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Abstract: Biofilms are a global health concern responsible for 65 to 80% of the total number of acute
and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic
burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which
are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids,
lipids, and proteins. The EPM holds the pathogens together and provides a functional environment,
enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance
to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore,
the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible
for the development of antibiotic resistance. Given the growing number and impact of resistant
bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary
mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum
sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less
likely to cause resistance have gained considerable attention in the war against biofilm infections.
Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy
and better penetration into the biofilm compared to bulk therapeutics of the same composition.
This review highlights the latest developments in the field of nanoformulated quorum-quenching
actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical
devices to reduce the incidence of biofilm-related infections.

Keywords: nanoparticles; quorum sensing; quorum quenching; antiadhesion; antimicrobial;
biofilm inhibition

1. Introduction

Biofilms are structured and coordinated communities of microbial cells on a surface.
They are formed by initial attachment of bacterial cells, followed by proliferation and
enclosure in a self-produced extracellular polymeric matrix (EPM), which is composed
mainly of water (97%), exopolysaccharides, proteins, and nucleic acids [1]. The EPM
formation is triggered by an intercellular communication process, known as quorum
sensing (QS) [2]. During this process, bacteria secrete signaling molecules, acyl homoserine
lactones (AHLs), or autoinducer peptides (AIPs) in the case of Gram-negative and Gram-
positive bacteria, respectively, generally termed autoinducers (AIs) [3]. When the bacterial
population reaches a certain density, which in turn leads to a certain threshold level of AIs,
genes for biofilm formation and production of virulence factors are expressed [4].

Bacterial biofilms are closely related with antimicrobial resistance (AMR), which is a
global concern for increased morbidity and mortality, prolonged hospitalization, and additional
financial costs. A high number of bacterial species are already resistant to most of the exist-
ing antibiotics due to acquired molecular mechanisms allowing the expulsion, inactivation,
or destruction of antimicrobials [5,6]. Thereby, the biofilm mode of growth is even more challeng-
ing. The formation of a densely packed EPM makes the cells 100 to 1000 times less susceptible to
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antibacterials than their free-floating counterparts and bacteria encased in biofilms exhibit higher
tolerance to the host immune response [7–9]. The EPM holds the pathogens together, protects
them, and reduces the diffusion of drug molecules, while the intimate biofilm environment of-
fers excellent conditions for horizontal gene transfer and further resistance development [10,11].
Consequently, several mechanisms, such as limited drug penetration, decelerated bacterial
growth, and expression of specific protective factors are recognized for the pronounced resis-
tance of biofilms [12]. The formation of biofilms is responsible for numerous acute and chronic
diseases such as cystic fibrosis, otitis, endocarditis, chronic wounds, periodontitis, and dental
caries and their treatment frequently involves intensive antibiotic treatment and a combina-
tion of various antibiotics at high dosages, further aggravating the AMR issue [13–15]. The
Gram-negative Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis,
and the Gram-positive Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, as
well as the yeast Candida albicans, are among the most common biofilm-forming species, found
in up to 60% of severe and persistent hospital-acquired infections [16]. In addition, the fre-
quent usage of indwelling devices leads to even more nosocomial infections [17]. Furthermore,
biofilms have a detrimental impact on a wide range of industrial sectors such as food packaging,
water filtration systems, marine equipment, and industrial bioreactors [18–22].

Given the growing impact of AMR, there is an urgent need to develop novel antibac-
terial strategies in order to outsmart the bacterial evolutionary mechanisms. Effective
strategies for prevention and treatment of bacterial infections with a lower risk of AMR
should integrate: (i) bacterial eradication without creating selective pressure [23], (ii) pre-
vention and elimination of biofilm formation [24,25], (iii) biocompatibility, protection of the
beneficial strains and host environment [26], (iv) long-term stability [27].

Recently, nanotechnology-based approaches have gained immense attention because the
nano form endows the actives with stability and enhanced antimicrobial efficacy compared
to the same material in bulk form [28,29]. Nanomaterials and nanoformulation have been
employed to give a new life to obsolete antibiotics, specifically, to deliver different actives to the
site of infection or act as a structural and/or functional element in medically relevant materials
and coatings. Nanoparticles (NPs) have been deposited on medically relevant surfaces, medical
devices, and implants by techniques like layer-by-layer, sonochemistry, and spin coating to
engineer durable nanostructured coatings against biofilm formation [30–32]. Apart from erad-
icating planktonic cells and preventing biofilm formation, nano-sized actives are also highly
potent in the elimination of already established drug-resistant biofilms. Thus, NPs and small
vesicles have been used as delivery vehicles of biofilm dispersants (e.g., matrix-degrading
enzymes, NO-donors) or direct bactericidals (e.g., antibiotics, antimicrobial peptides) [33–36].
In this review, we attempt to highlight the latest advances in the engineering of functional
nano-enabled materials and coatings to combat bacterial biofilms and the spread of resistance.
The use of nano-formulated enzymes, natural compounds, and their synthetic mimics able to
scramble the wires of bacterial communication before it starts and consequently,
to attenuate bacterial virulence and biofilm formation is discussed. The design of innova-
tive nano-actives targeting inhibition of the initial bacterial settlement and destabilization of
the protective EPM is also outlined. Finally, recent attempts in the nanoformulation of other
non-antibiotic actives with broad-spectrum antibacterial activity, increased safety, and low-
resistance-inducing mechanisms of action are described as prominent alternatives for managing
biofilm-related infections (Table 1).

2. Anti-Virulence Approaches for Managing Biofilm Infections

Targeted interruption of the cell-to-cell communication with quorum-quenching en-
zymes (QQE), which degrade bacterial messengers, or by chemical QS inhibitors (QSIs),
inactivating specific receptors, is an innovative and effective way to tackle the challenges
of bacterial infections. Disturbing the QS lowers the expression of genes for synthesis of
virulence factors and adhesive components of the EPM without affecting the bacterial via-
bility, thus exerting low selective pressure for mutation (Figure 1). However, the practical
use of the anti-QS compounds is frequently limited due to their potential toxicity, low
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stability and reduced therapeutic efficacy compared to antibiotics. In order to address these
limitations, significant efforts have been devoted to nanoformulation.

2.1. Nano-Formulated Quorum-Sensing Inhibitors

Some of the most widely used molecules that inhibit or obstruct the QS machinery are
cinnamaldehyde, quercetin, azithromycin, or eugenol (Table 1). Cinnamaldehyde, an aro-
matic compound present in cinnamon, is able to disrupt the autoinducer-2 system of S. aureus
and the LuxR-mediated transcription from the PluxI promoter in Gram-negative bacteria [37].
This compound has been incorporated in gold NPs using a silica coating and encapsulated inside
chitosan NPs, which improved its effectivity compared to the bulk form [38,39].
The plant flavonoid quercetin has also been encapsulated in chitosan NPs and combined
with silver NPs [40–42]. Azithromycin is an antibiotic that has been reported to inhibit the
synthesis of AHLs at sub-inhibitory concentrations and it has been introduced in hyaluronic acid-
poly(lactic-co-glycolic acid) nanovesicles in order to deliver the drug inside the biofilm [43,44].
Similar results were obtained by Gao et al. after combining this active with cationic polymers—
the resulting NPs were able to penetrate the biofilm and eradicate mature P. aeruginosa biofilm
in vitro and in vivo in a lung infection model (Figure 1F) [45]. Finally, eugenol is a catechol,
obtained from clove, cinnamon leaf, pimento, bay, sassafras, massot bark oils, that has been
reported to reduce the biofilm metabolic activity due to QS disruption in Gram-negative strains,
inducing biofilm detachment [46]. Different types of eugenol nanoemulsions have been success-
fully generated and showed a capacity to inhibit the production of AHLs and biofilm formation
in P. aeruginosa, protect surfaces when applied as hydrogel coatings, and improve the treatment
outcomes of wound infection when loaded in a dressing with silver [47–51].

2.2. Quorum-Quenching Enzyme NPs

Two hydrolytic enzymes, which degrade AHLs—acylase and lactonase—have been
widely exploited to inhibit QS-regulated virulence and biofilm growth in Gram-negative
bacteria [52] (Figure 1A and Table 1). In our group, we employed acylase in combination
with silver NPs, which were coated with aminocellulose and enzyme in a layer-by-layer
fashion, adding a membrane-disturbing functionality. The obtained hybrid NPs reduced
the QS indicator violacein in Cromobacterium violaceum and inhibited the planktonic growth
and biofilm formation of P. aeruginosa at lower NP concentrations, non-toxic to human
cells (Figure 1C) [33]. In another work, we nanoformulated acylase with the conventional
antibiotic gentamicin in order to boost the bactericidal activity of the latter, while confer-
ring biofilm inhibition activity on P. aeruginosa (Figure 1D) [28]. Other researchers have
combined acylase with graphene oxide and mesoporous silica NPs for antifouling coatings
of membranes [53,54]. In parallel, lactonase that catalyzes the breaking of ester bonds in the
lactone ring has been nanohybridized with gold and silver to inhibit the biofilm production
of Proteus species and K. pneumonia, respectively [55–57]. The extracellular disturbing of QS
is among the most promising anti-QS approaches because it avoids the need to penetrate
the cells or reach their receptors. However, despite the great potential of enzymes, their
activity in vivo might be compromised; hence, further studies are needed to validate their
antibiofilm activity in relevant environments.

2.3. Metal NPs as QS Inhibitors

Metal (e.g., silver, copper) and metal oxide (e.g., zinc oxide and copper oxide) NPs
are gaining attention due to their strong antibacterial efficacy and lower probability for in-
ducing AMR. Recent evidence has demonstrated that apart from direct killing, metal
NPs may also interfere with bacterial community behavior and act as QS inhibitors
(Table 1). For instance, silver NPs with an average size of 20–40 nm at concentrations of
10–25 µg/mL reduced the biofilm formation and inhibited the virulence of P. aeruginosa [58].
Gold NPs, produced using Capsicum annuum as reducing and active agent, impeded the
biofilm development of P. aeruginosa and Serratia marcescens. The authors speculated that
inhibition of the synthesis of QS signals and blocking of regulatory proteins is a possible
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QQ mechanism (Figure 1E) [59]. Nickel oxide NPs have presented hydrolase-like activity
by degrading AHLs, which inhibited the violacein production in C. violaceum and biofilm
formation in P. aeruginosa [60]. Copper NPs, coated with polyacrylic acid, were able to
downregulate the expression of ppyR, which is related with the regulation of Psl operon that
promotes bacterial adhesion of P. aeruginosa [61]. In another work, the anti-QS potential
of selenium and tellurium NPs was also demonstrated. An up to 80% decrease in the
QS-regulated violacein expression and a significant reduction of P. aeruginosa biofilm were
obtained for both NPs types [62]. Zinc oxide NPs and, to a lesser degree, titanium oxide
NPs, also displayed an ability to interfere with the AHL system of C. violaceum [63].

2.4. Mimicks of QS Signals and Inhibitors

Apart of the aforementioned direct anti-QS strategies, it is worth mentioning the design
of more advanced approaches, exploiting the sequestration, camouflaging, and mimicking of
QS machinery (Table 1). For example, Lu et al. downregulated the production of virulence
factors and impeded biofilm production of Vibrio cholera with NPs, delivering the bacterium
autoinducer CAI-1 at high concentrations [64]. In another approach, computationally designed
polymers were used to sequester QS molecules of Gram-negative bacteria and consequently
alter the QS-controlled phenotype [65]. However, the efficacy of the latter approach is restricted
by the adsorption capacity of the polymer that, upon saturation, may instead act as a source for
potentiating the QS. To address this issue, Garcia Lopez et al. generated innovative molecularly
imprinted NPs able to mimic the catalytic activity of lactonases [66]. In another work, micellar
imprinting of AHL-like templates yielded NPs, in which acidic zinc hydrolyzed the acyl chains
of C8-AHLs [67].

3. Antifouling, Antiadhesive, and Biofilm-Dispersing Nanoactives

The anti-adhesion strategy comprises prevention of the initial bacterial adherence to the
surface or detachment of already established biofilms. Inhibiting the initial bacterial adhesion
by preventing the contact of surface with the bacterial cells or their anchoring components,
impeding the transition from motile to sessile cells via alteration of the bacterial mechanism,
or targeting the adhesive and anchoring components of the EPS are also among the most
promising strategies to maintain bacteria in planktonic form (Figure 2 and Table 1).

3.1. Nitric Oxide Donors Loaded in Nanocarriers

Nitric oxide (NO) is an endogenous molecule that has gained increasing attention
due to its potential to impede bacterial adhesion and biofilm occurrence. NO is able to
reduce the levels of the intracellular cyclic-di-GMP messenger, promoting the dispersion of
biofilms [68]. Although its mechanism of action is still under investigation, there is evidence
that NO enhances the activity of phosphodiesterases, upregulates genes for motility, and
downregulates the expression of virulence factors and adhesins. However, due to its high
reactivity, its direct application as gas is not feasible. Several NO delivery nanosystems
have been developed in order to drive NO in a safe and effective way to the specific site of
infection because NO has a short half-life and rapidly diffuses from the release site [69].
NO-releasing silica NPs demonstrated the capacity to kill P. aeruginosa, E. coli, S. aureus,
and S. epidermidis encased in biofilms [70]. Duong et al. described how polymeric-star NPs,
conjugated with spermine and NO, hindered the transition from swimming bacteria to
sessile and dispersed P. aeruginosa biofilm, subsequently increasing the number of released
planktonic cells in suspension (Figure 2C) (Table 1) [71]. In addition, Slomberg et al.
demonstrated that the size and shape of the NO carrier play an important role in its release,
small rod-shaped delivery vehicles being the most effective [72]. NO donors have been
loaded into poly(vinyl alcohol) and poly(ethylene glycol) films and alginate hydrogels
together with silver NPs for antibacterial topical applications (Table 1) [73,74]. Silica NPs
loaded with nitroprusside acted synergistically with ampicillin and tetracycline, improving
their bactericidal effect towards S. aureus and S. epidermidis [36].
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3.2. Zwitterionic Materials

Zwitterions hold an immense potential for antifouling due to the formation of a hy-
dration layer and steric hindrance effect that impedes the contact and adherence of the
fouling biomolecules (e.g., proteins, polysaccharides) [75]. An essential step in the biofilm
formation is the ability of bacteria to colonize surfaces via unspecific interaction of their
surface proteins that serve as primary anchoring points. The equimolar number of ho-
mogenously distributed positively and negatively charged moieties along the zwitterion
chain allows the binding of water molecules, creating a barrier towards protein attachment
and bacterial colonization [76]. Poly(sulfobetaine methacrylate) (PSBMA) has been com-
bined with silver NPs, which reduced the adhesion of proteins and inhibited P. aeruginosa
biofilm formation on thin-film composite membranes under dynamic flow (Table 1) [77].
Xin et al. conjugated silver NPs with modified sulfobetaine in polyester membranes against
E. coli and S. aureus, while Ma et al. combined NPs with poly(carboxybetaine-co-dopamine
methacrylamide) (PCBDA) to coat contact lenses that reduced corneal infection in a rabbit
model (Figure 2D) [78,79]. Xiang et al. immobilized PCBDA-Ag NPs on cotton gauzes,
which not only inhibited bacterial adhesion and biofilm formation, but also promoted
wound healing (Table 1) [80].

Antifouling surfaces and materials aim to prevent the first stage of the biofilm growth,
but they do not kill the bacteria and the latter are able to colonize other surfaces and tissues.
Hence, this anti-biofilm strategy may be feasible for material applications of short duration
such as sutures, meshes, and drainage tubes, but not in, e.g., long-term implants.

3.3. Nanoformulated Matrix-Degrading Enzymes

Matrix-degrading enzymes target the extracellular components secreted by bacteria
during biofilm formation. The polysaccharide, protein, and nucleic acid components
of the EPS provide diverse benefits for bacteria. Carbohydrates play an important role
in the anchoring of sessile cells, while proteins provide structural stability of the three-
dimensional biofilm structure. Some of the proteins are catalytically active and possess
the ability to digest large biomolecules (e.g., glycoside hydrolases and lipases) to supply
nutrients, or take part in redox reactions (e.g., catalase). Nucleic acids also participate in the
adhesion, aggregation, and cohesion of the biofilm, but their characteristic role is focused
on the transfer of genetic information [81].

Degrading the biofilm adhesive structure by different enzymes such as α-amylase, alginate
lyase, proteases, and deoxyribonucleases (DNases) is a feasible strategy to weaken biofilms and
increase the bacterial susceptibility to antibacterial agents. α-amylase is a glycoside hydrolase
that catalyzes the breaking of α-1,4-glycosidic bonds. Its main substrate is starch; however,
it also acts on several carbohydrates present in the biofilm matrix [82]. We have developed
NPs containing α-amylase and silver via gallic acid/laccase-mediated crosslinking, which were
able to eradicate already established biofilms of P. aeruginosa and S. aureus (Figure 2B and
Table 1) [34]. In another study, we hybridized α-amylase and zinc oxide in an NP form to coat
urinary catheters in a single-step sonochemical approach. Thus, the undesirable phenomenon
of unspecific protein adsorption was turned into an advantage by using the enzyme as adhesive.
The resulting nanostructured coating hindered the formation of S. aureus and E. coli biofilms
in a model of a catheterized bladder and significantly reduced the incidence of bacteriuria in
rabbit models [31]. Abeleda et al. employed amylase to design hybrid silver/amylase NPs that
inhibited and eradicated K. pneumonia and resistant S. aureus biofilms [83]. Alginate lyase is
another biofilm-dispersing enzyme that breaks down polysaccharides, which are responsible for
the strong adhesion and resistance of P. aeruginosa biofilms [84]. The enzyme was immobilized
on chitosan and silver NPs, enhancing the effectivity of the conventional antibiotics ciprofloxacin
and ceftazidime [85–87]. Proteases also have been nanoformulated using different approaches.
For example, antibiotic-loaded shellac NPs, coated with the biofilm-degrading serine endo-
peptidase alcalase, reduced the protein concentration in S. aureus EPM and effectively eradicated
bacterial cells in the biofilm (Table 1) [88]. Antibiotic-carrying nanogels functionalized with
antibiofilm protease were effective towards Staphylococcus aureus, Pseudomonas aeruginosa, S.
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epidermidis, K. pneumoniae, E. coli, and E. faecalis, while conjugating the enzyme with gold nano-
rods completely eradicated S. aureus and E. coli biofilms under photothermal treatment [89,90].
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Figure 1. (A) Degradation of AHLs signals by quorum-quenching enzymes lactonase and acylase.
(B) Schematic representation of QS process in Gram-positive and Gram-negative bacteria and different
mechanisms for its inhibition. Gram-negative bacteria produce acyl-homoserine lactones (AHLs, yellow
circles), while Gram-positive secrete autoinducer peptides (AIPs, green lines). When the concentration
of these molecules reaches a certain threshold, the genes related with virulence and biofilm formation
are expressed. Nanoformulated QQE, QSI, or metals are employed to degrade the QS signals outside
the cells or block the cognate QS receptors in bacteria. (C) Inhibition of bacterial virulence by Ag NPs
coated with aminocellulose and acylase I assessed through the decrease in the QS-regulated violacein
production by C. violaceum (reproduced from [33] under the terms of the Creative Commons Attribution
International License (CC BY 4.0)). (D) SEM images of untreated P. aeruginosa biofilm (D1) and treated with
acylase loaded NPs (D2) (reproduced from [28] under the terms of the Creative Commons Attribution
International License (CC BY 4.0)). (E) Light microscopic images of the untreated P. aeruginosa (E1) and S.
marcescens MTCC 97 biofilms (E3), and in the presence of AuNPs synthesized using C. annuum extract
(E2 and E4, respectively) (reproduced from [59] under the terms of the Creative Commons Attribution
International License (CC BY 4.0)). (F) Live/dead staining assay of P. aeruginosa biofilms (F1) treated with
free azithromycin (F2), and in its nanoform (F3 and F4) (Reprinted with permission from Gao et al., ‘Size
and Charge Adaptive Clustered Nanoparticles Targeting the Biofilm Microenvironment for Chronic Lung
Infection Management.’ ACS Nano 2020, 14, 6588–5699. Copyright 2020 American Chemical Society [45]).

Deoxyribonuclease I (DNAse I), which can degrade DNA in the biofilm matrix, has also
shown a negative impact on the biofilm structure of medically relevant pathogens such as
P. aeruginosa, E. coli, S. aureus, and K. pneumonia. DNAse I was integrated with ciprofloxacin
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to disperse already established P. aeruginosa biofilms and increase the antibiotic susceptibility.
Its combination with silver NPs boosted the bactericidal effect and acted effectively against P.
aeruginosa, Streptococcus mutans, and E. coli biofilms [91,92]. Combinations of several matrix-
degrading enzymes have been shown to achieve better results in compromising the ability
to establish or maintain stable biofilm structure. Protease and DNase have been loaded in
liposomes to disperse Cutibacterium acnes biofilms in vitro and maintained their inhibition
capacities in skin and catheter models without affecting cell viability in mice [93]. Although
these enzyme-based approaches show very promising results, the major limitation is related to
catalyst inactivation. Furthermore, the biofilm dispersion capacity is influenced by the nature of
the species, which produce different matrix components, so a one-size-fits-all solution may not
be feasible [94].
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Figure 2. (A) Schematic representation of the anti-adhesive and biofilm-dispersing strategies covered
in this review. (B) Nanoaggregates of Ag-amylase degraded EPM of S. aureus biofilm on gold
disks. AFM images of the disk showing EPM matrix (B1) and its disintegration by the hybrid Ag-
amylase NPs (B2) (reproduced from [34] under the terms of the Creative Commons Attribution
International License (CC BY 4.0)). (C) Cristal violet staining of P. aeruginosa biofilms treated with
different concentrations of NO-core cross-linked star (Adapted with permission from Duong et al.,
‘Nanoparticle (Star Polymer) Delivery of Nitric Oxide Effectively Negates Pseudomonas aeruginosa
Biofilm Formation’. Biomacromolecules 2014, 15, 2583–2589. Copyright 2014 American Chemical
Society [71]). (D) Scheme of PCBDA@Ag NPs deposition on contact lenses (D1), and confocal
microscopy of P. aeruginosa grown on pristine and coated contact lenses (D2) (Reprinted from J. Colloid
Interface Sci, 610, Ma et al., Commercial Soft Contact Lenses Engineered with Zwitterionic Silver
Nanoparticles for Effectively Treating Microbial Keratitis 923–933, Copyright 2022, with permission
from Elsevier [79]).



Antibiotics 2023, 12, 310 8 of 18

4. Antimicrobial Nanoactives

Biofilms reduce the susceptibility of bacteria to conventional antibiotics due to restricted
diffusion in the EPS; however, nanoformulation may enhance the penetration. In addition, other
compounds with wide spectrum and low-resistance-inducing mechanisms of action overcome
the main limitations of conventional drugs. In this section, we focus on actives that disrupt the
bacterial membrane, such as peptides and lipids, enzymes, which damage the cell wall and
produce reactive oxygen species (ROS), and metal NPs with several antibacterial mechanisms,
including ROS generation and release of toxic ions (Figure 3).

4.1. Antimicrobial Peptides

Antimicrobial peptides (AMP) are small oligopeptides of five to a hundred amino
acids, found in bacteria, protozoa, fungi, plants, insects, and animals. AMPs form pores in
the microbial membranes, which enables eradication of a broad spectrum of microorgan-
isms and is less likely to lead to AMR. Despite the pronounced antimicrobial activity, even
against multidrug-resistant strains, the low stability of AMP in biological fluids limits their
practical application. To overcome this issue, different nanoformulation and hybridization
strategies have been proposed. RBRBR was loaded into chitosan NPs and inhibited the for-
mation of biofilm by reducing the number of viable motile bacteria (Table 1) [95]. Seferji et al.
photoionized IVFK in order to reduce silver and form nanocomposites, which acted against
S. aureus and E. coli biofilms [96]. Zhang et al. produced NPs by self-assembly of pHly-1 at
acidic conditions. These peptide NPs were able to kill S. mutans in acidic cariogenic biofilm
microenvironment displaying interesting properties for odontology applications [97].
The simultaneous nanoformulation of AMP and antibiotics leads to synergistic activity
for eradication of P. aeruginosa. Yu et al. engineered stimuli-responsive NPs loaded with
melittin and ofloxacin [98]. Gupta et al. combined AMP with quaternary ammonium
polymers and the resulting NPs were able to penetrate biofilm and kill sessile S. aureus, P.
aeruginosa, and Enterococcus cloacae [99]. In our group, we synthesized and deposited on
silicone catheters peptide-zwitterion NPs via a one-step sonochemical approach. Thereby,
catheters were incubated with polymyxin B and PSBMA under ultrasound and the formed
NPs were coated through a “throwing stones” process. The coated silicones presented
contact killing and antibiofilm properties without affecting mammal cells and were able to
eliminate 80% of P. aeruginosa biofilms (Figure 3D and Table 1) [100]. Although the potent
wide-spectrum antimicrobial activity of AMPs predicates them as a promising tool, their
accumulation can lead to unspecific toxicity and they also suffer from stability issues in
biological fluids once released from the nanocarrier [101].

4.2. Non-Peptide Mimics of AMPs

Non-peptide cationic steroids with enhanced stability, termed ceragenins, have been
developed to overcome some of these drawbacks. Their molecular structure is based
on cholic acid, appended by amine groups, which are arranged to reproduce the am-
phiphilic morphology of AMPs. These AMP mimics act on a variety of Gram-positive
and Gram-negative pathogens, including multi-drug resistant strains in planktonic and
sessile forms, but unlike AMPs, they demonstrate enhanced stability at physiological con-
ditions and lower toxicity [102–104]. Due to the high positive charge and amphipathic
nature, ceragenins interact with negatively charged cell membranes causing changes in the
organization of the membrane lipid bilayer, change of permeability, and cell death. They
have also the ability to bind bacterial endotoxins (e.g., lipopolysaccharides and lipoteichoic
acid), which is further translated into anti-inflammatory effects [105]. Recently, Paprocka
et al. demonstrated the benefit of using synergistic combinations of ceragenins with
commercial antibiotics including ceftazidime, levofloxacin, co-trimoxazole, and colistin
for managing of Stenotrophomonas maltophilia infections. Ceragenins applied simultane-
ously with β-lactam antibiotics (e.g., ceftolozane/tazobactam, ceftazidime/avibactam,
meropenem/vaborbactam) at low concentrations also showed efficacy against clinical
strains of P. aeruginosa regardless of their resistance mechanisms [106]. Rod, peanut, and
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star-shaped gold NPs conjugated with ceragenins exerted potent bactericidal activity
against multi-drug resistant strains due to the generation of ROS, followed by membrane
damage and the leakage of intracellular content [107]. Silver NPs coated with ceragenins,
or other cationic antimicrobials, were found to be eight times more effective against bacteria
than silver NP alone [108], while ceragenin-functionalized magnetic NPs were shown to
impede not only bacterial biofilm formation but also of fungal ones [109,110]. Despite
the great promise of these AMP mimics in terms of long-term stability, low toxicity, and
antibiofilm activity towards a great number of pathogens, their use for coatings is scarcely
reported. Bulk ceragenins have been incorporated into contact lenses or used as a coating on
fracture fixation plates to prevent P. aeruginosa and S. aureus biofilm establishment in vitro
and in vivo [111,112]. Hashemi et al. demonstrated that ceragenin-protected endotracheal
tubes resisted microbial colonization, decreasing the adverse effects of intubation associated
with infection and inflammation [113].

4.3. Marine-Derived Antibacterial Lipids

Medicinal plants and marine organisms are natural sources of many antimicrobial com-
pounds. Plant-derived phenolics, diterpenes/terpenoids, alkaloids, sulfur-containing com-
pounds, glycosides, and fatty acids, “generally recognized as safe” (GRAS), have shown strong
antibacterial activity towards Gram-positive and Gram-negative bacteria and low probability
for triggering AMR [114]. Slow-moving or sessile marine organisms produce antimicrobial
molecules (e.g., fatty acids and peptides) as a part of their adaptive defense mechanisms to
protect themselves against pathogens including bacteria, viruses, and fungi.

Fatty acids, monoacylglycerols, sterols, and terpene derivatives are among the most
studied antimicrobial lipid classes. Their strong antimicrobial efficiency against a wide
spectrum of microorganisms is related to their chemical structure and depends on the acyl
chain length, the stereochemistry, the degree of unsaturation, and the esterification [115].
Long-chain polyunsaturated fatty acid combined with benzoyl peroxide synergistically
inhibited the growth of S. aureus due to the increase in the bacterial membrane perme-
ability that improved the penetration of the bactericidal active [116]. Lipids have been
mainly used to produce vehicles for delivery of conventional antibiotics both due to their
membrane destabilization potential and resemblance to natural membranes. For instance,
lipid-polymer NPs loaded with antibiotics demonstrated higher antibiofilm activity on
P. aeruginosa than the polymer NPs alone [117]. Solid-lipid NPs encapsulating rifampin
were used against S. epidermidis, destroying the biofilm and affecting the bacterial viabil-
ity [118]. Recently, the use of solely lipid-based NPs has gained attention, avoiding the use
of antibiotics. For example, Rozenbaum et al. produced monolaurin lipid NPs that were
able to reduce the bacterial concentration of methicillin-resistant S. aureus inside biofilms
in vitro and the activity synergistically increased when AMPs were absorbed onto the NPs.
However, these effects were not observed in wound models in mice [119].

4.4. Bactericidal Enzymes

Above, we discussed the ability of some enzymes to target QS and destroy the com-
ponents of EPM; however, other enzymes display a direct antimicrobial effect, mainly hy-
drolyzing components of the cell wall or by catalyzing the formation of oxidative molecules.
Lysozyme is a muramidase that catalyzes the hydrolysis of β-1,4-linkages between N-
acetyl-D-glucosamine and N-acetylmuramic acid and was loaded into mesoporous NPs
and magnetite-chitosan NPs [120,121]. Wang et al. produced gelatin composites for wound-
healing applications, carrying loaded mesoporous polydopamine NPs with lysozyme that
were able to disperse E. coli biofilm [122].

Cellobiose dehydrogenase (CDH) is another enzyme that elicits bactericidal action
through the production of hydrogen peroxide. CDH has been shown to inhibit the growth
of a panel of multidrug-resistant pathogens including E. coli, S. aureus, S. epidermidis, P.
mirabilis, S. maltophilia, Acinetobacter baumannii, and P. aeruginosa thanks to the oxidation
of bacterial extracellular polysaccharides. CDH NPs have been also produced in situ and
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subsequently deposited onto silicone surfaces using ultrasound, effectively reducing viable
S. aureus cells and the total amount of deposited biomass (Table 1) [123]. In more recent
work, antibacterial CDH and matrix-degrading DNAse were simultaneously immobilized
onto chitosan NPs, which penetrated the biofilm structure and acted synergistically on
preformed multi-species biofilms (Figure 3C) [124]. Though aside from the aforementioned
general limitations of enzyme stability, the efficacy of such strategies could be affected by
potential inflammatory response, associated with oxidative stress.

4.5. Metal and Metal Oxide Nanoparticles

Metal and metal oxide NPs are stronger antimicrobial agents, compared to ionic met-
als or metal macrostructures. Their small size and high area-to-volume ratio improve the
penetration and interaction with the bacterial membrane, enhancing their antimicrobial
properties. The unspecific mechanisms of antibacterial action such as disruption of the
membrane stability, ROS production, and release of metal ions generally hinder the ap-
pearance of AMR. However, it is important to note that metal NPs have been reported to
induce toxicity in mammalian cells. The most used metals for NPs synthesis are silver,
gold, and zinc oxide. Metal NPs have been coated on catheters and implants to avoid
biofilm formation or loaded in wound dressings for elimination of established biofilms
in chronic wounds (Figure 3B) [125–140]. Selenium NPs were able to eradicate S. aureus,
P. aeruginosa, and Salmonella typhi, disrupting their cell walls, in addition, cotton fabrics
functionalized with Se NPs avoid the formation of E. coli and S. aureus biofilm on their
surfaces (Table 1) [141,142]. Other metal NPs that have displayed antibiofilm properties
are titanium dioxide, copper, and nickel [143–147]. Our group has a wide experience in the
coating of medical devices with metal and metal oxide NPs, individually or in combination
with other bioactive macromolecules. This is a proven strategy to reduce the intrinsic
metal toxicity and/or to enhance the antimicrobial performance. Zinc oxide NPs were
sonochemically coated on cotton medical textiles using laccase-oxidized gallic acid as a
bioadhesive. The coating exhibited antimicrobial activity towards S. aureus, which was not
affected even after 20 washing cycles at 75 ◦C [148]. Similarly, contact lenses were coated
using ultrasound with zinc oxide NPs, chitosan, and gallic acid, displaying contact-killing
capacities towards S. aureus, without affecting the optical properties [149]. Finally, silver
NPs decorated with aminocellulose or chitosan were used to synthesize layer-by-layer
hyaluronic acid coatings and membranes that inhibited completely bacterial growth and
reduced biofilm formation (Table 1) [30].

Table 1. Relevant examples of nanomaterials and coatings against biofilms.

Strategy Actives Nanoparticle Antibiofilm Activity Application Ref.

Quorum sensing
inhibitors

Quorum sensing
inhibitors

Gold-silica-cinnamaldehyde S. aureus Colloidal suspension [38]
Acid-poly (lactic-co-glycolic

acid)-azithromycin P. aeruginosa Colloidal suspension [44]

Eugenol nanoemulsion E. coli Nanocomposite
hydrogel [48]

Quorum-quenching
enzymes

Silver-aminocellulose-acylase
P. aeruginosa Colloidal suspension

[33]
Acylase-gentamicine [28]

Gold-lactonase [56]

Metal and metal oxides Gold, nickel oxide, tellurium and
selenium P. aeruginosa Colloidal suspension [59,60,62]

Mimics of QS
machinery

CAI-1 (autoinducer) V. cholera
Colloidal suspension

[64]
Molecularly imprinted NPs P. aeruginosa [66]
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Table 1. Cont.

Strategy Actives Nanoparticle Antibiofilm Activity Application Ref.

Anti-adhesion

NO donors

NO-releasing silica NPs P. aeruginosa, E. coli,
S. aureus, S. epidermidis Colloidal suspension [70]

Polymeric stars-spermine P. aeruginosa Colloidal suspension [71]

Silver-NO donor P. aeruginosa, E. coli,
S. aureus, K. pneumoniae

NP-containing
PVA/PEG-films [73]

Zwitterions PSBMA-silver, PCBDA-silver P. aeruginosa, E. coli,
S. aureus

Membranes and gauzes
coatings [77,80]

Matrix degrading
enzymes

Silver-amylase S. aureus, E. coli Colloidal suspension [34]
Zinc oxide-amylase Catheters coatings [31]

Shellac NPs-protease S. aureus Colloidal suspension [88]

Bactericidal

Peptides RBRBR-chitosan, IVFK-silver S. aureus, E. coli Colloidal suspension [95,96]
Polymyxin B-PSBMA P. aeruginosa Catheters coatings [100]

Antibacterial enzymes
Lysozyme-magnetite-chitosan S. aureus, P. aeruginosa Colloidal suspension [121]

Lysozyme-polydopamine E. coli Hydrogel dressing [122]
Cellobiose dehydrogenase S. aureus Surface coatings [123]

Metal and metal oxides

Silver S. aureus, E. coli,
P. aeruginosa

Catheters and implants
coatings [125–127]

Silver-chitosan S. aureus, E. coli Coatings [30]

Selenium S. aureus, P. aeruginosa and
S. typhi Colloidal suspension [141]

Zinc oxide-chitosan-gallic acid S. aureus Contact lenses coatings [149]Antibiotics 2023, 12, x FOR PEER REVIEW 12 of 21 
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with different concentrations of AgNPs (Reprinted from Prog. Org. Coati, 151, LewisOscar et al.,
‘In vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14
biofilm formation, their application on urinary catheter,’ 106058, Copyright 2021, with permission
from Elsevier [126]). (C) Confocal microscopy images of untreated biofilm (C1) and treated with
chitosan-cellobiose dehydrogenase-DNase NPs (C2) (Reprinted from Mater. Sci. Eng. C, 108, Tan et al.,
‘Co-Immobilization of Cellobiose Dehydrogenase and Deoxyribonuclease I on Chitosan Nanoparticles
against Fungal/Bacterial Polymicrobial Biofilms Targeting Both Biofilm Matrix and Microorganisms,’
110499, Copyright 2019, with permission from Elsevier [124]). (D) Fluorescence microscopy images
showing the grown of P. aeruginosa biofilm on pristine silicone catheters (D1) and its inhibition
when the catheters were coated with self-assembled pSBMA-polymyixin B NPs (D2) (reproduced
from [100] under the terms of the Creative Commons Attribution International License (CC BY 4.0)).

5. Conclusions

Different nanotechnological approaches have been used for highly efficient strategies
against biofilms. We have presented how antimicrobial and antibiofilm actives can be
engineered for three different strategies: (i) disrupting the QS, (ii) preventing the bacterial
attachment and promoting the biofilm detachment, and (iii) killing the bacteria encased
inside the biofilm. Enzymes, depending on their type and activity, can quench QS, destroy
selected components of the EPM, or directly exercise an antimicrobial role; however, their
stability and possible side effects in vivo may limit their use. Metal NPs are excellent
antimicrobial agents and have been reported to interfere in the intercellular communication;
however, their intrinsic toxicity requires innovative approaches for their formulation. Zwit-
terions are able to prevent bacterial colonization of surfaces, while other molecules such
as lipids and peptides directly disrupt the bacterial membrane, regardless of whether in
planktonic or biofilm form. We showed how the combination of antibiofilm and antimicro-
bial agents and their synergistic activity are critical for the efficacy. However, although the
numerous examples in this fruitful field display highly promising results, they are usually
restricted to in vitro models in idealized laboratory conditions. Thus, the immense progress
in the lab still needs to be validated in relevant environments such as in vivo experiments
and realistic settings, provided the diverse nature of clinical isolates and their capacity to
develop AMR in short time. At the same time, further factors such as scale of production,
economic viability, and environmental impact have to be addressed before translation into
actual practice.
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Bactericidal Activity of Ceragenin in Combination with Ceftazidime, Levofloxacin, Co-Trimoxazole, and Colistin against the
Opportunistic Pathogen Stenotrophomonas maltophilia. Pathogens 2022, 11, 621. [CrossRef]

108. Hoppens, M.A.; Sylvester, C.B.; Qureshi, A.T.; Scherr, T.; Czapski, D.R.; Duran, R.S.; Savage, P.B.; Hayes, D. Ceragenin mediated
selectivity of antimicrobial silver nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 13900–13908. [CrossRef]

109. Nagant, C.; Pitts, B.; Stewart, P.S.; Feng, Y.; Savage, P.B.; Dehaye, J.P. Study of the effect of antimicrobial peptide mimic, CSA-13,
on an established biofilm formed by Pseudomonas aeruginosa. Microbiologyopen 2013, 2, 318–325. [CrossRef]
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