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Abstract: Hyperpigmentation frequently occurs after inflammation from bacterial infection. Thus,
the inhibition activity of tyrosinase, the key enzyme to catalyze the melanogenesis and/or inhi-
bition of bacterial infection, could decrease melanin production. Hence, the potential inhibitors
could be discovered from natural products. ω-Hydroxymoracin C (1), a new compound with two
other 2-arylbenzofurans, i.e., moracin M (2) and moracin C (3), and two stilbenes, i.e., 3, 4, 3′,
5′-tetrahydroxybibenzyl (4) and piceatannol (5), were isolated from the wood of Streblus taxoides.
Compound 4 showed a strong inhibitory activity against tyrosinase enzyme with an IC50 value of
35.65 µg/mL, followed by compound 2 with an IC50 value of 47.34 µg/mL. Conversely, compound 1,
3 and 5 showed moderate activity, with IC50 values of 109.64, 128.67 and 149.73 µg/mL, respectively.
Moreover, compound 1 and 3 showed an antibacterial effect against some Staphylococcus spp. Thus,
the isolated compounds exhibited potential antityrosine and antibacterial effects. Additionally, an in
silico study was performed in order to predict theoretical molecular interactions between the obtained
metabolites from S. taxoides and tyrosinase as an extended in vitro enzyme binding assay experiment.

Keywords: Moraceae; Streblus taxoides; antityrosine activity; antibacterial activity; melanin content;
intracellular tyrosinase activity

1. Introduction

Gram-positive pathogenic bacteria are the main cause of human skin diseases; for
example, Staphylococcus aureus and S. epidermidis can be a cause of impetigo, folliculitis
and furunculosis [1] and Cutibacterium acnes can be a cause of skin inflammation, such
as papules, pustules and so on [2]. Acne vulgaris or acne inflammation is one of the
dermal skin infection diseases which causes negative social and psychological effects
on sufferers. The facial skin infection caused by Cutibacterium acnes, Malassezia furfur,
S. epidermidis and S. aureus can cause acne inflammation [3,4]. Interleukins (ILs) and
some inflammatory mediators can stimulate tyrosinase activity and melanin synthesis by
modulating proliferation and differentiation of human epidermal melanocytes and can also
promote melanogenesis-related gene expression directly or indirectly [5–9]. Prostaglandin
E2 (PGE2) and PGF2α are involved in all types of skin inflammation, which can stimulate
melanocyte dendrite formation through a cAMP-dependent pathway, activate tyrosinase
in melanocytes, increase melanin secretion, and induce pigmentation [10,11]. Conversely,
IL-18 increases tyrosinase activity and upregulates tyrosinase-related protein 1 (TRP-1)
and TRP-2 expression, IL-33 promotes microphthalmia-associated transcription factor
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(MITF), (tyrosinase) TYR, TRP-1 and TRP-2 expression by activating the p38/mitogen-
activated protein kinase (MAPK) and protein kinase A (PKA) pathways and IL-1α combines
keratinocyte growth factor (KGF) to increase melanin deposition [10]. Moreover, histamine
induces morphologic changes and melanin synthesis of human melanocytes by PKA
activation via H2 receptor-mediated cAMP accumulation [12].

Melanin is the main pigment in mammals, found in skin, hair and eyes [13,14]. The
major function of melanin is to provide protection against ultraviolet (UV) radiation,
but abnormal melanin (hyperpigmentation) can lead to skin disorders [14]. Melanin is
synthesized through a complex pathway, i.e., melanogenesis in melanosomes [15]. The
regulation of melanogenesis is controlled by a variety of paracrine cytokines, including
α-melanocyte-stimulating hormone (α-MSH), stem cell factor (SCF), endothelin-1 (ET-1),
nitric oxide (NO), adrenocorticotropic hormone (ACTH), prostaglandins, thymidine din-
ucleotide and histamine. All factors induce melanogenesis through diverse signaling
pathways by activating the expression and activation of pigment-related proteins such as
microphthalmia-associated transcription factor (MITF); the master regulator of melano-
genesis in melanocytes via binding to the M box of a promoter region and regulating the
gene expression of tyrosinase (TYR), tyrosine-related protein-1 (TRP-1) and tyrosine-related
protein-2 (TRP-2) [8–10]. There are three enzymes involved in the melanogenesis path-
way: tyrosinase (TYR), tyrosinase-related protein 1 (TRP1) and DOPAchrome tautomerase
(DCT) or tyrosinase-related protein 2 (TRP2). However, only tyrosinase (TYR) is absolutely
necessary for melanogenesis, because it is a key enzyme in the process [16,17].

The biologically active compounds from plants have always provided scientists with
new sources of useful drugs against infectious diseases. Many plants of the Moraceae
family are used in the treatment of infectious diseases [18–43] and hyperpigmentation by
inhibition of the tyrosinase enzyme [26,34,41–59]. Streblus taxoides has been reported to
have potential antibacterial and antityrosinase activities [42]. The aim of this investigation
was to evaluate the antibacterial and antityrosinase activities of the crude extracts and
isolated compounds from S. taxoides.

2. Results and Discussion
2.1. Structure Elucidation of Isolated Compounds

Repeated open column chromatography (SiO2, ODS and Sephadex LH-20 resins) of
the ethyl acetate and methanol fractions from the Streblus taxoides wood resulted in the
isolation of three 2-arylbenzofuran compounds, including one new compound, named
ω-Hydroxymoracin C (1), two known arylbenzofuran compounds (2–3) and two known
stilbene compounds (4–5) (Figure 1). The chemical structures of the isolated compounds
were elucidated based on the 1D-NMR and 2D-NMR, MS and IR spectroscopic data. The
known compounds were finally identified to be moracin M ( 2), moracin C (3), 3, 4, 3′,
5′-tetrahydroxybibenzyl (4) and piceatannol (5) by comparing the spectroscopic data with
those previously reports [41,60–62]. 1H-NMR and 13C-NMR spectra of new compounds
are available for the spectroscopic data.

ω-Hydroxymoracin C
Compound 1 was obtained as a brown amorphous powder, soluble in methanol.

The UV spectrum in methanol showed absorptions at λmax 210, 317 and 329 nm. The IR
spectrum showed the absorption bands at 3216, 1620, 1489, 1444, 1351, 1308, 1150, 1002
and 825 cm−1. The EIMS showed a molecular ion peak at m/z 362 corresponding to
C19H18O5. The 1H-NMR spectrum exhibited five signals of 2-arylbenzofuran and 4 signals
ofω-hydroxy prenyl moiety. Three olefinic proton signals of typical ortho- and meta-coupled
patterns of ring A at δH 7.32 (1H, d, J = 8.3 Hz, H-4), 6.72 (1H, dd, J = 8.3, 2.2 Hz, H-5)
and 6.87 (1H, d, J = 2.2 Hz, H-7) with one olefinic proton signal of ring C at δH 6.82
(1H, d, 0.9, H-3) were identified as a 2-substituted-6-hydroxybenzofuran. One olefinic
proton signal at δH 6.76 (2H, s, H-2′, H-6′) indicated the characteristics of a symmetrical
4-substituted-3,5-dihydroxyphenyl. Theω-hydroxy prenyl moiety proton signals consisted
of; one olefinic proton at δH 5.55 (1H, m, H-2′′), two methylenes protons at δH 3.90 (2H,
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s, H-5′′) and 3.38 (2H, brd, J = 7.32 Hz, H-1′′) and one methyl proton at δH 1.81 (3H, s,
H-4′′). The abovementioned evidence suggests that Compound 1 is a 2-arylbenzofuran
with aω-hydroxy prenyl moiety. The 13C-NMR spectrum showed 17 carbon signals. The
2-arylbenzofuran moiety showed: four oxygenated olefinic quaternary signals at δC 157.61
(C-3′, 5′), 157.17 (C-6) a 156.64 (C-2) and 156.46 (C-7a), five olefinic methine signals at δC
121.77 (C-4), 113.12 (C-5), 103.81 (C-2′, 6′), 101.33 (C-3) and 98.45 (C-7) and three methylenes
signals at δC 130.45 (C-1′), 123.19 (C-3a) and 116.26 (C-4′). In addition, the following signals
of a ω-hydroxy prenyl moiety, confirmed by a previous report [63], were observed: one
olefinic quaternary signals at δC 135.07 (C-3′′), one olefinic methines at δC 125.89 (C-2′′),
one oxygenated methylenes signal at δC 69.32 (C-5′′), one methylenes signal at δC 22.95
(C-1′′) and one methyls signal at δC 13.83 (C-4′′). The 2-arylbenzofuran structure and the
location of theω-hydroxy prenyl moiety were proven by HMBC-NMR experiments, which
suggested all positions and the substitution of the ω-hydroxy prenyl moiety could be
formed at the C-4′ of ring B, which was confirmed by the key correlations in the HMBC
spectrum (Figure 2).
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2.2. Antimicrobial Activity

The isolated compounds from S. taxoides showed antimicrobial activity against
S. epidermidis, S. aureus, MRSA and C. acnes. The MIC and MBC values of the isolated compounds
are presented in Table 1. Moracin M showed a weak inhibitory effect against S. epidermidis,
S. aureus and MRSA. Conversely, moracin M derivative such as ω-hydroxymoracin C
and moracin C showed a stronger inhibitory effect against S. epidermidis, S. aureus and
MRSA. Moracin M is the arylbenzofuran, while moracin C and ω-hydroxymoracin C are
the moracin M derivatives which connect with prenyl and hydroxyprenyl, respectively. The
non-prenylated arylbenzofurans exhibited weaker antimicrobial activity than prenylated
arylbenzofurans, because the prenyl group could increase the antimicrobial activity of
arylbenzofurans [64]. Moreover, moracin C exhibited the effect against S. aureus by protein
biosynthesis inhibition [63].

Table 1. MIC and MBC of the isolated compounds against S. epidermidis, S. aureus, MRSA and C. acnes.

Compounds
S. epidermidis S. aureus MRSA C. acnes

MIC
(µg/mL)

MBC
µg/mL)

MIC
(µg/mL)

MBC
(µg/mL)

MIC
(µg/mL)

MBC
(µg/mL)

MIC
(µg/mL)

MBC
(µg/mL)

1 16 32 16 32 16 >256 128 >256
2 64 >256 256 >256 64 >256 >256 >256
3 128 >256 32 64 32 64 128 >256
4 128 >256 128 256 64 256 >256 >256
5 64 128 >256 >256 128 >256 >256 >256

Oxa P 0.5 0.5 0.125 0.125 NT NT 0.5 0.5
Van P NT NT NT NT 0.125 0.5 NT NT

P for positive controls; Oxa = Oxacillin; Van = Vancomycin; NT = not determined; Compound 1 = ω-
hydroxymoracin C; Compound 2 = moracin M; Compound 3 = moracin C; Compound 4 = 3, 4, 3′, 5′-
tetrahydroxybibenzyl; Compound 5 = piceatannol.

2.3. Enzymatic Antityrosinase Activity

The isolated compounds were determined on antityrosinase activity by Dopachrom
method. 3, 4, 3′, 5′-tetrahydroxybibenzyl (4) showed the highest activity against tyrosinase
enzyme with a IC50 value of 35.65 µg/mL, followed by moracin M (2) with a IC50 value
of 47.34 µg/mL. Conversely,ω-hydroxymoracin C (1), moracin C (3) and piceatannol (5)
showed a moderate tyrosinase activity, with IC50 values of 109.64, 128.67 and 149.73 µg/mL,
respectively. The results are shown in Table 2.

The stilbene group showed an inhibitory effect against tyrosinase enzyme, because
it was substituted with the polyhydroxy group, especially at C-2, C-4, C-3′ and C-5′, and
a 4-substituted resorcinol structure is important for the tyrosinase inhibitory activity of
several stilbenes [65]. Oxyresveratrol has a 4-substituted resorcinol structure and is a sub-
stituent with a hydroxy group at C-2, C-4, C-3′ and C-5′, while piceatannol is substituted
with a hydroxy group at C-3, C-4, C-3′ and C-5′. Thus, oxyresveratrol showed an antity-
rosinase activity higher than piceatannol [66]. Moreover, the bibenzyl structure, 2, 4, 3′,
5′-tetrahydroxybibenzyl, which can be obtained from oxyresveratrol through a single-step
reduction reaction, showed an inhibitory effect against tyrosinase activity that was higher
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than oxyresveratrol [47]; similarly, 3, 4, 3′, 5′-tetrahydroxybibenzyl showed an activity
higher than piceatannol. Conversely, ω-hydroxymoracin C, moracin M and moracin C
are the stilbene derivatives (2-arylbenzofuran), which showed direct activity against the
tyrosinase enzyme. The hydroxyl or methoxy group at the C-6 position might mediate
the inhibitory activity compared with other 2-arylbenzofurans, i.e., moracin B, moracin J,
moracin N and moracin VN [67–70]. Moreover, the hydroxyl group at the C-3′ and C-5′ po-
sition might be important for the tyrosinase inhibitory activity of several 2-arylbenzofuran
compared with moracin D, of which the isoprenyl group forms a six-membered ring with
a hydroxyl group at C-3′. Thus, moracin D did not display antityrosinase activity [68].
Conversely, the presence or absence of substituent at C-4′ did not affect the tyrosinase
inhibitory activity of 2-arylbenzofuran group, so ω-hydroxymoracin C and moracin C
which substituted by hydroprenyl and prenyl group, respectively could compare with
moracin VN which substituted by dihydroxymethylbutyl [69].

Table 2. IC50 values of the isolated compounds from S. taxoides on tyrosinase inhibitory activity.

Compound Name IC50 (µg/mL)

1 ω-hydroxymoracin C 109.64 ± 0.89
2 moracin M 47.34 ± 0.78
3 moracin C 128.67 ± 1.21
4 3, 4, 3′, 5′-tetrahydroxybibenzyl 35.65 ± 0.98
5 piceatannol 149.73 ± 0.86

Std. Kojic acid P 38.67 ± 0.94
Std. Water extract of A. lacucha wood P 8.73 ± 0.69

P = positive control.

2.4. Cell Viability

From the results of the enzymatic investigation, the isolated compounds from
S. taxoides wood showed antityrosinase activity. Thus, the investigation was extended
to cellular experiments. The cell viability was measured first. The results indicated that all
sample extracts were not considerable cytotoxic in B16-F1 melanoma cells. Cell viability
was still more than 80% at the highest concentration, i.e., 50 µg/mL. The results are shown
in Figure 3.
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2.5. Intracellular Antityrosinase Activity and Melanin Content

The isolated compounds at concentration as 50 µg/mL demonstrated intracellular
antityrosinase activity and influenced the melanin content on B16-F1 melanoma cells. The
results showed thatω-hydroxymoracin C (1), moracin M (2) and moracin C (3) exhibited
antityrosinase activity (Figure 4A). Moreover, the melanin content showed an inverse rela-
tionship with antityrosinase activity; an increase of antityrosinase activity could decrease
the amount of melanin content (Figure 4B).
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The compounds which exhibited enzymatic tyrosinase inhibitory activity showed two
different mechanisms in B16-F1 cells. ω-Hydroxymoracin C, moracin M and moracin C
showed potential activity with enzymetic antityrosinase and could decrease the melanin
content. Conversely, 3, 4, 3′, 5′-tetrahydroxybibenzyl and piceatannol showed potential
activity with enzymetic antityrosinase, but increased the melanin content. This might
be because ω-hydroxymoracin C, moracin M and moracin C could inhibit the expres-
sion and activation of pigment-related proteins, such as the microphthalmia-associated
transcription factor [15,17,71–73].
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2.6. Western Blot

The isolated compounds from S. taxoides which showed a potential effect of enzymatic
antityrosinase activity and were of sufficient quantity to be used for testing were selected
to study the melanogenic protein expression in B16-F1 cells.

The results ofω-hydroxymoracin C, moracin M, moracin C, 3, 4, 3′, 5′-tetrahydroxybibenzyl
and piceatannol from S. taxoides are shown in Figure 5.
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Figure 5. Effect of the isolated compounds from S. taxoides on the melanogenic protein expression in
B16-F1 cells. Cells were treated with 25 µg/mL (A) and 50 µg/mL (B) of the isolated compounds.
Whole cell lysates were subjected to Western blot analysis using specific antibodies against MITF,
tyrosinase, TRP1 and TRP2.

The inhibition of melanogenic proteins related to the Wnt-β-catenin-signaling pathway,
phosphatidylinositol 3-kinase-Protein Kinase B or PI3K-Akt signaling pathway, cAMP/PKA
signaling pathway and mitogen-activated protein kinases or MAPK signaling pathway
could decrease melanogenesis. However, the expression of melanogenic proteins of 2-
arylbenzofuran group was not clear. The results from the Western blot analysis revealed
that moracin M, ω-hydroxymoracin C and moracin C seemed to decrease the melanin
content by decreasing microphthalmia-associated transcription factor (MITF), tyrosinase
(TYR), tyrosinase-related protein 1 (TRP1) and tyrosinase-related protein 2 (TRP2). Con-
versely, piceatannol and 3, 4, 3′, 5′-tetrahydroxybibenzyl, a stilbene compound, increased
melanin production by increasing microphthalmia-associated transcription factor (MITF)
and tyrosinase (TYR), as confirmed with previous reports, since piceatannol exerted
its stimulatory effect on melanogenesis by MAP kinase activation and MITF induction
of tyrosinase [17,74].

2.7. Molecular Docking Experiment

The authors performed this in silico study to predict theoretical molecular interactions
between obtained metabolites from S. taxoides and tyrosinase, as found in an in vitro
enzyme binding assay. In this computational experiment, the authors aim to investigate a
possible molecular mode of inhibition. As presented in Figure 6A,B, the authors proposed
two different enzyme binding modes from the obtained metabolites found in S. taxoides.
One was a specific binding mode for moracin derivatives (1 to 3), while another was a
unique docking site specific to the bibenzyl metabolites group (4 and 5), Figure 6B, yellow
dot circle.
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Figure 6. Theoretical binding mode of the isolated bioactive metabolites obtained from S. taxoides
simulated by molecular docking. The blue ligand represents ω-hydroxymoracin C, Compound 1,
while the green indicates moracin M, Compound 2, in the active site on mushroom tyrosinase.
Additionally, the purple ligand is moracin C, Compound 3. On the other hand, the orange ligand
indicates 3,3′,4,5′-tetrahydroxybibenzyl, Compound 4, and the yellow ligand represents piceatannol,
Compound 5. (A) demonstrates an overall view of ligand-tyrosinase interaction, while (B) exhibits
a close-up view of an active site of tyrosinase colored in red color. (C,D) reveal intermolecular
interactions of 3,3′,4,5′-tetrahydroxybibenzyl, piceatannol and catalytic amino acid residues on the
mushroom tyrosinase. Finally, (E–G) exhibit intermolecular interactions betweenω-hydroxymoracin
C, moracin M, moracin C and tyrosinase’s catalytic amino acid residues.
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Integrating visuals from Figure 6A–D with Table 3 showed that the bibenzyl metabo-
lites group entirely docked into an active site of the mushroom tyrosinase (Figure 6A,B,
highlighted red area). In detail, these two metabolites also interacted with His263 (one
of the histidines holding copper ions) and Ala286 (an amino acid inside the active site).
Therefore, the result theoretically hinted at a bibenzyl metabolites’ mode of inhibition as a
competitive inhibitor.

Table 3. Molecular interaction obtained from molecular docking of compounds 1 to 5 and conserved
amino acids interacting with compounds of interest.

Residues

Compound 1 Compound 2 Compound 3 Compound 4 Compound 5

Conserve
ω-Hydroxymoracin C Moracin M Moracin C 3, 4, 3′, 5′-

Tetrahydroxybibenzyl Piceatannol

His61

His85 3 3 MM

Phe90

Phe192

Val248 3 3 SS

Met257

His259 3 3 MM

Asn260

His263 3 3 SS

Phe264 3 3 3 MMS

Arg268

Pro277 3 3 MM

His279

Met280 3

Gly281

Ser282 3 3 3 MMM

Val283 3 3 3 3 3 XXXXX

Ala286 3 3 SS

S indicates conserved amino acids interacting within the stilbene group (Compounds 4 and 5). Additionally, M
exhibits conserved residues interacting within the moracin group (Compounds 1, 2, and 3). Finally, X demonstrates
conserved amino acid residues in all compounds found in this study.

On the other hand, in Figure 6A,B,E–G and Table 3, all three moracins derivatives inter-
acted with Ser282, an active residual in a catalytic domain. Furthermore,ω-hydroxymoracin
C and moracin C formed chemical bonds with His85 and His259. These two histidines
are members of six residues holding copper ions, contributing a catalytic mechanism dur-
ing enzymatic reaction. Additionally, moracins C and M were chemically bound with
neighboring amino acids such as Phe264 and Pro277. This information indicated a possible
inhibition mode of predominantly competitive behavior. Interestingly, the authors found
that Val283, an amino acid residue at the entrance of the active site, was conserved among
all test compounds (Table 3).

Notably, the authors’ molecular docking result was in line with previous experimental
reports of moracin and bibenzyl derivatives’ mode on inhibition against mushroom ty-
rosinase [41,75]. Therefore, the authors’ theoretical simulation through molecular docking
proved reliable.

Furthermore, the three-dimensional chemical structure (Figure 6A,B) showed an out-
standing alignment of moracin M (2, green color) compared to moracin C (3, purple color)
andω-hydroxymoracin C (1, the new moracin derivative found in this study, blue color).
The difference in docked molecular alignment between moracin derivatives agreed with an
earlier in vitro antimushroom tyrosinase activity, showing that moracin M was the most
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potent inhibitor above moracin C andω-hydroxymoracin C. Additionally, dimethylallyl
moiety, found in both moracin C (3) and ω-hydroxymoracin C (1), shifted the structural
alignment way from moracin M (2), the most potent inhibitor, presented in Figure 6B (black
arrow). Furthermore, an extra hydroxy group attached to the dimethylallyl moiety of
ω-hydroxymoracin C (new derivative) did not impact the molecular alignment based on
the authors’ simulation here. It was incorporated with an interaction diagram (Figure 6E,G).
No extra hydrogen bond was found in an interaction between ω-hydroxymoracin C (1)
and amino acid residues, similar to moracin C (3).

Later, the authors rescored the estimated binding energy through Autodock 4 for a
more comprehensive energy analysis, as shown in Table 4. The authors found two critical
issues after rescoring the energy procedure. First, the estimated docking energy of moracin
M (2) did not represent the experimental enzyme-binding data. Therefore, the authors did
not analyze the obtained energy or compare moracin M’s energy to the other compounds’
docking energy. Second, a default estimated binding energy obtained from Autodock 4
was poorly correlated (R2 = 0.46) with the experimental enzyme-binding data presented
earlier. Therefore, the authors manually modified the estimated binding energy obtained
from the program by ignoring torsion-free energy. The authors ignored the torsion-free
energy function, because it did not agree with the experimental data the most. As a result,
ignoring a torsion-free function, a correlation coefficient was improved from R2 of 0.46 to
R2 of 0.89. Therefore, the author used a modified binding energy instead of a default one
obtained from the program for our analysis.

Based on Table 4, the total intermolecular interaction energies betweenω-hydroxymoracin
C (1) and moracin C (3) were similar. However, the significant energy function contributing
to a more favorable binding energy (without the torsion-free function mentioned earlier)
from ω-hydroxymoracin C (1) was a lower total internal energy. This function describes an
advantage of the internal flexibility of a small molecule with rotatable bonds. Referring to an
interaction diagram earlier, since no extra intermolecular interaction was found, an internal
factor was a rational explanation for a superior inhibitory effect ofω-hydroxymoracin C
over moracin C (2).

On the other hand, in bibenzyl derivatives, the total internal energies between 3,3′,4,5′-
tetrahydroxybibenzyl (4) and piceatannol (5) were similar. This indicated that an intermolecu-
lar factor contributed to a more favorable binding affinity of 3,3′,4,5′-tetrahydroxybibenzyl (4).
The authors found that a van der Waal and hydrogen bond (vdW+Hbond) function was
the significant factor. Additionally, the vdW+Hbond energy function corresponded to in-
teraction diagrams (Figure 6C,D). Based on the diagram, 3,3′,4,5′-tetrahydroxybibenzyl (4)
formed six intermolecular bonds with amino acids in the active site. Four bonds, i.e., pi-
alkyl, pi-pi stacked, pi-pi T-shaped and pi-sigma, were similar to piceatannol (5). Two extra
bonds were unique and only presented in the 3,3′,4,5′-tetrahydroxybibenzyl interaction.
One was pi-alkyl (pink dash line in Figure 6C) and another was a hydrogen bond (green
dash line in Figure 6C). Therefore, these two outstanding bonds provided an explanation
of why 3,3′,4,5′-tetrahydroxybibenzyl (4) was more favorably bound with tyrosinase than
piceatannol (5).

In conclusion, the authors’ simulation experiment provided a theoretical explanation
supporting an in vitro enzyme-binding experimental outcome found earlier. To sum up, the
simulation showed that structural variation affected enzyme-inhibitor binding structurally
and energetically, either internally or externally.
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Table 4. Estimated binding energy from a refining docking score through Autodock 4.2.6, including relevance energies, and a correlation with estimated binding
energy and IC50 value from the enzyme binding experiment.

Autodock 4.2.6 Experiment

Cmp vdW +
Hbond (1)

Elec Stat.
Energy (2)

Desol.
Energy (3)

Total Intermol.
Interact. Energy

(4; 1 + 2 + 3)

Total Internal
Energy (5)

Tors. Free
Energy (6)

Unbound’s
Energy (7)

Estimated Binding
Energy (Kcal/mol)

(8; 4 + 5 + 6 + 7)

Modified Estimated
Binding Energy (Kcal/mol)

(9; 4 + 5 + 7)
IC50 Values

1 −7.47 0.01 2.75 −4.71 −0.74 2.39 0.00 −3.06 −5.45 109.64

2 * −6.09 0.08 2.29 −3.73 −0.08 1.19 0.00 −2.62 * −3.81 * 47.34

3 −6.83 0.02 2.08 −4.73 −0.37 1.79 0.00 −3.31 −5.10 128.67

4 −8.70 0.04 3.21 −5.45 −0.34 2.09 0.00 −3.70 −5.79 38.67

5 −8.08 0.07 3.06 −4.94 −0.36 1.79 0.00 −3.51 −5.30 149.73

0.46 0.89 1

Correlation to the IC50 value

Cmp is an abbreviation for a compound. (1) represents van der Waals and hydrogen interactions. (2) indicates electrostatic energy. (3) demonstrates desolvation energy. (5) refers to total
internal energy. (6) is torsion-free energy. (8) exhibits estimated binding energy, combing all mentioned energy earlier. Finally, (9) shows the authors’ modified estimated binding energy
by ignoring torsion energy. Bold and asterisk (*) indicate compound 2′s obtained energies that are not included in a correlation calculation. A correlation value presents in the range of 0
to 1, showing no to high correlation. The IC50 values are used as a reference in a calculation.
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3. Materials and Methods
3.1. Plant Materials

The wood of Streblus taxoides (Heyne ex Roth) Kurz was collected from Rajjaprabha
Dam, Surat Thani Province, Thailand. It was identified by a botanist of the Southern
Literature Botanical Garden, and the voucher specimen number was SKP 117 19 20 01. The
sample specimen was deposited at the Department of Pharmacognosy and Pharmaceutical
Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Thailand.

3.2. Extraction and Isolation

In total, 18 kg of dried powder from S. taxoides wood was macerated repeatedly with
petroleum ether for 3 days, which was repeated three times. The filtrated sample was evapo-
rated by rotary evaporator under reduced pressure at below 40 ◦C to yield a petroleum ether
extract. Then, the marc was macerated with ethyl acetate and methanol for 3 days, which
was repeated three times each, and boiled with H2O, respectively. Removal of organic
solvents gave an ethyl acetate extract, methanol extract and H2O extract, respectively.

From the screening result [42], the ethyl acetate and methanol crude extracts showed
activity against tyrosinase enzyme and microbe. Thus, these crude extracts were selected
for further phytochemical investigation by using chromatographic techniques. Initially, 22 g
of ethyl acetate extract was isolated by quick column chromatography, while the gradient
of dichloromethane, ethyl acetate and methanol were used as an eluent. The interesting
fractions were E, H, J and K. Moreover, fraction C, D, E and F were the interesting fractions
which were fractionated by quick column chromatography from 50 g of methanol extract,
using the gradient of hexane, ethyl acetate and formic acid as an eluent. All interesting
fractions were selected to further isolation and purification. However, many isolated
compounds from interesting fractions did not stable, they were easy to degrade. The steps
of isolation are summarized in Scheme 1.
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Scheme 1. Phytochemical investigation from ethyl acetate and ethanol extracts of S. taxoides wood.
VLC = vacuum liquid chromatography; CC = classical column chromatography; Gel CC = Sephadex
LH-20; FA = formic acid; Hex= Hexane; CH2Cl2 = dichloromethane; CHCl3 = chloroform;
EtOAc = ethyl acetate; MeOH = Methanol; H2O = water; * = unstable compounds.
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3.3. Spectroscopic Data

IR spectra were obtained from a Perkin Elmer FT-IR Spectrum One spectrometer, using
Potassium bromide disc to determine the spectra.

Electron Impact Mass Spectra (EIMS) were measured on a Thermo Finnigan MAT 95 XL
mass spectrometer.

1H and 13C spectra were obtained with a Fourier Transform NMR Spectrometer (1H-
NMR 500 MHz and 13C-NMR 125 MHz), model UNITY INNOVA Varian.

(1) ω-Hydroxymoracin C; C19H18O5

The IR spectrum showed the absorption bands at 3216, 1620, 1489, 1444, 1351, 1308,
1150, 1002 and 825 cm−1 and gave a molecular ion at 326 m/z in the EIMS. 1H-NMR
(500 MHz, CD3OD, δH); 7.32 (1H, d, J = 8.3 Hz, H-4), 6.87 (1H, d, J = 2.2 Hz, H-7), 6.82 (1H,
d, J = 0.9 Hz, H-3), 6.78 (2H, s, H-2′, H-6′), 6.72 (1H, dd, J = 8.3, 2.2 Hz, H-5), 5.55 (1H, m,
H-2′′), 3.90 (2H, s, H-5′′), 3.38 (2H, brd, J = 7.32 Hz, H-1′′), 1.81 (3H, s, H-4′′); 13C-NMR
(125 MHz, CD3OD, δC); 157.61 (C-3′, 5′), 157.17 (C-6), 156.64 (C-7a), 156.46 (C-2), 135.07
(C-3′′), 130.45 (C-1′), 125.89 (C-2′′), 123.19 (C-3a), 121.77 (C-4), 116.27 (C-4′), 113.12 (C-5),
103.81 (C-2′, 6′), 101.33 (C-3), 98.45 (C-7), 69.32 (C-5′′), 22.95 (C-1′′), 13.83 (C-4′′).

(2) Moracin M; C14H10O4 [41]

The IR spectrum showed the absorption bands at 3246, 2925, 1613, 1489, 1292 and
1149 cm−1. 1H-NMR (500 MHz, DMSO, δH); 7.38 (1H, d, J = 8.5 Hz, H-4), 7.06 (1H, d,
J = 0.98 Hz, H-3), 6.91 (1H, dd, J = 2.2, 0.97 Hz, H-7), 6.72 (1H, dd, J = 8.5, 2.2 Hz, H-5), 6.67
(2H, d, J = 1.9 Hz, H-2′, H-6′), 6.20 (1H, t, J = 2.2 Hz, H-4′); 13C-NMR (125 MHz, CD3OD,
δC); 158.94 (C-3′, 5′), 155.87 (C-6), 155.42 (C-7a), 154.12 (C-2), 131.82 (C-1′), 121.25 (C-4),
120.94 (C-3a), 112.61 (C-5), 102.80 (C-4′), 102.47 (C-2′, C-6′), 101.69 (C-3), 97.62 (C-7).

(3) Moracin C; C19H18O4 [60]

The IR spectrum showed the absorption bands at 3216, 2693, 1606, 1489, 1357 and
1150 cm−1. 1H-NMR (500 MHz, DMSO, δH); 9.51 (1H, s, 4-OH), 9.29 (2H, s, 3′-OH, 5′-OH),
7.37 (1H, d, J = 8.2 Hz, H-4), 6.90 (1H, brd, J = 1.9 Hz, H-7), 6.89 (1H, d, J = 0.7 Hz, H-3),
6.73 (2H, s, H-2′, H-6′), 6.71 (1H, dd, J = 8.3, 1.9 Hz, H-5), 5.17 (1H, m, H-2′′), 3.19 (2H, brd,
J = 6.8 Hz, H-1′′), 1.70 (3H, brs, H-4′′), 1.60 (3H, brs, H-5′′); 13C-NMR (125 MHz, CD3OD,
δC); 156.39 (C-3′, C-5′), 155.69 (C-6), 155.30 (C-7a), 154.34 (C-2), 129.75 (C-3′′), 128.14 (C-1′),
123.31 (C-2′′), 121.09 (C-3a), 120.99 (C-4), 115.09 (C-4′), 112.48 (C-5), 102.43 (C-2′, C-6′),
100.65 (C-3), 97.55 (C-7), 25.64 (C-4′′), 22.21 (C-1′′), 17.84 (C-5′′).

(4) 3, 4, 3′, 5′-Tetrahydroxybibenzyl; C14H14O4 [61]

The IR spectrum showed the absorption bands at 3435, 1616, 1521, 1468, 1285 and
1160 cm−1. 1H-NMR (500 MHz, DMSO, δH); 6.64 (1H, d, J = 8.0, H-5), 6.60 (1H, d, J = 1.9,
H-2), 6.48 (1H, dd, J = 8.0, 2.2, H-6), 6.12 (2H, d, J = 2.4, H-2′, H-6′), 6.07 (1H, t, J = 2.2, H-4′),
2.67 (1H, 2, m, H-α′), 2.66 (1H, 2, m, H-α); 13C-NMR (125 MHz, CD3OD, δC); 159.29 (C-3′,
C-5′), 146.01 (C-3), 145.70 (C-4), 144.26 (C-1′), 135.00 (C-1), 120.70 (C-6), 116.24 (C-5), 108.04
(C-2′, C-6′), 101.15 (C-4′), 39.51 (C-α′), 38.28 (C-α).

(5) Piceatannol; C14H12O4 [62]

The IR spectrum showed the absorption bands at 3368, 1600, 1520, 1444, 1285 and
1160 cm−1. 1H-NMR (500 MHz, DMSO, δH); 6.96 (1H, d, J = 1.9 Hz, H-2), 6.87 (1H, d,
J = 16.1 Hz, H-α′), 6.82 (1H, dd, J = 8.3, 1.9 Hz, H-6), 6.73 (1H, d, J = 16.1 Hz, H-α), 6.72 (1H,
d, J = 8.3 Hz, H-5), 6.42 (2H, d, J = 2.2 Hz, H-2′, H-6′), 6.15 (1H, t, J = 2.2 Hz, H-4′).

3.4. Antimicrobial Activity Assay

Microorganisms that cause skin infection, such as Staphylococcus aureus (ATTC 25923),
Staphylococcus epidermidis (TISTR 517), Cutibacterium acnes (DMST 14916) and methicillin-
resistant Staphylococcus aureus (DMST20654), were selected for this study. The isolated
compounds were determined for minimum inhibitory concentration (MIC) in a 96-well
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plate by modified broth microdilution method and minimum bactericidal concentration
(MBC) [76,77]. Oxacillin was used as positive controls for S. aureus, S. epidermidis and
C. acnes, while vancomycin was used for MRSA.

3.5. Enzymetic Antityrosinase Activity Assay

The tyrosinase activity was measured by the Dopachrom method [44,78] using L-
DOPA as a substrate. Briefly, 140 µL phosphate buffer (pH 6.8), 20 µL sample solution, and
20 µL tyrosinase solution (203.3 unit/mL) were mixed at 25 ◦C for 10 min, after which 20 µL
of 0.85 mM L-Dopa was added. The optical density (OD) was measured at 492 nm. After
incubation at 25 ◦C for 20 min, the optical density was measured again. The percentage of
tyrosinase inhibition was calculated with Equation (1):

Tyrosinase inhibition (%) = (1 − [OD492 of sample/OD492 of control]) × 100 (1)

Kojic acid and water extract of Artocarpus lacucha wood were used as positive controls
and dimethyl sulfoxide (DMSO) was used as a negative control.

3.6. Cell Culture

The murine B16-F1 melanoma cells (CLS-400122, CLS Cell Lines Service GmbH, Ger-
many) were cultured in Dulbecco’s modified Eagle’s medium, which was supplemented
with 10% fetal bovine serum in a humidified incubator at 37 C with 5% CO2. When cells
reached 70–80% confluence cell viability, cellular tyrosinase activity and melanin content
were measured [79–82].

3.7. Cell Viability Assay

Cell viability was determined by sulforhodamine B (SRB) assay. Briefly, the B16-F1
cells were seeded at a density of 5 × 103 cells/well on 96-well plates and cultured for 24 h.
Then, the cells were treated with test samples and 0.5% DMSO for negative control. After
48 h of incubation, cells were fixed with 10% trichloroacetic acid (TCA) and incubated at
4 ◦C, for 1 h. After that, cells were strained with 0.45% SRB. Then, 10 mM Tris base was
added on strained cells, after which SRB color was dissolved by shaking. Optical densities
were determined at 492 nm. The percentage of cell viability was calculated.

3.8. Intracellular Antityrosinase Activity and Melanin Content Assays

The B16-F1 cells were seeded at a density of 3 × 105 cells/well on 12-well plates and
cultured for 12 h. Cells were treated with test samples and control (0.5% DMSO). After
48 h of incubation, cells were lysed with RIPA and centrifuged at 14,000 rpm for 20 min
(4 ◦C) to separate the cell pellet and supernatant. The supernatant was collected and the
protein content was determined by the Bradford method using bovine serum albumin
as standard [83]. The supernatant was incubated and 2 mg/mL L-Dopa was added to a
96-well plate at 25 ◦C for 1 h. After that, optical densities were measured at 492 nm. Then,
tyrosinase inhibition was calculated, while the cell pellet was dissolved with 1 M NaOH
and incubated at 55 ◦C for 1 h. Melanin concentration was calculated by comparing the
absorbance at 475 nm using a standard curve of synthetic melanin.

3.9. Western Blot Analysis

The protein content of the supernatant was quantified by the Bradford method using
bovine serum albumin as standard. Equal amounts of protein were separated by 40%
acrylamide/Bissolution (InvitrogenThermoFisher Scientific, Waltham, MA, USA) and trans-
ferred onto nitrocellulose membranes (BIO-RAD Laboratories, Feldkirchen, Germany). The
membranes were probed with antibodies against microphthalmia-associated transcrip-
tion factor; MITF (ThermoFisher Scientific #MA5-16214, Waltham, MA, USA), tyrosinase
(ThermoFisher Scientific #35-6000, Waltham, MA, USA), tyrosinase-related protein 1; TRP1
(ThermoFisher Scientific #OSR00085W, Waltham, MA, USA) and tyrosinase-related pro-
tein 2; TRP2 (ThermoFisher Scientific #PA5-36485, Waltham, MA, USA). The proteins were
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detected using an enhanced chemiluminescence kit (BIO-RAD Laboratories, Hercules, CA,
USA). Quantitative analysis was performed using a digital imager (UPV UVP, VisionWorkT

LS, Image Acquisition & Analysis Software). The method applied was modified from
Western Blot analysis for UGT1A family by the co-author, Asst. Prof. Dr. Wandee Udomuk-
sorn, Pharmacology Program, Division of Health and Applied Science, Faculty of Science,
Prince of Songkla University, Thailand., Department of Clinical Pharmacology, Flinders
Medical Center.

3.10. Molecular Docking Experiment

The authors downloaded nearly all compounds’ structures from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 15 December 2022), ex-
cept for ω-hydroxymoracin C (a new derivative). Therefore, the authors created ω-
hydroxymoracin C from moracin C (Compound 2, Pubchem CID 155248) using the Avo-
gadro program, version 1.2.0. [84]. In addition, the authors provided all PubChem CIDs
of all obtained compound structures in a supplementary file (Table S1). Finally, before
the docking experiment, all compounds were geometrical and force field (MMFF94s)
optimizations through the same Avogadro program used earlier, following the authors’
previous publications [85–87].

On the other hand, the authors obtained the mushroom tyrosinase crystal structure,
PDB ID: 2y9x, from the Protein Databank or PDB (https://www.rcsb.org/, accessed on
15 December 2022) [88]. After that, the authors used Autodock Tools version 1.5.6 to
prepare tyrosinase properly for the docking experiment [89]. Next, the authors extracted a
native ligand (tropolone) that came with the tyrosinase crystal structure. Later, the authors
used it to navigate a catalytic pocket and validate an established docking protocol via a
re-docking approach. Only the docking protocol provided a root-mean-square deviation
(RMSD) value less than 2 Å was used after redocking tropolone back to its original position.
Finally, the authors provided the validated docking protocol that passed the criterion in a
supplementary file (Figure S1).

The authors used Autodock Vina version 1.1.2 to perform the docking experiment
in this study [90]. All docking parameters were set as a default value. However, some
parameters were changed, such as the exhaustiveness value adjusted up to twenty-four
and the corrected numbers of docking pose sets to twenty. Finally, the authors designed a
docking grid box as x = −10.1, y = −28.7 and z = −43.4 with a size of 18 Å × 18 Å × 18 Å.

For post-docking analysis, the authors used the Chimera program version 1.11.2 for
ligand-protein three-dimensional visualization [91] and applied Discovery Studio free
version 20.1.0.19295 for the intermolecular interactions diagram [92].

4. Conclusions

The two new compounds 2-arylbenzofuran andω-hydroxymoracin C and four known
compounds, i.e., moracin M, moracin C, 3, 4, 3′, 5′-tetrahydroxybibenzyl and piceatannol,
were isolated from the S. taxoides wood. All isolated compounds showed potential activity
with enzymatic antityrosinase, consistent with the data from molecular docking, indicating
a possible inhibition mode of predominantly competitive behavior.

The isolated compounds which exhibited enzymatic tyrosinase inhibitory activity
consisted of two different mechanisms in B16-F1 cell as Western blot confirmation. ω-
Hydroxymoracin C, moracin M and moracin C showed potential activity with enzymatic
antityrosinase and could decrease melanin content by downregulated the melanogenic
protein expression. Conversely, 3, 4, 3′, 5′-tetrahydroxybibenzyl and piceatannol showed
potential activity with enzymatic antityrosinase but increase melanin content by upregulat-
ing the melanogenic protein expression.

Moreover,ω-hydroxymoracin C and moracin C exhibited potential effects on antimi-
crobial activity. This is the first report of the phytochemical composition of S. taxoides, with
new compounds and their bioactivities. The results indicated the high potential of some

https://pubchem.ncbi.nlm.nih.gov/
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isolated compounds, which might be utilized as the new alternative lead compounds for
further research of whitening and/or antiacne agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12020319/s1. Figure S1: Docking protocol validation.
Native tropolone structure (black color) locates in its original position. Re-docked tropolone (blue
color) into its original pose overlays over native tropolone structure. The RMSD value of the re-docked
tropolone is 1.038 Å; Figure S2: IR spectrum ofω-hydroxymoracin C (KBr disc); Figure S3: EI mass
spectrum ofω-hydroxymoracin C; Figure S4: 1H NMR spectrum ofω-hydroxymoracin C; Figure S5:
13C NMR spectrum ofω-hydroxymoracin C; Figure S6: HMQC spectrum ofω-hydroxymoracin C;
Figure S7: HMBC spectrum ofω-hydroxymoracin C; Figure S8: IR spectrum of moracin M (KBr disc);
Figure S9: 1H NMR spectrum of moracin M; Figure S10: 13C NMR spectrum of moracin M; Figure S11:
IR spectrum of moracin C (KBr disc); Figure S12: 1H NMR spectrum of moracin C; Figure S13: 13C
NMR spectrum of moracin C; Figure S14: IR spectrum of 3, 4, 3′, 5′-tetrahydroxybibenzyl (KBr disc);
Figure S15: 1H NMR spectrum of 3, 4, 3′, 5′-tetrahydroxybibenzyl; Figure S16: 13C NMR spectrum of
3, 4, 3′, 5′-tetrahydroxybibenzyl; Figure S17: IR spectrum of piceatanol (KBr disc); Figure S18: 1H
NMR spectrum of piceatanol.
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