hospitalization/ICU stay was associated with VAP
due to P. aeruginosa [51,52].

Regarding resistant isolates, various studies have tried to identify risk factors for MDR
P. aeruginosa acquisition. A systematic review of 28 articles evidenced that the development
of MDR isolates was associated with prior antibiotic use and prior hospitalization or ICU
stay [53]. Another systematic review of 22 studies in Asia-Pacific countries evidenced
previous exposure to antimicrobials, mechanical ventilation, and previous hospitalization
as risk factors for P. aeruginosa infections. Risk factors for MDR isolates included mechanical
ventilation, previous hospitalization, diabetes mellitus, surgery, prolonged hospital stay,
and higher Acute Physiology and Chronic Health Evaluation (APACHE) II score [54].

Other studies identified ICU stay, bedridden state, having high invasive devices scores,
being treated with broad-spectrum cephalosporins and with aminoglycosides, mechanical
ventilation, higher severity index score, previous hospitalizations, and co-morbidities (dia-
betes mellitus, renal failure, COPD, and cystic fibrosis) as significant risk factors for MDR
P. aeruginosa carriage [55–59]. Similar factors were seen also in other resistant Gram-negative
infections [60–62]. Moreover, the factors associated with the presence of P. aeruginosa infec-
tions are broadly similar to those associated with MDR-PA [49,50,63,64] probably due to
the nosocomial nature of most PA infection acquisitions [65].

3.4. Major Resistance Mechanisms

P. aeruginosa exerts its resistance by possessing inherent one-to-many drug classes [66,67],
the ability to quickly acquire resistance to ongoing treatments, and the capacity to form
biofilm [68]. The known mechanisms of PA resistance include intrinsic resistance: outer
membrane permeability, overexpression of efflux systems, and antibiotic-inactivating en-
zymes; acquired resistance: horizontal gene transfer and mutations to genes encoding for
efflux pumps, porins, penicillin-binding proteins, and enzymes; and adaptive resistance:
continuous antibiotic exposure and overexposure to environmental stress [69].

The mechanisms of action of classic antipseudomonal antibiotics are numerous: bac-
terial cell wall inhibition for beta-lactam agents such as ceftazidime/cefepime, piperacillin-
tazobactam, imipenem-cilastatin, meropenem, doripenem, and aztreonam; blockage of DNA
synthesis for fluoroquinolones; and protein synthesis inhibition for aminoglycosides [69]. The
major mechanisms of resistance of P. aeruginosa are described in Table 3 [66,68–73].
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Table 3. Major resistance mechanism of P. aeruginosa based on antibiotics classes.

Resistance Mechanisms
Antibiotic class Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4

Beta-lactams
chromosomal
AmpC hyper-

expression

OprM porin
mutation or loss

OXA-1 & -2
enzyme

production

MexXY efflux
pump

overexpression

Aminoglycosides altered
permeability

cytoplasm
expression of

aminoglycoside-
modifying

enzymes, such
as

aminoglycoside-
2”-O-

nucleotidyltransferase
ANT (ANT 2”Ia)

and
aminoglycoside

4′-O-
adenylyltransferase

(ANT 4′-IIb

overexpression
of MexXY efflux

pumps

Fluoroquinolones

gyrase (gyr A)—
topoisomerase

expression; (par
C) mutations

altered
permeability efflux systems

Carbapenems OprD porin loss
MexXY efflux

pump
expression

beta-lactamase
production

Multiple mechanisms of resistance often coexist and cooperate to confer P. aeruginosa
resistance to multiple antimicrobials, thus contributing to challenging treatment efforts [74].

3.5. Treatment
3.5.1. Empirical Treatment

Empirical treatment should be initiated as soon as cultures are collected, as early (and
appropriate) therapy is associated with a better prognosis [75] and mostly so in patients
with sepsis or septic shock.

Empirical treatment is usually based on the presence of risk factors and local epidemi-
ology for MDR-PA [76,77]. In patients hospitalized in settings where the local epidemiology
suggests an MDR-PA rate lower than 25% and without risk factors for MDR-PA, treat-
ment includes one antipseudomonal antibiotic, such as, in decreasing order of priority,
carbapenem; piperacillin-tazobactam; cefepime; ceftazidime in cases of BSI, VAP, and SSTI;
and all of the above as well as aminoglycosides or colistin in cases of complicated UTI [77].
In patients hospitalized in settings where the local epidemiology suggests an MDR-PA
rate higher than 25% and/or the presence of risk factors for MDR-PA/Gram-negative
pathogens or in critically ill patients, empirical treatment should include newer beta-
lactams ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam,
or a combination of classic antipseudomonal agents plus an aminoglycoside, colistin, or
fosfomycin [77] where new antibiotics are not available.

3.5.2. Combination Therapy or Monotherapy

Regarding combination therapy versus monotherapy, various studies did not demon-
strate the superiority of combination therapy compared to monotherapy as a definitive treat-
ment in terms of mortality, microbiological eradication, or resistance development [78–80].
In a study of 1119 patients with bacteremia due to PA, combination treatments did not
show lower mortality compared with monotherapy [80]. A systematic review of 69 stud-
ies comparing a combination of beta-lactams with aminoglycosides to monotherapy did



Antibiotics 2023, 12, 399 8 of 19

not show lower rates of resistance development with combination treatment, and in ad-
dition, adverse events such as nephrotoxicity were more common in the combination
group [78]. However, in patients with COPD exacerbation, combination therapies with
fluoroquinolones proved to be superior in terms of microbiological eradication and mortal-
ity [79]. Moreover, when studied in the context of initial empirical treatments, inadequate
empirical antibiotic therapy was shown to be associated with increased mortality, whilst
adequate combination therapies translated into decreased mortality [81]. Furthermore,
one study evidenced that targeted combination treatments with ciprofloxacin correlated
with lower rates of mortality compared to monotherapy [82]. The reason for choosing a
combination therapy lies in the increased chances that the isolate may be susceptible to
at least one of the chosen antibiotics. This applies mostly to classic beta-lactam agents.
Regarding new antibiotics, ceftolozane-tazobactam, ceftazidime-avibactam, or imipenem-
cilastatin-relebactam monotherapy is preferred over combination therapy [83]. One option
to exploit possible synergistic effects without adding excessive toxicity would be to limit
combination therapy, e.g., with an active aminoglycoside, to a short course (maximum 2 to
5 days), with early de-escalation applied to an active monotherapy. Indeed, it was shown
that the short course combination of aminoglycosides with beta lactams contributed to
synergistic bacterial killing phenomenon at 24 h and lower rates of resistance development
probably due to the different mechanisms of action. These antibiotics have no common
efflux pump resistance and the cell wall disruption caused by beta lactams may increase
the target concentration/penetration of aminoglycosides [84,85] However, this short course
combination did not show a reduction in mortality in BSI due to Gram-negative bacteria,
including P. aeruginosa [86].

In any case, high doses of drugs should always be used, particularly at the outset, and
schedules should be adapted to the molecule’s pharmacokinetic properties.

3.5.3. Definitive Treatment after AST Results

Once AST results are available, treatment should be individualized/simplified by
choosing the most effective antibiotic with the narrowest spectrum of activity. For MDR-PA,
a carbapenem or a new beta-lactam agent, where possible with a carbapenem-sparing
strategy, should be administered.

Here, we describe the possible scenarios of PA treatments starting from the wild-type
PA, which is susceptible to all antipseudomonal antibiotics, to DTR-Pseudomonas, which
is resistant to all classical antipseudomonal agents [87,88].

Wild-Type Pseudomonas aeruginosa

Despite being the most susceptible form of this microorganism, wild-type Pseudomonas
has intrinsic resistance to various antibiotics. Its common expression of an inducible AmpC
cephalosporinase, usually at low levels, plus efflux systems and low membrane permeabil-
ity confer the intrinsic resistance of PA to first and second generation cephalosporins, some
of the third generation cephalosporins (such as cefotaxime and ceftriaxone), and ertapenem.
Interestingly, rather than showing intrinsic resistance to an entire class of antibiotics, PA
often shows resistance to individual antibiotics within a given class. As such, the preferable
antibiotics in descending order of importance are ceftazidime as first choice (showing
the narrowest spectrum of activity compared to cefepime and piperacillin-tazobactam)
followed by cefepime and piperacillin-tazobactam. Fluoroquinolones are a valid option in
cases when oral treatment can be initiated in an outpatient setting, e.g., in skin and soft
tissue infections or in cases of patients that are discharged and need continuing treatment
at home after discharge. Carbapenems are the last option used in order to preserve them
from more difficult infections. [89,90]. Regarding fluoroquinolones, even though they are
the only anti-pseudomonal agents with an oral formulation, they also have important
adverse effects in inducing resistance, particularly efflux pump overexpression. Indeed,
this mechanism also confers resistance to other antibiotics that may have not been used
by that particular patient [91]. Specifically, efflux-system-based resistance is one of the
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most important resistance mechanisms of PA, involving a variety of antibiotics including
quinolones, aminoglycosides, and beta-lactams such that the use of a single agent may
trigger cross-resistance to other agents that are susceptible to that resistance mechanism [77].
As mentioned above, most published studies did not show a superior combination treat-
ment in cases of definitive treatments. However, a question mark remains regarding
empirical treatment, where combination treatment increases the chance of using at least
one active (and possibly effective) antibiotic. Therefore, in cases of definitive treatments,
other antibiotics such as aminoglycosides, colistin, or fosfomycin remain as alternatives
to backbone agents (i.e., for cases experiencing side effects of classic antipseudomonal
agents or with strains resistant to the latter). A more comprehensive discussion of this
point follows.

Specific Antibiotic Class, Possible Applications, and Resistance Scenarios

Aminoglycosides

Amikacin, gentamicin, and tobramycin are the aminoglycosides used for P. aeruginosa
infections. Regarding resistance, the most common mechanism is via antibiotic inactivation
by aminoglycoside-modifying enzymes, resulting in a reduction in the affinity of amino-
glycosides for ribosome subunit target 30S, thus blocking their activity [77]. Amikacin is
the aminoglycoside that is less susceptible to this mechanism [92]. However, these antibi-
otics should not be used as a monotherapy in infections outside the urinary tract [82,92].
Apart from i.v formulation, other forms have been shown to be effective, such as inhaled
tobramycin, which was shown to be effective in the acute exacerbation of cystic fibrosis [93].
Plazomicin, a novel aminoglycoside agent, does not overcome resistance mechanisms such
as altered membrane permeability and other aminoglycoside resistance mechanisms, and
its use is limited to P. aeruginosa urinary infections [94].

Polymixins

Colistin is a drug mostly used in MDR pathogen infections with activity also against
P. aeruginosa. It is not a novel antibiotic, however, and its use is problematic due to
its side effects, such as the increased risk of nephrotoxicity [95]. The combination of
intravenous and nebulized formulations was effective and safe in treating VAP due to
Gram-negative pathogens, including P. aeruginosa [96]. The additive effects of aerosol
administration may be due to its concentrations in the epithelial lining fluid (ELF), since
it was shown that the i.v. formulation does not reach an adequate concentration in ELF,
whereas the aerosol compound does [97]. The empirical use of colistin in Gram-negative
pathogens was not associated with higher chances of survival [98]; moreover, combination
treatment with meropenem for carbapenem-resistant Gram negatives was not superior to
monotherapy [99–101] or compared to synergizing with rifampicin [102].

Fosfomycin Disodium

Fosfomycin disodium is another old antibiotic with a unique mechanism of bactericidal
activity, exerted by the inactivation of enzymes important in bacterial cell wall synthe-
sis. Another unique characteristic of this antibiotic, compared to other anti-pseudomonal
agents, is the lack of cross-resistance between fosfomycin and other antibiotics, such as beta
lactams and aminoglycosides [103]. It is active against resistant isolates of P. aeruginosa due
to the low rates of use and non-shared resistance mechanism with other antibiotics [104].
However, caution should be exercised in treating with this drug due to the possibility of
the rapid development of antibiotic resistance during treatment after exposure. Fosfomycin
was shown to be effective in treating PA as a combination therapy with other antipseu-
domonal agents in cystic fibrosis patients [105] and also as a combination treatment with
carbapenems, exhibiting a synergistic effect with decreasing carbapenem MICs [106]. It was
shown to be effective in monotherapy for complicated urinary tract infections compared
to piperacillin-tazobactam where all patients with P. aeruginosa infection achieved clinical
cure [107].
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High MIC of Conventional Antipseudomonal Beta Lactams

Some PA isolates may be in vitro susceptible to beta-lactam agents but with an MIC
near the breakpoint for conventional beta-lactams. In this case, a treatment solution could
be the administration of a high-dose, extended infusion of classic beta lactams in order to
reach the exposure needed for the right pharmacokinetic and pharmacodynamic target
attainment. Such an effect can be achieved by the prolonged exposure of bacteria to a
concentration of antibiotics above the MIC, exploiting in this manner the time-dependent
effect of beta-lactam agents [108]. Bauer et al. evaluated 87 respiratory/bloodstream
infections treated with either the intermittent or extended infusion of cefepime and found
that the group given extended infusions had a lower mortality rate [109]. Moreover,
piperacillin-tazobactam-extended infusion exhibited lower mortality rates and a shorter
hospitalization length, translating into lower healthcare costs as well [110]. However, this
treatment strategy needs to be wisely chosen due to difficulties in implementation, such
as limiting patient mobility due to prolonged i.v. line infusion and protracted indwelling
access of intravenous lines leading to possible infective or thrombotic complications.

Resistance to Carbapenems with Maintained Susceptibility to Cephalosporins

This is a scenario mostly observed in cases with a low expression/limited produc-
tion of porins (especially OprD). In these cases, isolates are resistant to carbapenems
(meropenem and imipenem-cilastatin) due to porin channels being an important mecha-
nism in the bacterial entry for carbapenems. However, the isolate may maintain suscep-
tibility to cephalosporins. Therefore, two treatment options may be applicable: i) new
beta lactams (ceftolozane-tazobactam and ceftazidime-avibactam) and (ii) the high-dose
extended-infusion of classic “unprotected” cephalosporins. The decision is up to the treat-
ing clinician; however, IDSA recommends—after AST repetition and confirmation of the
results—starting treatments with conventional cephalosporins in order to preserve newer
antibiotics for future infections. In cases with a severe infection and in critically ill patients,
the use of new beta lactams could be a more reasonable option [89].

Beta Lactam Resistance

Most common resistance mechanisms found in P. aeruginosa include the production
of beta-lactamases, such as some ESBL but mostly the hyper-expression of AmpC, which
confers resistance to ceftazidime/cefepime, piperacillin-tazobactam, and aztreonam. In
this case, carbapenems remain active; thus, the treatment choice is between carbapenems
and newer beta lactams.

Carbapenem Resistance

The most common mechanism is the production of carbapenemases, particularly
class A KPC or GES and metallo-beta-lactamases such as VIM, IMP, SBL, and other less
common ones such as GIM, NDM, and FIM. VIM and IMP have a few variants implicated
in P. aeruginosa resistance, whereas only one type is identified for others [111]. Metallo-
beta-lactamases confer resistance to all antibiotics (including ceftolozane-tazobactam and
ceftazidime-avibactam) except aztreonam. In contrast, cefiderocol is not affected [112,113].
Usually, isolates with metallo-beta-lactamase production also express AmpC. The combina-
tion of aztreonam/avibactam is therefore a promising option in such resistance settings, as
aztreonam is not affected by the hydrolysis of metallo-beta-lactamases, while avibactam
inhibits most other co-expressed beta-lactamases, including AmpC [114].

Isolates producing KPC (not a very common resistance mechanism in P. aeruginosa) are
susceptible to cefiderocol and imipenem-cilastatin-relebactam. Another treatment option
for carbapenemase-producing strains could be the combination of aminoglycosides, colistin,
or fosfomycin with another antibiotic that is found active in vitro.

DTR Pseudomonas aeruginosa

Efflux systems and decreased membrane permeability are the mechanisms of resistance
that confer reduced susceptibility to a wide range of anti-pseudomonal antibiotics. Indeed,
efflux systems affect beta-lactams, carbapenems, fluoroquinolones, and aminoglycosides,



Antibiotics 2023, 12, 399 11 of 19

and decreased membrane permeability mostly affects beta-lactams, fluoroquinolones, and
aminoglycosides. Sometimes, different mechanisms cooperate in the same isolate—for
example, the modification of OprD mostly affects imipenem-cilastatin (and to a lesser extent
meropenem) but does not affect other beta-lactams. However, this mechanism is often
associated with other resistance mechanisms such as efflux systems, the hyperproduction
of AmpC enzymes, and the mutation of penicillin-binding proteins, making the isolate
resistant to most/all conventional anti-pseudomonal antibiotics [76]. In this case, the
needed therapeutic approach might be that of a DTR P. aeruginosa.

The concept of “difficult-to-treat resistant” (DTR) Pseudomonas aeruginosa, proposed
in 2018, is based on the not so rare instance of a strain resistant to all of the following an-
tibiotics: ceftazidime, cefepime, piperacillin-tazobactam, aztreonam, imipenem-cilastatin,
meropenem, ciprofloxacin, and levofloxacin. IDSA divides the therapeutic approach for
DTR-PA into two distinct scenarios: urinary tract infections and non-urinary tract infec-
tions. In urinary tract infections, recommended treatment choices are newer beta lactams
(ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-cilastatin-relebactam, and ce-
fiderocol) as the first choice, followed by a single dose of aminoglycosides as a second
choice; in complicated and non-complicated infections, the first and second choices are the
same, with complicated infections requiring the addition of colistin as an alternative ther-
apy. In infections outside of the urinary tract, the first choices are ceftazidime-avibactam,
ceftolozane-tazobactam, imipenem-cilastatin-relebactam, and as alternative therapy, cefide-
rocol [89]. Regarding newer beta lactams, there are no available clinical trial data comparing
the efficacy and safety of newer beta lactams with each other in/outside of urinary tract
infections. Therefore, IDSA does not recommend one new beta lactam over the other;
however, they recommend cefiderocol as an alternative treatment in infections outside of
the urinary tract due to lack of improvement in the outcome as observed in other new beta
lactams (despite performing as well as past backbone treatments for DTR-P. aeruginosa) [89].
Another important issue is whether it is rational to use new antibiotics in empirical therapy
(being selected for use in cases with local epidemiology positive for resistance to traditional
antipseudomonal agents/risk factor for MDR/XDR infections) or as a definitive treatment
(being chosen after AST results confirming resistance to other antibiotics and susceptibility
to the selected new beta lactam).

New Antibiotics

Ceftolozane-tazobactam, a beta-lactam/beta-lactamase inhibitor, is a relatively novel
antibiotic showing efficacy in treating Pseudomonas infections (urinary tract, intra-abdominal,
and pulmonary infections at double doses) (Aspect trials) [115–117]. It is less affected by
efflux systems and decreased membrane permeability [118]. It has a low affinity for hydrol-
ysis by AmpC, but it is affected by carbapenemases [119], and cases with in vivo resistance
have been reported with the main mechanism of action being hyper-expression or the
modification of intrinsic AmpC and horizontally acquired beta-lactamases [120]. Even
though cases with resistance to ceftolozane-tazobactam have been reported, P. aeruginosa
isolates are usually susceptible to this drug [121].

Ceftazidime-avibactam is a beta-lactam/non-beta-lactam beta-lactamase inhibitor that
is not active against metallo-beta-lactamases, and it is affected more by efflux systems
and porine changes compared to ceftolozane-tazobactam. Avibactam inhibits the beta-
lactamases of class A, KPC, AmpC, and OXA-48. Resistance to KPC was evidenced [108,119],
and avibactam is in vitro active also against GES enzymes [108]. The ERACE-PA global study
group showed susceptibility to ceftazidime-avibactam of 91% and 72% for carbapenem-
susceptible and carbapenem-resistant strains, respectively [121].

Meropenem-vaborbactam is a carbapenem/non-beta-lactam beta-lactamase inhibitor
combination showing activities similar to simple meropenem in P. aeruginosa infections, as
meropenem resistance in P. aeruginosa is mostly a result of mechanisms not impacted by
vaborbactam. Indeed, vaborbactam inhibits the beta-lactamases of class A and C, while the
resistance of P. aeruginosa to meropenem is mostly due to efflux systems, reduced membrane
permeability, and the beta-lactamases of class B or D [119].
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Imipenem-cilastatin-relebactam is another new carbapenem/non-beta-lactam beta-
lactamase inhibitor combination. It inhibits the beta lactamases of class A and C but is not
active against metallo-beta-lactamases [119]. It was shown to be active for isolates resistant
to ceftolozane-tazobactam and ceftazidime-avibactam, making it a valuable option as a
rescue therapy [108].

Cefiderocol is a novel siderophore cephalosporin that binds to penicillin-binding
proteins, thus preventing the synthesis of the bacterial cell wall. It exploits bacterial iron
transporters in order to enter the outer cell membrane. It is poorly affected by efflux
systems and porin channel modifications and remains stable against AmpC and metallo-
beta-lactamases [119]. Cefiderocol was found to be active against isolates that are resistant
to all other newer beta lactams, and it exhibited similar microbiological and clinical efficacy
compared to the best available therapy in treating infections due to carbapenem-resistant
Gram-negative bacteria (CREDIBLE-CR) [113,122,123].

A synoptic flow chart of empirical and targeted treatment for P. aeruginosa infections is
presented in Figure 3.
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Figure 3. Algorithm for the empirical and targeted treatment of P. aeruginosa infections. Abbreviations:
AmpC, Ambler class C beta-lactamase; VIM, Verona Integron-encoded Metallo-β-lactamase; IMP,
active on imipenem; KPC, Klebsiella pneumonia carbapenemase; GES, Guiana Extended-Spectrum
β-lactamase; UTI, urinary tract infections; DTR, difficult to treat resistance; CRO, ceftriaxone; CTX,
cefotaxime; ETP, ertapenem; CTZ, ceftazidime; FEP, cefepime; TZP, piperacillin-tazobactam; CPFX,
ciprofloxacin; LVX, levofloxacin; IMP, imipenem-cilastatin; MEM, meropenem; ATM, aztreonam;
C/T, ceftolozane-tazobactam; CZA, ceftazidime-avibactam; MVP, meropenem-vaborbactam, I-R,
imipenem-cilastatin-relebactam; FDC, Cefiderocol; AG, aminoglycosides; CST, colistin; FOF, fos-
fomycin; OprD, outer membrane porin D; 3, susceptible; 5, resistant.
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4. Conclusions

MDR/XDR P. aeruginosa is emerging as a major threat related to adverse healthcare
consequences. The importance of infection prevention takes on a particular value because
it can rapidly develop resistance even to the newest drugs. Moreover, treatment choices
should be cautious, sparing newer antibiotics when dealing with a suspected/confirmed
sensitive P. aeruginosa and choosing the right option for MDR/XDR cases based on spe-
cific types and resistance mechanisms. The use of new antibiotics should be rational,
both empirically (being selected for use in cases with local epidemiology positive for re-
sistance to traditional antipseudomonal agents/risk factor for MDR/XDR infections) or
as definitive treatments (being chosen after AST results confirming resistance to other
antibiotics and susceptibility to the selected new beta lactam). Regarding resistance mecha-
nisms, ceftolozane-tazobactam currently shows less vulnerability to common resistance
mechanisms, such as efflux systems and reduced membrane permeability, compared to
ceftazidime-avibactam. Imipenem-cilastatin-relebactam and cefiderocol are also unaffected
by such mechanisms, and studies evidenced that isolates resistant to ceftazidime-avibactam
and ceftolozane-tazobactam may remain susceptible to imipenem-cilastatin-relebactam or
cefiderocol. Therefore, it is advisable to preserve the use of these two antibiotics in order to
exploit them in cases of absolute need.
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