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Abstract: The treatment of bacterial infections has been troubled by the increased resistance to
antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demon-
strated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying
activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimi-
crobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules
with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl
alcohol had a minimum inhibitory concentration (MIC) of 256 µg/mL and a minimum bacterici-
dal concentration (MBC) of 512 µg/mL. Hydrocinnamic acid had a MIC of 2048 µg/mL and an
MBC > 2048 µg/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects
for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid,
and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis
showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations
of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low
concentrations of antibiotics (up to 2 µg/mL of chloramphenicol with perillyl alcohol; 0.5 µg/mL of
chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial ther-
apies for microbial growth control, where phytochemicals can play an important role as potentiators
or resistance-modifying agents.

Keywords: antibiotic recalcitrance; plant-based natural product; perillyl alcohol; hydrocinnamic acid;
combinatorial therapy; phytochemical-antibiotic interaction

1. Introduction

Antibiotics are becoming ineffective mainly due to their extensive and inappropriate
use, which results in an increased ability of pathogenic microorganisms to survive these
antimicrobial agents [1–3]. This is attributed to diverse aspects, particularly the excessive
and often inappropriate use of antibiotics in human or veterinary medicine that contributes
to the spread of antibiotic resistance; the poor hygiene conditions in some parts of the
planet; the continuous flow of travelers, the increase in the number of immunosuppressed
patients; and the delay in diagnosis of bacterial infections [4,5].

According to the global priority list of pathogens published by the World Health
Organization (WHO) [6], certain microorganisms are becoming particularly dangerous for
human health. This list divides microorganisms into three priority categories (critical, high,
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and medium), with Escherichia coli being included in the critical priority category [6]. E. coli
is a human pathogen responsible for healthcare-associated infections, being one of the
most widespread species of Gram-negative bacteria [7,8]. In addition, this species is a good
example of microorganisms capable of forming biofilms, which generally complicate the
treatment of infections [9,10] and have an exacerbating effect on antibiotic resistance [11,12].

The WHO proposes diverse measures to prevent bacterial infections, including search-
ing for new molecules and developing novel antibiotics [6]. Non-nutritive secondary
metabolites from plants, known as phytochemicals, have already proved to be efficient in
combating antibiotic-resistant strains [13,14]. Such antimicrobial action has been reported
for numerous molecules from diverse classes of phytochemicals [14,15]. Another attrac-
tive use of active phytochemicals is their combination with antibiotics [16,17]. The use of
phytochemicals and plant extracts as resistance-modifying agents (RMAs) is considered an
important research topic due to their decreased risk of developing cross-resistance [16–18].
The advantages of combining conventional antibiotics with phytochemicals in the treatment
of resistant bacteria are mainly because the mechanisms are multi-target and the possi-
bility of interaction between products can modify or inhibit the mechanisms of bacterial
resistance [18,19]. In fact, phytochemicals may have to be applied in high concentrations
to achieve the intended antimicrobial effect. Therefore, this is the main reason to test
combinations between antibiotics and phytochemicals, to develop effective antibacterial
therapies without using high concentrations of a certain compound [14,20]. In that sense,
RMAs represent a promising strategy for mitigating the spread of bacterial resistance and
to contribute to the recycling of old antibiotics, which are generally cheaper and less toxic
than some of the recently launched antimicrobials [17–19].

This work aimed to study the antimicrobial activity of two phytochemicals, perillyl
alcohol and hydrocinnamic acid, as well as to assess their action in the potentiation of
chloramphenicol and amoxicillin against E. coli. Perillyl alcohol and hydrocinnamic acid
are chemically unrelated molecules, mostly studied for their antimicrobial action and re-
maining to be studied for their combinatorial effects with antibiotics [21,22]. Furthermore,
these molecules belong to classes of phytochemicals for which promising antimicrobial
activities have already been reported [23,24]. Perillyl alcohol is a monocyclic terpene de-
rived from mevalonate, produced by diverse plants [25]. This molecule has a cyclohexene
substituted by a hydroxymethyl group at C1 and a prop-1-en-2-yl group at C4 [26]. Al-
though the exact antimicrobial mechanism of action of perillyl alcohol is still unknown, it is
thought to involve cell membrane disruption [21,23]. Hydrocinnamic acid, also known as 3-
phenylpropionic acid, belongs to the class of phenylpropanoids and is produced by animals
and plants [27]. This phenolic compound has an aromatic ring, a tail with three carbons,
and presents a phenyl group at C3 [27,28]. The mechanism of action of hydrocinnamic acid
is related to cell membrane damage and inhibition of virulence factors [24,29–31]. Regard-
ing commercial antibiotics, chloramphenicol is an amphenicol presenting a broad-spectrum
bacteriostatic activity [32]. Chloramphenicol can bind to the bacterial 50S ribosomal subunit,
inhibiting protein synthesis [33]. On the other hand, amoxicillin is a β-lactam antibiotic
with a bactericidal broad-spectrum effect [34,35]. Briefly, amoxicillin inhibits cross-linkage
between the linear peptidoglycan polymer chains that constitute the bacterial cell wall
during the exponential growth phase [34,36,37]. These two antibiotics were chosen in order
to understand how phytochemicals can potentiate the action of antibiotics belonging to
different classes and with distinct mechanisms of action.

2. Results and Discussion
2.1. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

The determination of the minimum inhibitory concentration (MIC) and the minimum
bactericidal concentration (MBC) is commonly performed to assess the antimicrobial ac-
tivity of a molecule against planktonic bacteria [38–40]. In this study, the lowest MIC was
observed for the antibiotics (Table 1), where the MIC for chloramphenicol was 16 µg/mL, a
value within the range of these reported for the E. coli strains evaluated by Kidsley et al. [41].
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The MBC for chloramphenicol was 64 µg/mL, which was in the range of the values re-
ported by Seukep et al. [42] for several E. coli strains. In the case of amoxicillin, a MIC of
8 µg/mL for amoxicillin was obtained. Girlich et al. [43] reported a comparable MIC for
amoxicillin against the β-lactam-resistant E. coli DH10B (encoding the novel β-lactamase
TLA-2) [43–45]. The MBC for amoxicillin in this study was 8 µg/mL, which is the same
value determined by Kalita et al. [46] for amoxicillin against E. coli MTCC 40 (whose special
features consist of its genetic stock).

Table 1. MICs and MBCs. Values are the mean ± standard deviation for at least two indepen-
dent experiments.

Compound MIC (µg/mL) MBC (µg/mL)

Chloramphenicol 16 64
Amoxicillin 8 8

Perillyl alcohol 256 512
Hydrocinnamic acid 2048 >2048

Among the phytochemicals, perillyl alcohol had the lowest MIC (256 µg/mL) and
MBC (512 µg/mL). MIC and MBC of perillyl alcohol both five times higher were obtained
by Silva et al. [47] against E. coli ATCC 25922, proposing that the E. coli strain used in the
present study is more susceptible to perillyl alcohol than the one used by Silva et al. [47].
In addition, phytochemicals can be considered antimicrobial agents if they display a
MIC in the range of 100–1000 µg/mL [48–50]. Accordingly, perillyl alcohol has potential
clinical relevance as an antimicrobial agent. In the case of hydrocinnamic acid, a MIC
of 2048 µg/mL and an MBC > 2048 µg/mL were determined. No other studies were
found for this exact molecule (3-phenylpropionic acid) with information regarding the MIC
value. However, other hydroxycinnamic acids have already been characterized for their
antimicrobial activity, with MIC values between 100 µg/mL and 1500 µg/mL against E. coli
CECT 434 [51]. This suggests that 3-phenylpropionic acid may have weaker antimicrobial
activity than other hydrocinnamic acids. Diverse studies propose that many phenolic acids
may have strong antibacterial activity [52–56], an effect related to cell membrane damage
and inhibition of virulence factors [24,29–31].

The values of half maximal effective concentration (EC50) [57,58], were also determined
using the Combenefit software for chloramphenicol, amoxicillin, perillyl alcohol, and
hydrocinnamic acid (Table 2).

Table 2. EC50 for chloramphenicol, amoxicillin, perillyl alcohol, and hydrocinnamic acid.

Compound EC50 (µg/mL)

Chloramphenicol 1.57 ± 0.04
Amoxicillin 3.67 ± 0.28

Perillyl alcohol 96.9 ± 2.1
Hydrocinnamic acid 1208 ± 1

2.2. Checkerboard Assay

Phytochemicals have been modestly exploited for their ability to increase the suscepti-
bility of pathogens to several drugs and reduce the toxicity of the therapeutic approach
through the use of combinations of molecules [17,59–62]. The checkerboard assay is widely
used to evaluate two antimicrobial agents in combination, providing an excellent analysis
of bacterial growth inhibition. Furthermore, this method can also be adapted to allow the
study of combinations of a greater number of drugs. This is one of the most consolidated
methods for assessing combinatorial outcomes [63–68]. Here, six dual combinations: chlo-
ramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, amoxicillin/perillyl
alcohol, amoxicillin/hydrocinnamic acid, amoxicillin/metronidazole and perillyl alco-
hol/hydrocinnamic acid; and two triple combinations: chloramphenicol/perillyl alco-
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hol/hydrocinnamic acid and amoxicillin/perillyl alcohol/hydrocinnamic acid, were stud-
ied. The assessment of triple combinations of phytochemical/phytochemical/antibiotic
using the checkerboard assay was a novelty of this study. Table 3 shows the fractional
inhibitory concentration (FIC) index (FICI) and the classification of each combination,
considering the interpretation proposed by Stein et al. [69], with some modifications.

Table 3. FICI value and classification of dual and triple combinations. Values are the mean ± standard
deviation for at least two independent experiments.

Combination FICI Classification

Chloramphenicol/Perillyl alcohol 0.56 Synergism
Chloramphenicol/Hydrocinnamic acid 1.00 Additivity

Amoxicillin/Perillyl alcohol 1.50 Indifference
Amoxicillin/Hydrocinnamic acid 0.75 Synergism

Amoxicillin/Metronidazole 0.63 Synergism
Perillyl alcohol/Hydrocinnamic acid 1.50 Indifference

Chloramphenicol/Perillyl alcohol/Hydrocinnamic acid 1.75 Indifference
Amoxicillin/Perillyl alcohol/Hydrocinnamic acid 1.75 Indifference

Some studies reported the use of plant extracts to potentiate antibiotics against E. coli,
including chloramphenicol and amoxicillin [70–73]. Studies combining antibiotics and indi-
vidual phytochemicals are scarce. Santos et al. [74] provide evidence on how the interactions
between amoxicillin with carotenoids and flavonoids (i.e., lycopene, β-carotene, resveratrol,
and rutin) can help control infections by E. coli, with synergism being reported. The same
conclusions were presented by Rao et al. [75] for the combinations of chloramphenicol
with the essential oil from Geophila repens (L.) I.M. Johnst. Similarly, the present study
showed that these combinations may have high potential, as 50% of the dual combinations
between antibiotics and phytochemicals resulted in synergism. Moreover, combinations
of molecules with similar or the same mechanism of action are usually not particularly
effective since they can “muddle” each other even if their combination does not result
in antagonism [76]. Here, the combination perillyl alcohol/hydrocinnamic acid seems
to be affected by such an event as well as the combination amoxicillin/perillyl alcohol
and the triple combinations. In the case of triple combinations, the FICI resulted from the
sum of three individual FIC while for dual combinations it only resulted from the sum of
two FIC values. Consequently, for the same type and magnitude of interaction between
compounds, the FICI for triple combinations is expected to be higher than for dual combi-
nations. In general, the triple combinations were not particularly effective compared to the
dual combinations. Regarding the combination amoxicillin/metronidazole, it is known that
metronidazole is very often used as an adjuvant of amoxicillin, enhancing its effect against
periodontal infections [77–80]. In this study, the combination amoxicillin/metronidazole
was used as a positive control and resulted in a synergistic effect.

The results obtained for the checkerboard assay were also analyzed using the Comben-
efit software. Figures 1–3 present the synergism distribution (matrix synergism plot and
synergism mapped to D-R, based on the Bliss model) for dual combinations. The single-
agent dose response allows to evaluate how the effect of a given molecule varies with
the increase of its concentration, until a maximum action is reached [81–83]. The matrix
synergism plot shows the synergism scores for each combination: stars indicate the level
of significance and the number of replicates is reported in the top left corner (in this case,
three replicates were performed) [84]. The third-dimension graph (synergism mapped to
D-R) shows the percentage of synergism for different concentrations and combinations.
In these graphical outputs, blue represents the synergistic combinations, green is used
for indifference, and red, orange, and yellow indicate the combinations that resulted in
antagonism. Points that are above zero correspond to synergism and points that are below
zero correspond to antagonism. Likewise, the points located at the plane or zero synergism
percentage correspond to additivity or zero percentage synergism [84–86].
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Figure 1. Matrix synergism plot (top) and synergism mapped to D-R (bottom) for the combination
perillyl alcohol/hydrocinnamic acid. The number of stars indicates the level of statistical significance
for each score: (*) for a p-value less than 0.05, (**) for a p-value less than 0.01, and (***) for a p-value
less than 0.001. The data used are the mean ± standard deviation for three independent experiments.

Looking at the matrix synergism plot and the synergism mapped to D-R for perillyl
alcohol/hydrocinnamic acid (Figure 1), synergism was observed for concentrations of
perillyl alcohol between 8 µg/mL and 64 µg/mL and concentrations of hydrocinnamic acid
between 64 µg/mL and 1024 µg/mL. For a concentration of perillyl alcohol of 128 µg/mL
and concentrations of hydrocinnamic acid between 64 µg/mL and 512 µg/mL, there was
a zone of slight antagonism. For a concentration of perillyl alcohol of 256 µg/mL and
concentrations of hydrocinnamic acid between 64 µg/mL and 1024 µg/mL, there was a
transition zone between synergism and indifference. Indifference occurred for the highest
concentrations. The highest synergism score obtained was 31 for 8 µg/mL of perillyl
alcohol and 1024 µg/mL of hydrocinnamic acid, and the lowest was −14 for 128 µg/mL of
perillyl alcohol and 64 µg/mL of hydrocinnamic acid.

For the combination chloramphenicol/perillyl alcohol (Figure 2a), synergism was
verified for lower concentrations of chloramphenicol, up to 2 µg/mL, and for particularly
lower concentrations of perillyl alcohol. For a concentration of chloramphenicol of 4 µg/mL
and concentrations of perillyl alcohol up to 64 µg/mL, there was a slight antagonism zone.
For the higher concentrations, indifference occurred as growth inhibition was observed
for these concentrations. The highest synergism score obtained was 19 for 1 µg/mL of
chloramphenicol and 8 µg/mL of perillyl alcohol, and the lowest was −15 for 4 µg/mL of
chloramphenicol and 16 µg/mL of perillyl alcohol.
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drocinnamic acid. The number of stars indicates the level of statistical significance for each score: (*) for a p-value less than 0.05, (**) for a p-value less than 0.01, 
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col/hydrocinnamic acid. The number of stars indicates the level of statistical significance for each score: (*) for a p-value less than 0.05, (**) for a p-value less than
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acid; (c) amoxicillin/metronidazole. The number of stars indicates the level of statistical significance for each score: (*) for a p-value less than 0.05, (**) for a p-value 
less than 0.01, and (***) for a p-value less than 0.001. The data used are the mean ± standard deviation for three independent experiments. 
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When considering the combination chloramphenicol/hydrocinnamic acid (Figure 2b),
synergism was verified (although mild for concentrations of chloramphenicol above
0.5 µg/mL) for lower concentrations of chloramphenicol and concentrations of hydrocin-
namic acid between 64 µg/mL and 1024 µg/mL. For a concentration of chloramphenicol
of 2 µg/mL and 4 µg/mL and concentrations of hydrocinnamic acid between 128 µg/mL
and 512 µg/mL, there was a zone of transition between indifference and antagonism. The
highest synergism score obtained was 35 for 0.5 µg/mL of chloramphenicol and 512 µg/mL
of hydrocinnamic acid and the lowest was −11 for 4 µg/mL of chloramphenicol and
256 µg/mL of hydrocinnamic acid.

Regarding the combination amoxicillin/perillyl alcohol (Figure 3a), a zone of syner-
gism was verified for a concentration of amoxicillin up to 4 µg/mL and a concentration of
perillyl alcohol up to 32 µg/mL. For a concentration of amoxicillin of 2 µg/mL and concen-
trations of perillyl alcohol between 8 µg/mL and 32 µg/mL, a more intense synergism was
observed. For concentrations of amoxicillin up to 4 µg/mL and concentrations of perillyl
alcohol of 64 µg/mL and 128 µg/mL, there was a zone of transition between synergism
and indifference. Indifference was observed for the highest concentrations. The highest
synergism score was (46 ± 5) for 2 µg/mL of amoxicillin and 8 µg/mL of perillyl alcohol;
the lowest was 0.

In the case of amoxicillin/hydrocinnamic acid (Figure 3b), it was possible to verify a
zone of synergism for a concentration of amoxicillin up to 4 µg/mL and a concentration of
hydrocinnamic acid up to 1024 µg/mL. It should also be noted that a more intense syner-
gism zone was observed for a concentration of amoxicillin of 2 µg/mL and concentrations
of hydrocinnamic acid between 64 µg/mL and 1024 µg/mL. There was indifference for the
highest concentrations as growth inhibition was observed. The highest synergism score
obtained was 78 for 2 µg/mL of amoxicillin and 1024 µg/mL of hydrocinnamic acid; the
lowest was 0.

Finally, for the combination amoxicillin/metronidazole (Figure 3c), a concentration of
amoxicillin up to 2 µg/mL and a concentration of metronidazole of 32 µg/mL resulted in a
mild synergism zone. There was a strong antagonism zone for concentrations of amoxicillin
between 0.5 and 2 µg/mL and for metronidazole at 512 µg/mL. Indifference occurred for
the highest concentrations. The highest synergism score obtained was 19 for 0.25 µg/mL
of amoxicillin and 32 µg/mL of metronidazole, and the lowest was −45 for 1 µg/mL for
amoxicillin and 512 µg/mL for metronidazole.

Overall, after comparing the results obtained for all combinations tested in this study,
it was observed that the highest synergism score obtained was 78 for 2 µg/mL of amoxi-
cillin and 1024 µg/mL of hydrocinnamic acid, and the lowest synergism score was −45 for
1 µg/mL of amoxicillin and 512 µg/mL of metronidazole. In addition, it was possible to
find a tendency/pattern for the combinations of each antibiotic with perillyl alcohol and
hydrocinnamic acid. Not considering the zones of indifference, combinations of amoxicillin
with each phytochemical resulted in synergism in a concentration-dependent manner,
which was more intense for a concentration of amoxicillin equal to 2 µg/mL. Combina-
tions of chloramphenicol with each phytochemical resulted in synergism mainly at lower
concentrations of the antibiotic and a very slight antagonism zone was observed at inter-
mediate or higher concentrations of chloramphenicol. Using Combenefit to evaluate the
antimicrobial effect of antibiotic/phytochemical combinations is an innovative approach.
In fact, this is a recent tool that allowed us to understand which concentrations of antibiotic
and phytochemical in combination can produce higher synergism scores. This software
goes beyond the limitation of the checkerboard assay that only allows the calculation
of the FICI considering the concentrations for which there is bacterial growth and those
for which there is growth inhibition. The distribution of synergism mainly considers
what type of interaction occurs until there is growth inhibition and allows determining
the best combinations of concentrations [85–88]. Based on these results, the potential of
therapies based on combinations of antibiotics with phytochemicals in the inhibition of
E. coli growth was clear. This assay has shown that a particular focus should be given to
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combinations of chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid,
amoxicillin/hydrocinnamic acid, and amoxicillin/metronidazole while triple combinations
were not particularly effective when compared to dual combinations.

2.3. Time-Kill Assay

The time-kill assay has been widely used to evaluate the eventual bactericidal effect of
single compounds and combinations [89–92]. This is an excellent test to assess bactericidal
effects because it is defined as ≥3 log colony-forming units (CFU) per milliliter decrease
between starting and ending points of curves, which is equivalent to 99.9% killing of the
initial inoculum [93–95]. In this study, a time-kill assay was performed to assess the extent
to which each compound and its dual and triple combinations were able to reduce the
cellular culturability of E. coli.

For single compounds, concentrations equal to 1/2× MIC led to net growth of E. coli
exposed to both phytochemicals after 24 h, while for the two antibiotics the cell density at
0 h and after 24 h were very similar (p > 0.05). For concentrations of MIC, bacterial growth
was observed for perillyl alcohol, and a significant reduction of cellular culturability was
obtained for amoxicillin (in this case, total reduction) and hydrocinnamic acid. For chloram-
phenicol, the cell density at 0 h and after 24 h was similar. At 2× MIC concentrations, there
was a significant reduction in the bacterial population after 24 h for all the compounds
(only not total for chloramphenicol). In that sense, amoxicillin at MIC and 2× MIC and
both phytochemicals at 2× MIC exhibited bactericidal effects, causing log CFU/mL reduc-
tions higher than 3. Chloramphenicol at all concentrations tested, amoxicillin at MIC, and
hydrocinnamic acid at MIC showed a bacteriostatic effect, as the log CFU/mL over time
remained relatively stable (<3 log CFU/mL reduction) from the starting value. Finally,
perillyl alcohol at 1/2× MIC and MIC and hydrocinnamic acid at 1/2× MIC revealed a
modest antimicrobial effect, as the bacteria in the presence of these compounds grew over
time to a similar level as the control. These results also reinforce the chloramphenicol status
of bacteriostatic antibiotic [96] and amoxicillin as bactericidal [34]. It was also observed that
the effect exerted by the phytochemicals was highly dependent on their concentration and
the cellular culturability reduction, and the efficacy of the compounds was dose- and time-
dependent. In addition, the lowest value of log CFU/mL for chloramphenicol at 1/2× MIC
(6.88 after 6 h) and MIC (6.39 after 8 h) and for amoxicillin at 1/2× MIC (5.07 after 8 h) was
not obtained after 24 h and the recovery of E. coli recovery was evident (Figure 4).

Dual and triple combinations were tested for their bactericidal effects. Combina-
tions chloramphenicol/perillyl alcohol at 2× MIC (of each compound), chlorampheni-
col/hydrocinnamic acid at 2× MIC, amoxicillin/perillyl alcohol at MIC and 2× MIC,
amoxicillin/hydrocinnamic acid at MIC and 2× MIC, amoxicillin/metronidazole for all
the concentrations, perillyl alcohol/hydrocinnamic acid at 2× MIC and both triple combi-
nations at 2× MIC exhibited bactericidal effect. Combinations chloramphenicol/perillyl al-
cohol at MIC, chloramphenicol/hydrocinnamic acid at MIC, amoxicillin/perillyl alcohol at
1/2× MIC, amoxicillin/hydrocinnamic acid at 1/2× MIC, perillyl alcohol/hydrocinnamic
acid at MIC, and both triple combinations at 1/2× MIC and MIC showed a bacteriostatic
effect. Finally, combinations chloramphenicol/perillyl alcohol at 1/2× MIC, chlorampheni-
col/hydrocinnamic acid at 1/2× MIC, and perillyl alcohol/hydrocinnamic acid at 1/2×
MIC revealed little antimicrobial effect. In addition, the lowest value of log CFU/mL for
chloramphenicol/perillyl alcohol at 1/2× MIC (6.90 after 1 h), for amoxicillin/perillyl
alcohol at 1/2× MIC (5.04 after 6 h), for amoxicillin/metronidazole at 1/2× MIC (4.18 after
8 h), and perillyl alcohol/hydrocinnamic acid at 1/2× MIC (6.98 after 1 h) was not obtained
after 24 h, and recovery of cellular culturability was observed (Figures 5 and 6).
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Dual and triple combinations were also evaluated through the classification proposed
by Zhou et al. [97], with some modifications (Table 4). Considering both scores obtained
for combinations with a classification assigned to 1/2× MIC and MIC of each compound,
eight combinations resulted in indifference (66.7%), two in additivity (16.7%), and two
in synergism (16.7%). Previous studies [98,99] reported synergy by time-kill analysis for
combinations of antibiotics and natural compounds (i.e., eugenol, gallic acid, hamameli-
tannin, epicatechin gallate, epigallocatechin, and epicatechin). In addition, a comparison
between the classification attributed to each combination by checkerboard and time-kill
assays was possible. For combinations with a classification assigned for 1/2× MIC and
MIC of each compound by time-kill, the one for the MIC of each compound was considered
for the comparison. Moreover, the percentage of agreement between the checkerboard and
time-kill was 87.5%.

Table 4. Classification of dual and triple combinations based on time-kill curves. Values are the
mean ± standard deviation for at least two independent experiments.

Combination ∆log CFU/mL Classification

Chloramphenicol/Perillyl alcohol (1/2× MIC) 0.47 Indifference
Chloramphenicol/Perillyl alcohol (MIC) −2.29 Synergism

Chloramphenicol/Hydrocinnamic acid (1/2× MIC) −0.33 Indifference
Chloramphenicol/Hydrocinnamic acid (MIC) −1.31 Additivity

Amoxicillin/Perillyl alcohol (1/2× MIC) −0.54 Indifference
Amoxicillin/Hydrocinnamic acid (1/2× MIC) −1.28 Additivity

Amoxicillin/Metronidazole (1/2× MIC) −2.67 Synergism
Perillyl alcohol/Hydrocinnamic acid (1/2× MIC) 0.03 Indifference

Perillyl alcohol/Hydrocinnamic acid (MIC) −0.87 Indifference
Chloramphenicol/Perillyl alcohol/Hydrocinnamic acid (1/2× MIC) −0.32 Indifference

Chloramphenicol/Perillyl alcohol/Hydrocinnamic acid (MIC) 0.20 Indifference
Amoxicillin/Perillyl alcohol/Hydrocinnamic acid (1/2× MIC) −0.46 Indifference

Figure S1 (in Supplementary Material) shows the area under the curve (AUC) calcu-
lated for each control and treatment, which were used to perform the statistical analysis of
time-kill assay results. From the analysis of AUCs (Supplementary Materials Figure S1),
it was found that the curve obtained for E. coli exposed to 5% (v/v) dimethyl sulphoxide
(DMSO) was not statistically significantly different from the curve for E. coli (p > 0.05).
Moreover, all treatments were statistically significantly different from controls (p < 0.05)
except for E. coli exposed to perillyl alcohol at 1/2× MIC (p > 0.05). The combination
amoxicillin/metronidazole was more effective than amoxicillin/perillyl alcohol and amox-
icillin/hydrocinnamic acid, at 1/2× MIC and MIC (p < 0.05). This assay has shown
that a particular focus should be given to combinations of chloramphenicol/perillyl alco-
hol, chloramphenicol/hydrocinnamic acid, amoxicillin/hydrocinnamic acid, and amoxi-
cillin/metronidazole while triple combinations were not particularly effective when com-
pared to the dual combination.

3. Materials and Methods
3.1. Bacteria and Culture Conditions

E. coli CECT 434 was used in this study. The bacterial strain was stored in cryovials
with 30% (v/v) glycerol, at −80 ◦C. In fact, this strain has been previously used in diverse
studies to validate the antimicrobial effects of novel molecules [100–103]. For recovery,
bacteria were cultured in Mueller-Hinton Agar (MHA) (Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany) plates and allowed to grow for 24 h at 37 ◦C. The inoculum needed
for each assay was prepared by growing E. coli overnight in Mueller-Hinton Broth (MHB)
(Millipore, Merck KGaA, Darmstadt, Germany), at 37 ◦C with agitation (150 rpm). The
bacteria culture was adjusted to 1.5 × 108 CFU/mL.
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3.2. Phytochemicals and Antibiotics

Perillyl alcohol (PubChem CID: 369312; Sigma-Aldrich, Merck KGaA, Darmstadt,
Germany) and 3-phenylpropionic acid (referred to along this study as hydrocinnamic acid)
(PubChem CID: 107; Thermo Fisher Scientific, Acros Organics, Radnor, PA, USA) were
tested in this study. Chloramphenicol (PubChem CID: 5959; Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany) and amoxicillin (PubChem CID: 33613; Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany) were the antibiotics selected. Stock solutions were prepared for
all the compounds using DMSO (Avantor, VWR, Radnor, PA, USA). DMSO was used at
5%, and it was verified that this concentration did not affect the growth of E. coli. Stock
solutions of antibiotics and phytochemicals were prepared and stored at −18 ◦C.

3.3. Minimum Inhibitory Concentration

The MIC of each molecule was determined by the microdilution method according to
the guidelines of the Clinical & Laboratory Standards Institute (CLSI) [104], in sterile 96-well
flat-bottomed polystyrene tissue culture microtiter plates (Avantor, VWR, Radnor, PA, USA).
The phytochemical concentrations tested were between 16 µg/mL and 2048 µg/mL and, in
the case of antibiotics were in the range from 0.01 µg/mL to 102.4 µg/mL. Briefly, 10 µL
of each dilution was pipetted into the wells of the same column of the microtiter plate.
Control wells contained only sterile fresh MHB without bacterial cells, cells with 5% (v/v)
DMSO (190 µL of cells and 10 µL of DMSO), and only cells (200 µL). Bacteria-free controls
constituted by the molecules in sterile fresh MHB were also prepared. A volume of 190 µL
of inoculum was added per well. The microtiter plates were then incubated for 24 h at
37 ◦C and under agitation (150 rpm). The absorbance was measured at 0 h and 24 h
using a microtiter plate reader (SPECTROstar® Nano, BMG LABTECH) (at 620 nm). The
concentration from which the values at 24 h were equal to or lower than those recorded at
0 h was recorded as the MIC.

3.4. Minimum Bactericidal Concentration

MBCs were determined by the drop plate method according to the CLSI guide-
lines [105]. After the incubation of microtiter plates used for MIC determination, 10 µL were
taken from three different wells of each column, gently scraping the bottom of each well
with the tip of the micropipette (Eppendorf Research, Merck KGaA, Darmstadt, Germany)
to loosen the adhered biofilm, plated in Petri dishes with MHA, and incubated at 37 ◦C for
24 h. The MBC was then determined visually by observing the lowest concentration from
which colonies did not grow.

3.5. Checkerboard Assay

The checkerboard microdilution assay was performed according to the CLSI guide-
lines [104] and Stein et al. [69], with some modifications, using sterile 96-well flat-bottomed
polystyrene tissue culture microtiter plates (Avantor, VWR, USA). For dual combinations,
concentrations equal to 1/32× MIC, 1/16× MIC, 1/8× MIC, 1/4× MIC, 1/2× MIC, MIC,
and 2× MIC of each individual compound, prepared with 5% (v/v) DMSO, were combined.
One compound was diluted along the x-axis, and another was diluted along the y-axis. For
that, 5 µL of each compound in a certain concentration and 190 µL of inoculum were mixed.
The following procedure was performed for triple combinations: two phytochemicals were
diluted, one along the x-axis and the other along the y-axis. Then, one antibiotic was added
to the combination of phytochemicals in each well, combining concentrations between
1/4× MIC and 2× MIC of each compound. In this case, 4 µL of each phytochemical,
2 µL of one antibiotic, and 190 µL of inoculum were added to each well. Two controls
were performed: 200 µL of sterile fresh MHB and 200 µL of bacterial culture. Microtiter
plates were incubated for 24 h, at 37 ◦C and under agitation (150 rpm). The absorbance of
microtiter plates was read at 0 h and 24 h, at 620 nm. Other controls were made in another
sterile microtiter plate, consisting of sterile fresh MHB (200 µL), bacterial culture (190 µL)
with 5% (v/v) DMSO (10 µL), and sterile fresh MHB (195 µL) with each compound (5 µL at
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2× MIC). The combination amoxicillin/metronidazole was used as a positive control for a
comparison with the results obtained with the other combinations involving amoxicillin
since metronidazole is often used as an adjunct to amoxicillin.

3.6. Time-Kill Assay

A time-kill assay was performed based on previous studies [97,106,107] with some
modifications. Concentrations of 1/2× MIC, MIC, and 2× MIC of each compound were
tested, both for assessing the effects of individual molecules and the combinations. The
combination amoxicillin/metronidazole was used as a positive control to compare with the
results obtained with the other combinations involving amoxicillin since metronidazole
is often used as an adjunct to amoxicillin. The individual molecules and combinations
being tested were added to bacterial culture in independent sterile microcentrifuge tubes
(Avantor, VWR, USA). The total volume was always equal to 1000 µL: 50 µL of a single
compound or a combination was added to 950 µL of bacterial culture. Two controls were
also evaluated: untreated bacteria and bacterial culture with 5% (v/v) DMSO. The tubes
were incubated at 37 ◦C and 150 rpm, for 24 h. Samples were taken after 0, 1, 3, 6, 8, and
24 h of incubation. Then, neutralization was performed by the dilution-neutralization
method, using a universal neutralizer: 30 g/L of polysorbate 80 (Avantor, VWR, Radnor,
Pennsylvania, USA), 30 g/L of saponin (Avantor, VWR, Radnor, Pennsylvania, USA), 1 g/L
of L-histidine (Sigma-Aldrich, Merck KGaA, Germany), 3 g/L of lecithin (Thermo Fisher
Scientific, Alfa Aesar, Waltham, Massachusetts, USA), and 5 g/L of sodium thiosulphate
(ACP Chemicals Inc., Labkem, Spain) in 0.0025 M phosphate buffer. Then, 100 µL of the
sample was added to 800 µL of neutralizer and 100 µL of sterile distilled water. After 10 min
at room temperature, ten-fold serial dilutions were performed in sterile NaCl (8.5 g/L)
(Avantor, VWR, Radnor, Pennsylvania, USA), from 10−1 to 10−7. Next, 10 µL were plated
on Petri dishes with MHA, following the drop plate method, and were incubated, at 37 ◦C
for 24 h, in the same refrigerated incubator. Finally, CFU was visually counted when the
number of colonies ranged from >10 and <100, and expressed as log CFU/mL, according
to Equation (1). N is the number of CFU, and SV is the sample volume, 0.01 mL.

CFU/mL =
N

SV × Dilution
(1)

In this study, a ≥2 log CFU/mL decrease between the combination and its most ac-
tive constituent was defined as synergism, for 24 h. Likewise, a log CFU/mL decrease
between ≥1 and <2 was defined as additivity and a ≥2 log increase was defined as an-
tagonism Indifference was defined as any effect between the limits for additivity and
antagonism [97]. Nevertheless, this classification was only applied to treatments for which
the CFU counts were above the detection limit, constituting a modification to the classifica-
tion of Zhou et al. [97]. It was intended not to misinterpret the cases for which the CFU
counts were below the detection limit and not to ignore unknown phenomena that may
eventually occur in the interaction between compounds.

3.7. Classification and Evaluation of Combinations
3.7.1. Interpretation of Checkerboard Assay Results—Fractional Inhibitory
Concentration Index

There are four possible results when combining different compounds: Synergism
refers to the combination of two or more drugs that results in a greater effect than the sum
of the effects for each drug alone [108]. Additivity refers to the combination of two or more
drugs that results in an equal effect to the sum of the effects for each drug alone [109].
Indifference refers to the combination of two or more drugs that results in an equal effect
on this the most active compound of the combination [110]. Antagonism refers to the
combinations of two or more drugs that results in a smaller effect than the sum of the effects
for each drug alone [110].
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According to Stein et al. [69], FICI = FIC(A) + FIC(B), where FIC(A) is the ratio
between the MIC of A in combination and the MIC of A alone (MICA

combination/MICA
alone),

and FIC(B) is the ratio between the MIC of B in combination and the MIC of B alone
(MICB

combination/MICB
alone), as presented in Equation (2).

FIC(A) + FIC(B) = (MICA
combination/MICA

alone) + (MICB
combination/MICB

alone) (2)

For triple combinations, FICI = FIC(A) + FIC(B) + FIC(C), where FIC(A) is the ratio between
the MIC of A in combination and the MIC of A alone (MICA

combination/MICA
alone), FIC(B) is the

ratio between the MIC of B in combination and the MIC of B alone (MICB
combination/MICB

alone),
and FIC(C) is the ratio of the MIC of C in combination and the MIC of C alone
(MICC

combination/MICC
alone), according to Equation (3).

FIC(A) + FIC(B) + FIC(C) = (MICA
combination/MICA

alone) + (MICBcombination/MICB
alone) + (MICC

combination/MICC
alone) (3)

Applying the classification of Stein et al. [69] with some modifications, FICI ≤ 0.80
corresponds to synergism, 0.80 < FICI ≤ 1.00 indicates additivity, 1.00 < FICI ≤ 4.00 is
classified as indifference and FICI > 4.00 is considered antagonism. In this study, 0.8 was
considered as the threshold for the synergistic effect between two and three antimicrobial
agents based on the classification of Stein et al. [69]; contradicting the limit of FICI < 0.5,
commonly used as a limit for synergy between two compounds [111–114]. Stein et al. [69]
performed a three-dimensional synergy analysis (assessing dual and triple combinations by
checkerboard), as in this study. Furthermore, the original classification by Stein et al. [69]
does not distinguish between indifference and additivity. In the present study, combinations
that resulted in a FICI in the range between 0.80 and 1.00 were classified as additive, as a
FICI of 1.00 is always equivalent to growth inhibition for the combination of subinhibitory
concentrations of all compounds [115].

3.7.2. Interpretation of Checkerboard Assay Results—Fractional Inhibitory
Concentration Index

Checkerboard assay results were also analyzed with the Combenefit software ver-
sion 2.021 (Cancer Research UK Cambridge Institute, Cambridge, UK). Combenefit is
open-source software that analyses and classifies combinations based on their effects. The
software uses the classic synergism models, namely Loewe, Bliss, and HSA models, to pro-
cess data [84]. In the present study, the Bliss model was selected to obtain the single agent
dose-response and the synergism distribution. The Bliss model is considered appropriate to
assess the effect of drugs with independent responses (i.e., when they have distinct modes
of action) [116].

3.8. Statistical Analysis

Data were analyzed using SPSS version 28.0 (IBM Corp., Armonk, New York, USA).
The one-way ANOVA test was followed by Sidak’s multiple comparisons test which
is adequate for multiple comparisons. The one-way ANOVA is a parametric test that
compares the means of two or more independent groups to determine whether there is
statistical evidence that the associated population means are significantly different. It
is used when there is one independent variable and one dependent variable. For time-
kill curves, AUCs were first calculated, and then the one-way ANOVA test followed by
Dunnett’s multiple comparisons test was performed to compare the control with each
treatment [117]. The results were presented as mean ± standard deviation. The significance
level for the differences was set at p < 0.05 and the calculations were based on a confidence
level ≥95%. At least two independent experiments, with a minimum of two replicates,
were performed for each condition tested.
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4. Conclusions

With the unprecedented spread of multidrug-resistant (MDR) microorganisms, new,
promising molecules and antimicrobial strategies are in great demand. Here, perillyl al-
cohol and hydrocinnamic acid were studied for their antimicrobial activity against E. coli.
Interesting MIC values, 256 µg/mL and 2048 µg/mL, were determined for perillyl alcohol
and hydrocinnamic acid, respectively. Since one of the main premises of research on an-
tibiotic resistance is to suppress bacterial recalcitrance mechanisms, the use of combined
therapies stands out from other options. Therefore, dual and triple combinations be-
tween these two phytochemicals and the antibiotics chloramphenicol and amoxicillin were
evaluated for the first time. For this, checkerboard and time-kill assays were performed
and demonstrated that combinations of chloramphenicol/perillyl alcohol (synergistic by
both assays), chloramphenicol/hydrocinnamic acid (additive by both assays), and amox-
icillin/hydrocinnamic acid (synergistic by checkerboard and additive by time-kill) were
particularly effective. The percentage of agreement between the two assays was 87.5%. In
addition, the use of Combenefit was also innovative since it allowed determining the ideal
concentrations of each compound in the mixture to produce a synergistic effect. Synergism
was found mainly for lower concentrations of antibiotics. The highest synergism score,
equal to 78, was obtained for 2 µg/mL of amoxicillin and 1024 µg/mL of hydrocinnamic
acid. Moreover, phytochemical concentrations for which synergism was found were also
low, allowing researchers to overcome a major problem associated with phytochemical
therapies: using high concentrations that can be toxic to human cells. In that sense, it is
possible to find new therapies that use low or moderate concentrations of antimicrobial
agents without compromising their effectiveness. This study highlighted the effectiveness
of possible combination therapy with phytochemicals and antibiotics. Considering the
low concentrations for which synergistic effects were observed, the outcomes reported can
help recycle antibiotics and mitigate side effects in the human body. The combination of
chloramphenicol/perillyl alcohol, being the only interaction classified as synergistic by
both checkerboard and time-kill in this study, was particularly promising.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics12020360/s1, Figure S1: AUCs values for the time-kill curves.
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