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Abstract: Streptococcus agalactiae is a major health concern in tilapia farming worldwide. In contrast to
the availability of susceptibility profile results, interpretative criteria for disk diffusion assays and the
influence of serotypes on resistance profiles are not available. To address this, sixty isolates (thirty of
each serotype, Ib and III) were evaluated using the disk diffusion assay against six antibiotics, and the
epidemiological cut-off value (ECV) was calculated. All the isolates were classified as non-wild type
(NWT) for sulfamethoxazole (SUT) and norfloxacin (NOR). The inhibition zones for oxytetracycline
(OXY) and doxycycline (DOX) were largely distinct; all serotype Ib and III isolates were classified as
wild-type (WT) and NWT, respectively. The results for serotype III of fish group B Streptococcus (GBS)
were comparable to the NWT tetracycline profile of human GBS available in EUCAST, suggesting
the presence of resistance mechanisms in these fish isolates. The calculation of the cut-off wild type
(COWT) values for OXY and DOX was appropriate for both serotypes. Differences between the
distribution of florfenicol (FLO) and amoxicillin (AMO) were found, and we attribute this to the
faster growth rate of serotype III, which promotes smaller inhibition zones. Therefore, using separate
COWT for each serotype is necessary. In conclusion, the serotype of fish GBS affects its susceptibility
profile, and it is recommended to use serotype-specific COWT values as interpretative criteria for disk
diffusion assays against FLO and AMO.

Keywords: antibiotic; streptococcosis; fish; capsular serotyping; normalized resistance interpretation

1. Introduction

Nile tilapia (Oreochromis niloticus) is the second-most farmed fish worldwide [1], and
has shown significant growth in recent decades owing to its high productivity and value as
a source of protein and economic income [2]. However, recent outbreaks of Streptococcus
agalactiae have caused major economic losses in the industry due to the resulting high
morbidity and mortality rates in fish [3,4].

S. agalactiae is a Gram-positive bacterium, commonly known as group B Streptococcus
(GBS), that affects a wide range of hosts, including mammals and aquatic animals. It
is mainly associated with neonatal meningitis in humans, bovine mastitis, septicemia,
and meningoencephalitis in fish [5,6]. This bacterium can be classified into 10 different
serotypes (Ia, Ib, and II to IX) based on the specificity of the polysaccharide layer that
surrounds it [7]. This layer determines the antigenic and structural uniqueness of the
serotypes and can differentiate even in the epidemiology, virulence, and antimicrobial
susceptibility profile [6,8–14].

Serotypes Ia, Ib, and III are the main causes of fish infections [13,15]. Serotype III has
a history of causing outbreaks in Thailand and China [13,16], and was first reported on
Brazilian tilapia farms in 2017 [9]. This serotype is associated with high zoonotic potential
and has been linked to severe food-borne outbreaks associated with the consumption of raw
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fish in Singapore [17]. Unlike serotype Ib, which is a piscine-adapted lineage, serotype III
seems to be a multi-host-adapted lineage capable of infecting both fish and mammals [18].

The routine use of antimicrobials on fish farms is a critical issue for food security
and public health, as it can result in the emergence of resistant strains and control out-
breaks caused by bacterial pathogens [19,20]. Despite being the main control measure for
S. agalactiae in fish farms, the oral treatment with oxytretacycline and florfenicol has shown
a significant increase in the resistance in recent years in the country [9,21–23].

Currently, qualitative and quantitative methods are available for determining antimi-
crobial susceptibility. Despite being a qualitative test, the diffusion disk assay remains
one of the most versatile, low-cost, and reproducible tests that can be used routinely in
laboratories [24,25]. The best predictors of antimicrobial outcomes are the cut-off points
established by standards-setting organizations, such as the European Antimicrobial Suscep-
tibility Testing Committee (EUCAST) and the Institute of Clinical and Laboratory Standards
(CLSI). However, the data only pertains to bacteria found in mammals, not aquatic animals.
In the absence of such determined cut-off points, normalized resistance interpretation (NRI)
can be an efficient and sensitive method for distinguishing the deduced population from
normal isolates from those with an increase in resistance and can, consequently, be useful
in the surveillance of bacterial resistance in the host [24,26,27].

Previous studies have evaluated the antimicrobial susceptibility of GBS in fish isolates
and demonstrated resistance to different classes of antimicrobials [9,10,13,23]. Some studies
have suggested that the susceptibility profile is related to the GBS serotype involved in
infection. Serotype III demonstrated a greater proportion of antibiotic resistance than other
serotypes in infections in fish [9,10]. A major problem is that the criteria for interpreting the
epidemiological cut-off point available in the literature are variable, erroneous, and often
extrapolated from human isolate data to aquatic animal bacteria. It is known that, although
it is the same species, the GBS serotypes associated with infection in fish can present
different phenotypic traits as well as antibiotic resistance profiles, which can influence
the results of antimicrobial sensitivity tests when approached as a single type. In this
context, there are still no data on the resistance profile of different serotypes that cause
streptococcosis in fish. Thus, the aim of this study was to evaluate the susceptibility
profile of different serotypes of S. agalactiae in fish and to calculate epidemiological cut-off
points (ECV).

2. Results
2.1. Sulfamethoxazole 25 and Norfloxacin 10 Disk Studies

All isolates of both serotypes were categorized as NWT for sulfamethoxazole and
norfloxacin.

2.2. Oxytetracycline 30 and Doxycycline 30 Disk Studies

Figure 1 shows the distribution of inhibition zones obtained from the evaluated
isolates. Different frequency distributions were observed in the inhibition zones for OXY
and DOX. These different patterns in the histograms were attributed to the low-frequency
distribution of serotype III isolates in relation to serotype Ib. It is observed that, when
analyzed separately, the COWT values calculated from data from serotypes Ib and III for
OXY were ≤19 mm and ≤10 mm and for DOX were ≤12.0 mm and ≤8.0 mm, respectively.
When analyzed together, the cut-off value of the two serotypes is ≤19.0 mm for OXY and
≤12 mm for DOX (Table 1).
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Figure 1. Histograms of the inhibition zone for S. agalactiae serotypes III (blue bars) and Ib (orange 
bars) against oxytetracycline (OXY), doxycycline (DOX), florfenicol (FLO), and amoxicillin AMO (X 
axis: inhibition zones in mm; Y axis: number of isolates). Superimposed on the histograms are the 
curves calculated for the distributions according to the standardized interpretation method. 

Table 1. Epidemiological cut-off (COWT) values (mm) calculated by NRI for Streptococcus agalactiae 
serotype Ib and III separated (WT mean) with standard deviations and combined (Comb) for DOX, 
OXY, FLO, and AMO antibiotics. 

 Wild-type (WT) Mean Wild-type (WT) SD COWT 
 III Ib Comb III Ib Comb III Ib Comb 

DOX 10 22 22 0.74 3.79 3.79 8 12 12 
OXY 10 25 25 0.56 2.47 2.47 10 19 19 
FLO 25 27 27 1.4 1.11 1.3 21 24 23 
AMO 28 34 35 1.96 1.91 1.88 23 30 30 

AMO = amoxicillin, 10 µg; DOX = doxycycline, 30 µg; FLO = florfenicol, 30 µg; OXY = oxytetracy-
cline, 30 µg. 

The combined analysis of the isolates showed stronger data, so all isolates were clas-
sified as wild-type for serotype Ib and non-wild-type for serotype III, based on the COWT 
for DOX and OXY (Table 2). 

Table 2. Antibiotic susceptibility patterns of Streptococcus agalactiae of serotype Ib and III strains from 
diseased Nile tilapia. The inhibition zone diameters (in mm) of each strain were measured following 
growth in Muller–Hinton agar enriched with 5% of defibrinated sheep blood at 28 °C for 24 h. WT 
(wild-type) denoted susceptible strains; NWT (non-wild-type) represented resistant strains. 

Strain 
Serotype III 

Strain 
Serotype Ib 

OXY DOX AMO FLO OXY DOX AMO FLO 
492/19 11 (NWT) 11 (NWT) 27 (WT) 25 (WT) 189/17 26 (WT) 27 (WT) 33 (WT) 27 (WT) 
118/17 11 (NWT) 10 (NWT) 29 (WT) 20 (NWT) 58/17 30 (WT) 26 (WT) 30 (WT) 26 (WT) 
149/17 11 (NWT) 10 (NWT) 39 (WT) 26 (WT) 86/17 22 (WT) 18 (WT) 34 (WT) 27 (WT) 
294/18 10 (NWT) 11 (NWT) 22 (NWT) 21 (WT) 68/17 24 (WT) 23 (WT) 30 (WT) 26 (WT) 
237/18 11 (NWT) 9 (NWT) 24 (WT) 21 (WT) 311/18 25 (WT) 23 (WT) 33 (WT) 29 (WT) 
325/18 11 (NWT) 11 (NWT) 22 (NWT) 21 (WT) 366/18 25 (WT) 23 (WT) 34 (WT) 28 (WT) 
328/18 11 (NWT) 10 (NWT) 25 (WT) 21 (WT) 310/18 26 (WT) 22 (WT) 32 (WT) 28 (WT) 
27/17 11 (NWT) 10 (NWT) 26 (WT) 21 (WT) 365/18 25 (WT) 19 (WT) 35 (WT) 28 (WT) 

Figure 1. Histograms of the inhibition zone for S. agalactiae serotypes III (blue bars) and Ib (orange
bars) against oxytetracycline (OXY), doxycycline (DOX), florfenicol (FLO), and amoxicillin AMO
(X axis: inhibition zones in mm; Y axis: number of isolates). Superimposed on the histograms are the
curves calculated for the distributions according to the standardized interpretation method.

Table 1. Epidemiological cut-off (COWT) values (mm) calculated by NRI for Streptococcus agalactiae
serotype Ib and III separated (WT mean) with standard deviations and combined (Comb) for DOX,
OXY, FLO, and AMO antibiotics.

Wild-type (WT) Mean Wild-type (WT) SD COWT

III Ib Comb III Ib Comb III Ib Comb

DOX 10 22 22 0.74 3.79 3.79 8 12 12

OXY 10 25 25 0.56 2.47 2.47 10 19 19

FLO 25 27 27 1.4 1.11 1.3 21 24 23

AMO 28 34 35 1.96 1.91 1.88 23 30 30

AMO = amoxicillin, 10 µg; DOX = doxycycline, 30 µg; FLO = florfenicol, 30 µg; OXY = oxytetracycline, 30 µg.

The combined analysis of the isolates showed stronger data, so all isolates were
classified as wild-type for serotype Ib and non-wild-type for serotype III, based on the
COWT for DOX and OXY (Table 2).
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Table 2. Antibiotic susceptibility patterns of Streptococcus agalactiae of serotype Ib and III strains from
diseased Nile tilapia. The inhibition zone diameters (in mm) of each strain were measured following
growth in Muller–Hinton agar enriched with 5% of defibrinated sheep blood at 28 ◦C for 24 h. WT
(wild-type) denoted susceptible strains; NWT (non-wild-type) represented resistant strains.

Strain
Serotype III

Strain
Serotype Ib

OXY DOX AMO FLO OXY DOX AMO FLO

492/19 11 (NWT) 11 (NWT) 27 (WT) 25 (WT) 189/17 26 (WT) 27 (WT) 33 (WT) 27 (WT)

118/17 11 (NWT) 10 (NWT) 29 (WT) 20 (NWT) 58/17 30 (WT) 26 (WT) 30 (WT) 26 (WT)

149/17 11 (NWT) 10 (NWT) 39 (WT) 26 (WT) 86/17 22 (WT) 18 (WT) 34 (WT) 27 (WT)

294/18 10 (NWT) 11 (NWT) 22 (NWT) 21 (WT) 68/17 24 (WT) 23 (WT) 30 (WT) 26 (WT)

237/18 11 (NWT) 9 (NWT) 24 (WT) 21 (WT) 311/18 25 (WT) 23 (WT) 33 (WT) 29 (WT)

325/18 11 (NWT) 11 (NWT) 22 (NWT) 21 (WT) 366/18 25 (WT) 23 (WT) 34 (WT) 28 (WT)

328/18 11 (NWT) 10 (NWT) 25 (WT) 21 (WT) 310/18 26 (WT) 22 (WT) 32 (WT) 28 (WT)

27/17 11 (NWT) 10 (NWT) 26 (WT) 21 (WT) 365/18 25 (WT) 19 (WT) 35 (WT) 28 (WT)

215/18 11 (NWT) 9 (NWT) 22 (NWT) 20 (NWT) 251/18 22 (WT) 24 (WT) 31 (WT) 25 (WT)

117/17 11 (NWT) 10 (NWT) 22 (NWT) 20 (NWT) 393/18 23 (WT) 22 (WT) 35 (WT) 26 (WT)

327/18 10 (NWT) 10 (NWT) 29 (WT) 24 (WT) 339/18 23 (WT) 21 (WT) 29 (WT) 25 (WT)

239/18 10 (NWT) 10 (NWT) 30 (WT) 27 (WT) 421/18 28 (WT) 26 (WT) 32 (WT) 26 (WT)

306/18 10 (NWT) 10 (NWT) 31 (WT) 26 (WT) 496/19 25 (WT) 22 (WT) 31 (WT) 24 (WT)

399/18 10 (NWT) 11 (NWT) 33 (WT) 24 (WT) 472/19 27 (WT) 28 (WT) 40 (WT) 27 (WT)

330/18 11 (NWT) 10 (NWT) 32 (WT) 28 (WT) 495/19 28 (WT) 25 (WT) 34 (WT) 28 (WT)

400/18 11 (NWT) 10 (NWT) 31 (WT) 27 (WT) 482/19 27 (WT) 24 (WT) 32 (WT) 29 (WT)

487/19 11 (NWT) 10 (NWT) 34 (WT) 27 (WT) 514/19 28 (WT) 26 (WT) 35 (WT) 28 (WT)

488/19 12 (NWT) 11 (NWT) 34 (WT) 29 (WT) 502/19 26 (WT) 28 (WT) 40 (WT) 29 (WT)

03/17 10 (NWT) 10 (NWT) 32 (WT) 27 (WT) 516/19 26 (WT) 23 (WT) 33 (WT) 28 (WT)

26/17 10 (NWT) 10 (NWT) 34 (WT) 28 (WT) 505/19 25 (WT) 20 (WT) 37 (WT) 28 (WT)

212/18 11 (NWT) 10 (NWT) 26 (WT) 23 (WT) 506/19 21 (WT) 18 (WT) 32 (WT) 28 (WT)

334/18 10 (NWT) 10 (NWT) 27 (WT) 22 (WT) 265/18 24 (WT) 23 (WT) 35 (WT) 29 (WT)

240/18 11 (NWT) 10 (NWT) 28 (WT) 24 (WT) 523/19 22 (WT) 19 (WT) 33 (WT) 26 (WT)

491/19 11 (NWT) 11 (NWT) 29 (WT) 25 (WT) 513/19 25 (WT) 24 (WT) 28 (WT) 24 (WT)

219/18 12 (NWT) 10 (NWT) 29 (WT) 27 (WT) 390/18 29 (WT) 23 (WT) 33 (WT) 30 (WT)

322/18 10 (NWT) 11 (NWT) 26 (WT) 26 (WT) 88/17 21 (WT) 18 (WT) 35 (WT) 26 (WT)

137/17 12 (NWT) 11 (NWT) 30 (WT) 26 (WT) 246/18 23 (WT) 18 (WT) 31 (WT) 29 (WT)

213/19 12 (NWT) 10 (NWT) 27 (WT) 23 (WT) 253/18 25 (WT) 23 (WT) 37 (WT) 27 (WT)

397/18 12 (NWT) 9 (NWT) 25 (WT) 24 (WT) 164/17 22 (WT) 17 (WT) 34 (WT) 27 (WT)

223/18 13 (NWT) 10 (NWT) 34 (WT) 27 (WT) 160/17 22 (WT) 19 (WT) 34 (WT) 29 (WT)

AMO = amoxicillin, 10 µg; DOX = doxycycline, 30 µg; FLO = florfenicol, 30 µg; OXY = oxytetracycline, 30 µg.

To better investigate the use of epidemiological cut-off values for combined serotypes,
the data of this study were compared with the susceptibility data of minocycline and
tetracycline for S. agalactiae and S. dysgalactiae released by EUCAST, as described in Table 3.
The results for serotype III were similar to the NWT tetracycline profile of human GBS
available in the EUCAST, confirming that the combined isolation approach is appropriate
for the epidemiological cut-off point.
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Table 3. Epidemiological cut-off (COWT) values (mm) calculated by NRI for GBS serotype of fish
[Ib + III] compared to the human susceptibility data for S. agalactiae and S. dysgalactiae, available in
EUCAST for tetracyclines.

Species Agent Source Wild-type Mean Wild-type SD COWT

S. agalactiae

DOX III + Ib
(Present study)

22 3.79 12

OXY 25 2.45 19

TET

EUCAST **

22 2.19 20

MIN 25 2.47 19

S. dysgalactiae TET 27 2.03 21

DOX = doxycycline, 30 µg; OXY = oxytetracycline, 30 µg; TET = tetracycline, 30 µg; MIN = minocycline, 10 µg;
** European Committee on Antimicrobial Susceptibility Testing.

2.3. Florfenicol 30 and Amoxicillin 10 Disk Studies

The frequency distributions of serotypes Ib and III for FLO and AMO differed. When
analyzed together, the cut-off values of the two serotypes were ≤23.0 mm for FLO and
≤30 mm for AMO. When analyzed separately, the COwt for serotypes Ib and III for FLO
were ≤23 mm and ≤21 mm and for AMO were ≤30.0 mm and ≤23.0 mm, respectively
(Table 1). Figure 2 shows that serotype III grows faster and creates a smaller inhibition zone
than serotype Ib. Although this does not indicate antimicrobial resistance, combining it
with serotype Ib can lead to that result.
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Figure 2. Disk diffusion test plates with GBS serotype Ib (left) and III (right) showing bacterial
growth and inhibition zones for amoxicillin (AMO 10), florfenicol (FLO 30), and norfloxacin (NOR 10).
The greater and faster growth of the serotype III isolate suggests that the phenotypic characteristics
of these strains may influence the test results.

In summary, five isolates were considered non-wild-type for FLO (n = 3) and AMO
(n = 4). In addition, all serotype III isolates were classified as multi-resistant bacteria. All
zone diameters obtained for Escherichia coli ATCC 25922 were found at acceptable quality
control intervals, as determined by CLSI; therefore, our results were valid.

3. Discussion

In Brazil, Nile tilapia (Oreochromis niloticus) is the main aquatic host for S. agalactiae
and outbreaks of the disease have been described in several Brazilian states, and are one of
the most important factors limiting the expansion of tilapia farming in Brazil [9,15,18,28,29].

In cases of outbreaks caused by S. agalactiae, mortality can reach up to 90% of the
herd [30,31]. The most efficient measure to control this disease is the use of antimicro-
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bials [10]. The efficacy of some antibiotics in reducing mortality during tilapia outbreaks
has been found to be inadequate, leading to recurrent infections even after treatment [9,22].

Resistance to sulphonamide and fluoroquinolones has already been described in fish
GBS strains [9,10,23,32] and humans [32–34]. In contrast, a study carried out in Thailand
obtained results similar to those of sulfamethoxazole, but most isolates showed sensitivity
to norfloxacin [35].

In Brazil, only oxytetracycline and florfenicol are authorized for use in aquaculture
and are widely used in the treatment of streptococcosis in Nile tilapia. The widespread use
of OXY as a prophylactic treatment may also have contributed to an increase in bacterial
resistance in fish [36]. Some strains of GBS have been described as resistant to OXY in
Nile tilapia and Amazon catfish (Leiaurius marmoratus × Pseudoplatystoma corruscans) in the
country [9,23]. Although such antimicrobials are effective in reducing herd mortality, these
animals can still eliminate the pathogen in the environment [31]. According to our findings,
emerging GBS strains of serotype III were found to be resistant to several antibiotics,
including ampicillin, norfloxacin, aminoglycosides, fluoroquinolone, sulfamethoxazole,
and tetracycline [9]. In the present study, the NWT phenotype may be due to the resistance
mechanisms of these antimicrobials. Bergal et al. [37] indicated that the tetM and tetO
genes may be involved in this process. Tetracycline resistance is governed by tet genes,
which are compromised in the drug’s active efflux, ribosomal protection, or enzymatic
modification [38].

A recent study observed the presence of this gene in GBS isolates from fish and
humans in the same region in China, correlating the observed phenotypic resistance with
the presence of specific genes of tet [32]. In addition, reduced susceptibility to human GBS
has also been described in Brazil for tetracyclines [39–42], as well as the resistance gene
tet being detected in strain resistance in humans and cows [40]. EUCAST disk data for
S. agalactiae were available for tetracycline and minocycline and MIC data for tetracycline
and doxycycline. It is interesting to note that the application of ECOFF values accepted by
EUCAST to the NWT frequency was approximately 80% in all four EUCAST groups.

According to EUCAST, the TET and MIN zones classified as NWT for S. agalactiae are
similar to the OXY and DOX zones in the present study. Thus, we argue that all serotype
III isolates analyzed in this study may also be NWT. It should be noted that EUCAST
data were obtained using different agents, and the tests were conducted at 35 ◦C. Table 3
demonstrates significant similarities between the NRI analysis parameters of EUCAST data
distribution and the combined serotypes III and Ib obtained in the study, despite some
differences. This analysis suggests that the use of epidemiological cut-off values (COWT)
for DOX and OXY calculated from all isolates of S. agalactiae, regardless of serotype, would
generate a more appropriate classification, similar to that of the isolates generated by the
application of ECOFF values from EUCAST. Thus, the COWT for OXY and DOX calculated
for both serotypes was adequate in this study.

Differences between the distributions of FLO and AMO were observed. This was prob-
ably associated with distinct phenotypic traits of the serotypes, since a faster growth rate is
presented by serotype III, which promotes smaller inhibition zones. Therefore, a separate
COWT for each serotype is meaningful. In routine laboratory observations, serotype III is
phenotypically very different from serotype Ib, especially in terms of growth. Serotype
Ib shows slower growth in culture, as compared to other GBS serotypes, which initially
promoted the classification of that serotype as another species of the genus Streptococcus,
as S. difficile. However, despite the noticeable phenotypic differences, further studies have
confirmed that these strains belong to the species S. agalactiae and can be attributed to
serotype Ib [42,43]. It is reasonable to assume that the difference in the antibiogram for disc
diffusion between serotypes Ib and III could be explained by the difference in their growth
rates. Therefore, the fastest-growing serotype III promoted the smallest zone. The factors
affecting zones in disk diffusion assays are complex and have received limited attention in
recent decades. It is reasonable to suggest that WT strains which have slower growth rates
would tend to have larger zones than WT strains which have the same susceptibility but
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faster growth rates. In writing on the theory of disc diffusion zones, Cooper [44] identified
the bacterial growth rate as one of the factors influencing disk diffusion assay results. Simi-
lar observations were noted by Smith et al. [45]. The author analyzed some distributions of
strains of Aeromonas salmonicida and suggested that the slow-growing strains had larger
zones than those that showed common growth rates. Based on the present results, the
calculation of COWT for AMO and FLO for each serotype should be more appropriate for
tilapia pathogenic S. agalactiae.

Florfenicol is recommended for use in aquaculture because of its effectiveness and rel-
ative safety [46]. In the present study, 10% of the GBS isolates from serotype III (3/30) were
classified as NWT for this drug. This is noteworthy, as previous studies on this serotype
demonstrate, that there is no resistance to this class of antibiotics in Brazilian tilapia bacteria.
Previous studies evaluating piscine GBS serotype III have demonstrated the sensitivity of
these isolates to FLO [10,33]. Conversely, serotype II GBS isolated from Amazon catfish in
Brazil demonstrated NWT against FLO [23]. In addition, four samples were considered
NWT for amoxicillin. Though few studies have described resistance to amoxicillin in Nile
tilapia infected with S. agalactiae, previous studies have found similar results in Amazon
catfish [23]. The results obtained in this study and those of Tavares et al. [23] show the
circulation of FLO- and AMO-resistant GBS strains in Brazilian fish farming, which is an
important health issue for the sector.

The emergence of multidrug-resistant (MDR) strains is a major global problem in
veterinary medicine and human health [47]. An isolate can be defined as multidrug-
resistant (MDR) if it is resistant to three or more classes of antimicrobials. In the present
study, some GBS serotype III isolates were classified as MDR, as they were classified as
NWT to three antimicrobial classes. Similar results have previously been described by
Chideroli et al. [9]. A recent study has described multidrug-resistant GBS serotype III
isolates from fish and humans in China [10,32]. Antimicrobial resistance in fish pathogenic
GBS serotype III seems to be an important health issue for fish farming worldwide.

A recent study demonstrated a high prevalence of virulence genes associated with
serotype III, as well as high virulence when compared to strains of serotype Ia of fish in
Thailand [48]. It is necessary to investigate the genetic characteristics of Brazilian GBS
isolates of serotypes Ib and III related with virulence and antibiotic resistance in fish.

4. Materials and Methods
4.1. Bacterial Strains

Sixty strains of S. agalactiae isolated from diseased Nile tilapia that belonged to the
serotypes Ib (n = 30) and III (n = 30) were evaluated. The isolates were obtained from
the culture collection of the Laboratory of Routine Bacteriology, Veterinary School of the
Federal University of Minas Gerais (UFMG).

These strains originated from outbreaks at Nile tilapia production farms in eight
different states in Brazil (Table 4). The animals were sent to the Laboratory of Routine
Bacteriology for bacteriological diagnosis. Smears taken from brain and kidney samples
were aseptically cultured on 5% horse blood agar (HBA) and incubated at 28 ◦C for 72 h.
Suspected isolates of S. agalactiae have previously been identified using phenotypic and
molecular methods [15]. The isolates were then stored in brain and heart infusion broth
(BHI) with 15% of glycerol at −80 ◦C until use.

4.2. Antimicrobial Susceptibility Testing

The disk diffusion test of the isolates and reference strains was performed according to
the VET03-A guidelines established by the Clinical and Laboratory Standard Institute® [49],
with adaptations recommended for streptococcal bacteria (Group 4). Six antimicrobials were
used: amoxicillin (AMO, 10 µg); doxycycline (DOX, 30 µg); florfenicol (FLO, 30 µg); nor-
floxacin (NOR, 10 µg); oxytetracycline (OXY, 30 µg); and sulfamethoxazole with trimetho-
prim (SUT, 25 µg). The discs were acquired from Oxoid ™ (Thermo Scientifics, Wilmington,
NC, USA). The Streptococcus agalactiae isolates was thawed, cultured on 5% horse blood
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agar, and incubated at 28 ◦C for 24 h. After incubation, each strain was harvested and
suspended in sterile saline to achieve an absorbance value of 625 nm between 0.08 and
0.13 (DO625). Muller–Hinton agar plates enriched with 5% defibrinated sheep blood were
inoculated with bacteria by scraping with sterile swabs. Then, the plates were incubated at
28 ◦C for 24 h. In addition, the strain of Escherichia coli ATCC 25922 was used as a quality
control strain. The inhibition zones for both serotypes were measured 24 and 48 h after
incubation. One person evaluated all antibiogram plates to reduce observer bias in the size
of the zones of inhibition.

Table 4. Strains, year, serotype, and origin of Streptococcus agalactiae isolates used in this study.

Strain Year Serotype State City

SA 189/17 2017 Ib Pernambuco Jatobá

SA 58/17 2017 Ib Pernambuco Jatobá

SA 86/17 2017 Ib Ceará Fortaleza

SA 68/17 2017 Ib Pernambuco Jatobá

SA 88/17 2017 Ib Ceará Fortaleza

SA 164/17 2017 Ib São Paulo Rifaina

SA 160/17 2017 Ib São Paulo Rifaina

SA 311/18 2018 Ib São Paulo Santa Fé do Sul

SA 366/18 2018 Ib São Paulo Santa Fé do Sul

SA 310/18 2018 Ib São Paulo Santa Fé do Sul

SA 365/18 2018 Ib São Paulo Santa Fé do Sul

SA 251/18 2018 Ib São Paulo Rio Grandinho

SA 393/18 2018 Ib Minas Gerais Carmo do Rio Claro

SA 339/18 2018 Ib Bahia Paulo Afonso

SA 421/18 2018 Ib Minas Gerais Uberlandia

SA 265/18 2018 Ib Bahia Paulo Afonso

SA 390/18 2018 Ib Minas Gerais Carmo do Rio Claro

SA 246/18 2018 Ib São Paulo Santa Fé do Sul

SA 253/18 2018 Ib São Paulo Santa Fé do Sul

SA 496/19 2019 Ib Bahia Paulo Afonso

SA 472/19 2019 Ib São Paulo Jau

SA 495/19 2019 Ib Bahia Paulo Afonso

SA 482/19 2019 Ib Minas Gerais Alfenas

SA 514/19 2019 Ib Mato Grosso Chapada dos Guimaraes

SA 502/19 2019 Ib Mato Grosso do Sul Selvíria

SA 516/19 2019 Ib Paraná Toledo

SA 505/19 2019 Ib São Paulo Santa Fé do Sul

SA 506/19 2019 Ib São Paulo Santa Fé do Sul

SA 523/19 2019 Ib Minas Gerais Carmo do Rio Claro

SA 513/19 2019 Ib Mato Grosso Chapada dos Guimaraes

SA 118/17 2017 III Bahia Valença

SA 149/17 2017 III Bahia Valença

SA 27/17 2017 III Bahia Gloria

SA 117/17 2017 III Bahia Valença
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Table 4. Cont.

Strain Year Serotype State City

SA 03/17 2017 III Pernambuco Itacarube

SA 26/17 2017 III Bahia Gloria

SA 137/17 2017 III Bahia Valença

SA 294/18 2018 III Pernambuco Jatobá

SA 237/18 2018 III Pernambuco Santo Antonio

SA 325/18 2018 III Piaui Guadalupe

SA 328/18 2018 III Piaui Guadalupe

SA 215/18 2018 III Bahia Valença

SA 327/18 2018 III Piaui Guadalupe

SA 239/18 2018 III Pernambuco Santo Antonio

SA 306/18 2018 III Bahia Gloria

SA 399/18 2018 III Maranhao São Joao do Maranhão

SA 330/18 2018 III Bahia Paulo Afonso

SA 400/18 2018 III Maranhao São Joao do Maranhão

SA 212/18 2018 III Bahia Valença

SA 334/18 2018 III Bahia Paulo Afonso

SA 240/18 2018 III Pernambuco Santo Antonio

SA 219/18 2018 III Alagoas Coruripe

SA 322/18 2018 III Piaui Guadalupe

SA 397/18 2018 III Ceará Fortaleza

SA 223/18 2018 III Alagoas Coruripe

SA 492/19 2019 III Bahia Paulo Afonso

SA 487/19 2019 III Alagoas Piranhas

SA 488/19 2019 III Alagoas Piranhas

SA 491/19 2019 III Bahia Paulo Afonso

SA 213/19 2019 III Bahia Valença

4.3. Statistical Analysis

Normalized resistance interpretation (NRI) was conducted using the method de-
veloped by Kronvall [24] and Kronvall et al. [27], according to the adaptation by Smith
et al. [47]. This method calculates epidemiological cut-off values (COWT) to classify a
species’ isolates as fully susceptible wild type (WT) or non-wild-type (NWT) based on their
susceptibility. NWT isolates show significantly reduced susceptibility compared to WT
within the population. NRI analyses of the inhibition zone data were performed using
automated Excel spreadsheets available at http://www.bioscand.se/nri/ (accessed on 28
February 2022). The epidemiological cut-off values for defining susceptible strains were
set at 2.5 standard deviations below the normalized average [45]. In this study, strains
that generated zones equal to or greater than the NRI limit for susceptible strains were
classified as wild-type (WT), and those that generated smaller zones were classified as
non-wild-type (NWT). In addition, the epidemiological cut-off values for serotypes of
tetracyclines (OXY and DOX) were compared with susceptibility data for S. agalactiae and
S. dysgalactiae released by EUCAST for humans [50].

http://www.bioscand.se/nri/
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5. Conclusions

In conclusion, the serotype of fish GBS influences the susceptibility profile, and distinct
COWT according to the serotype should be used as interpretative criteria for disk diffusion
assays against FLO and AMO.
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