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Abstract: The global spread of antibiotic resistance marks the end of the era of conventional antibiotics.
Mankind desires new molecular tools to fight pathogenic bacteria. In this regard, the development of
new antimicrobials based on antimicrobial peptides (AMPs) is again of particular interest. AMPs
have various mechanisms of action on bacterial cells. Moreover, AMPs have been reported to be
efficient in preclinical studies, demonstrating a low level of resistance formation. Thanatin is a
small, beta-hairpin antimicrobial peptide with a bacterial-specific mode of action, predetermining
its low cytotoxicity toward eukaryotic cells. This makes thanatin an exceptional candidate for new
antibiotic development. Here, a microorganism was bioengineered to produce an antimicrobial agent,
providing novel opportunities in antibiotic research through the directed creation of biocontrol agents.
The constitutive heterologous production of recombinant thanatin (rThan) in the yeast Pichia pastoris
endows the latter with antibacterial properties. Optimized expression and purification conditions
enable a high production level, yielding up to 20 mg/L of rThan from the culture medium. rThan
shows a wide spectrum of activity against pathogenic bacteria, similarly to its chemically synthesized
analogue. The designed approach provides new avenues for AMP engineering and creating live
biocontrol agents to fight antibiotic resistance.

Keywords: antimicrobial peptides; yeast biocontrol agents; recombinant antibiotics; thanatin; antibiotic
resistance

1. Introduction

The discovery of antibiotics marked a milestone in the victory of medicine over
pathogens. This has saved millions of lives and improved the quality of life for even more
people. However, due to the spread of multidrug-resistant bacteria, conventional antibiotic
therapy is becoming increasingly ineffective [1]. The overuse of antibiotics, as well as the
decreasing number of antimicrobials approved for clinical use, only contributes to the
further distribution of MDR pathogens. This problem stimulates the search for alternative
sources of antimicrobial compounds [2].

Antimicrobial peptides (AMPs) represent a highly diverse class of DNA-encoded
antimicrobials that still have great potential as drug candidates. The rapid bactericidal
mechanism of action allows AMPs to effectively combat bacteria, including biofilm eradica-
tion [3]. Generally, AMPs have alternative mechanisms of action compared to conventional
antibiotics [4]. Most conventional antibiotics act on bacterial ribosomes [5,6], transpepti-
dases [7], and topoisomerases [8]. AMPs use alternative molecular targets, contributing
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to a lower level of bacterial resistance, acting by direct killing by membrane permeabi-
lization [9–11] or inhibiting the activity of essential molecular targets in bacterial cells [12]
like Lpt proteins [13]. Resistance to conventional antibiotics has been widely confirmed in
clinical settings, whereas data regarding antimicrobial peptides are limited. This could be
due to the low level of AMP application in clinical practice [14]. Nonetheless, laboratory
studies indicate a lower rate of developing resistance to AMP with a relatively low increase
in MIC fold [15]. Thus, AMPs have the potential to limit the spread of antibiotic resistance.
AMPs are well known for their good activity against multidrug-resistant (MDR) bacte-
ria [16], as well as for their ability to restore the sensitivity of pathogens to antibiotics [17].
A synergistic effect of AMPs with polymyxin B, tetracycline, and erythromycin was shown
on the MDR Pseudomonas aeruginosa isolate (PA910) [18]. The broad activity spectrum,
killing-based activity mechanism, and high potential against MDR bacteria make AMPs
promising drug candidates.

Thanatin is a short beta-hairpin peptide (21 amino acid residues) isolated from the
spined soldier bug (Podisus maculiventris) [19]. Thanatin is active against both Gram-
negative and Gram-positive bacteria, including MDR clinical isolates of Enterobacter aero-
genes and Klebsiella pneumoniae [20]. Several mechanisms of action of thanatin on a bacterial
cell were proposed to explain such a wide range of sensitive bacteria. Thanatin displaces
divalent metal ions from the bacterial outer membrane, leading to membrane destabiliza-
tion [21]. It also substitutes zinc ions from the active site of New Delhi metallo-β-lactamase-1
(NDM-1) and restores the sensitivity of the bacterial strain to beta-lactam antibiotics [21].
Thanatin disrupts the operation of the lipopolysaccharide (LPS) transport machinery by
interfering with interactions between Lpt proteins, resulting in bacterial cell death [22].
The multiple actions of thanatin on bacteria make it a promising object for the creation of
novel antimicrobials. Thanatin is active in a broad pH range and it is inhibited at a high
salt concentration [23].

One of the main factors limiting the widespread use of AMPs is the high cost of their
production [24]. Peptides with sophisticated structures require complex chemical synthesis
strategies, which are time-consuming and expensive [25]. To overcome this limitation, it is
necessary to develop cost-effective ways to produce AMP. The heterologous production
of recombinant AMPs is widely used as an alternative to chemical synthesis. One of the
most common hosts for heterologous protein production is Escherichia coli, which allows
fast and inexpensive recombinant protein production [26]. However, AMP production in
E. coli is often limited due to the self-toxicity of recombinant AMPs. Fusions with other
proteins can overcome this limitation, but in this case, additional purification steps are re-
quired [27]. Several AMPs have been successfully produced in yeasts, such as apidaecin [28],
mytichitin-A [29], shakin-1 [30], and the fusion protein cecropinA-thanatin [31], supporting
the importance of the biotechnological production of antimicrobials. The overwhelming
majority of studies pay primary attention to the biotechnological production of AMPs using
methanol-inducible AOX1 promoter systems. The inducible AOX1 promoter provides high
yields, especially in the case of toxic polypeptides. However, the addition of toxic methanol
to the growth medium is needed. Hence, these recombinant AMP producers could not be
considered biosafe biocontrol agents, and they do not provide a self-propagating source
of AMPs.

Here, we propose an alternative source of recombinant thanatin (rThan) based on
constitutive production in the yeast Pichia pastoris. Yeasts as host organisms are a convenient
choice for their rapid growth and high yields of recombinant proteins [32], and they are
expected to be less vulnerable to AMP toxicity [33]. rThan was obtained with a high overall
yield, reaching up to 20 mg of the purified peptide per liter of growth culture. The resulting
peptide had broad antimicrobial activity against a panel of bacterial pathogens, similarly
to the chemically synthesized analog. The genetically encoded nature of AMPs enables
the construction of live biocontrol agents for bacterial killing [34]. Recombinant yeast
producing rThan efficiently inhibited the growth of bacteria and eradicated bacteria in
coculture. The engineering of live biocontrol agents by heterologous AMP production will
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simplify their production and development, stimulating further achievements in the field
of synthetic biology of AMPs.

2. Results
2.1. Bioengineering rThan—Producing Yeast

Utilizing bioengineering techniques to give organisms novel characteristics creates
new opportunities for the application of recombinant organisms. This study is dedicated to
the development of a continuous, self-renewing source of antimicrobial activity that does
not require the addition of an inducer. Yeast P. pastoris is a good candidate for creating such
a bioengineering pipeline because of its wide range of genetic engineering toolkits and
simplicity of use.

The yeast expression vector pGAP4_rThan was constructed to provide a strong consti-
tutive expression of the rThan transgene in the yeast P. pastoris (Figure 1A). The genetic
sequence of thanatin was codon-optimized and cloned under the control of a strong constitu-
tive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The yeast alpha-mating
factor signal sequence (aMF) provided the secretion of mature rThan into culture media.
Constitutive AMP production enables P. pastoris to be provided with antibacterial prop-
erties that were estimated by an agar overlay assay (Figure 1B). rThan-producing yeasts
inhibited the growth of E. coli strains, including hypersensitive E. coli ∆lptD, E. coli ∆tolC,
and wild-type E. coli BL21(DE3), giving transparent clearance zones with a diameter of
28 ± 2, 13 ± 1, and 8 ± 1 mm, respectively (Figure 1C). Clones with the largest zone of
growth inhibition were used for further production and purification of rThan.
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Figure 1. (A) A schematic representation of the rThan expression vector. PGAP—GAP promoter,
aMF—secretion signal sequence, rThan—thanatin coding sequence, 3′AOX TT—AOX1 transcriptional
terminator, HIS4—histidinol dehydrogenase, KanR—yeast kanamycin resistance, AmpR—E. coli
ampicillin resistance, Ori—E. coli origin of replication. (B) A schematic representation of the yeast
bioengineering workflow. Yeast cells were transformed with the target plasmid. The resulting
colonies were overlaid with bacteria-inoculated agar. Clones with clear growth inhibition zones
were used for further investigations. The control plasmid containing fluorescent protein mCherry
was described previously [35]. Agar overlay was performed with E. coli ∆tolC as the target bacteria.
(C) Antimicrobial activity of rThan-producing yeasts, estimated by agar overlay assay using target
strains E. coli ∆lptD, E. coli ∆tolC, and E. coli BL21(DE3). The rThan-producing yeasts formed
transparent zones of inhibition.
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2.2. Constitutive Production and Purification of rThan

Constitutive expression of AMP has minimum and maximum production yields upon
cultivation time. Different timepoints were checked to determine the production peak. The
highest rThan concentration was obtained on the second day of cultivation (Figure 2A) and
these probes were subjected to purification.
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Figure 2. Production and purification analysis of rThan: (A)—Time-dependent rThan production
analysis, where columns represent rThan concentrations in culture media at different time points;
(B)—Tricine-SDS-PAGE analysis of rThan purification: MW—Protein MW marker; FT—SP-sepharose
flowthrough; 400—concentration of NaCl in elution buffer(mM); 500–650—part of a linear gradient
of an elution buffer with increasing NaCl concentration from 500 to 650 mM. Data represent the mean
of three biological replicates ± SD.

Cation exchange chromatography was applied for rThan extraction and purification
since it has an expected positive charge of +6 at pH 6.0. Strong binding of rThan to cation
exchange resin provided its elution at high salt concentrations (from 500 to 650 mM NaCl),
resulting in highly purified peptide fractions (Figure 2B). The overall yield of rThan was
estimated as 20 mg/L after the purification steps. The proposed production and purification
scheme provides a cost-effective source of rThan with a minimum number of purification
stages, which is also economically advantageous.

The concentration of rThan in culture media decreased after three days of cultivation,
which may be mediated by the proteolytic degradation of peptide by secreted yeast pro-
teases. Nevertheless, after purification steps and storage at the described conditions, rThan
was stable and did not show any change in concentration or activity for months.

2.3. Chemical Synthesis of Thanatin

To compare rThan with synthetic thanatin (sThan), the latter was obtained by chemical
synthesis. Crude thanatin was synthesized by standard solid-phase peptide synthesis,
resulting in a linear sThan precursor (Figure 3A).

Cyclized sThan was obtained by the oxidation of a linear sThan precursor, with a 24%
overall yield (Figure 3B). The obtained molecular weight of sThan m/z [M + H]

+ = 2433.34
was in line with its theoretical mass m/z [M + H]+ = 2433.28 (Figure 3C).

LC-MS analysis of purified rThan confirmed the same m/z [M + H]+ = 2433.30 Da,
indicating its uniformity with sThan (Figure S1). Hence, the developed strategy of constitu-
tive production of antimicrobial peptide results in active full-length rThan that could be
easily isolated from culture media with high purity.
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Figure 3. Chemical synthesis of thanatin. (A) HPLC profile of crude linear thanatin (53% purity): C18
column Phenomenex Luna (130 Å, 3.5 µm, 4.6 × 250 mm); temperature: 35 ◦C; flow: 1.0 mL/min;
eluent: 0.1% (v/v) TFA in H2O (buffer A) and 0.1% (v/v) TFA in CH3CN (buffer B), λ 220 nm; gradient:
5−60% of buffer B in 20 min. (B) HPLC profile of purified cyclized thanatin (95.7% purity): C18
column Phenomenex Luna (130 Å, 3.5 µm, 4.6 × 250 mm); temperature: 35 ◦C; flow: 1.0 mL/min;
eluent: 0.1% (v/v) TFA in H2O (buffer A) and 0.1% (v/v) TFA in CH3CN (buffer B), λ 220 nm;
gradient: 5−60% buffer B in 20 min. (C) MALDI-TOF mass spectrum of cyclized sThan: m/z
2433.34—experimental data for [M + H]+, 2433.28—theoretical.

2.4. Antimicrobial Activity Spectra of rThan

Antimicrobial activity testing was performed with a panel of pathogenic bacteria (in-
cluding MDR strains) and model E. coli strains to estimate the antimicrobial activity of sThan
and rThan produced by P. pastoris (Figure 4). The conventional antibiotic ciprofloxacin was
used as a control.

Recombinant rThan displayed similar activity to chemically synthesized sThan. The
identified MIC values showed that thanatin has potent activity against bacteria from the
Enterobacteriaceae family. Both sThan and rThan were more active than ciprofloxacin against
the multidrug-resistant (MDR) strain K. pneumoniae 0980 (p = 0.028, Mann–Whitney test),
demonstrating median MIC values of 10 µM, 10 µM, and 40 µM, respectively. Thanatin and
ciprofloxacin have different mechanisms of action [21,22,36], which mediate reasonable
rThan activity toward bacteria resistant to fluoroquinolone antibiotics. Therefore, thanatin
provides a new therapeutic option as an alternative to conventional antibiotics. Thanatin
was not active against MDR stains A. baumannii 444, P. aeruginosa 51911, and P. aeruginosa
522/17 under the tested conditions. Both sThan and rThan were inactive against the Gram-
positive bacteria Staphylococcus haemolyticus 515, Bacillus cereus X1, Enterococcus faecalis 125,
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and Staphylococcus aureus GFP at concentrations up to 40 µM, confirming its LPS-mediated
mechanism of action.
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Figure 4. Minimal inhibitory concentrations (MICs) of rThan and sThan toward a panel of Gram-
negative pathogens and model Escherichia coli strains.

Model E. coli strains were used to discriminate between permeability and transport
effects on thanatin activity. E. coli ∆lptD strain has increased permeability of the outer
membrane, and E. coli ∆tolC lacks efflux machinery, generally resulting in increased sen-
sitivity to antibiotics. One of the proposed mechanisms of thanatin action is based on
dysregulation of the LPS transport system (Lpt) [22]. Hence, thanatin was particularly
active against E. coli ∆lptD, resulting in a dramatic decrease in MIC compared to E. coli
BL21(DE3). Abolishing the antibiotic efflux machinery in E. coli ∆tolC has a lesser impact
on thanatin susceptibility, indicating that membrane permeability plays the main role in
the activity of thanatin against Gram-negative pathogens. Thus, AMPs having an increased
permeability toward the outer membrane and targeting the LPS transport system (Lpt)
have a high potential to become effective drug candidates.

No effect on the viability of the human cell line HEK293T was detected at concentra-
tions of rThan and sThan up to 256 µM.

2.5. Cocultivation Experiments Reveal Biocontrol Potential of rThan-Producing Yeasts

Constitutive production of rThan allows the detection of antimicrobial activity directly
from culture media. Hence, rThan-producing strains act as bioengineered biocontrol agents
that inhibit target bacteria in coculture.

To estimate the inhibitory landscape of rThan-producing yeast, a cocultivation assay
was performed with different yeast:bacteria ratios. E. coli ∆tolC strain expressing sfGFP was
used as a live biosensor bacterium and survival was estimated according to the fluorescence
signal (Figure 5).

rThan-producing P. pastoris inhibited reporter E. coli ∆tolC at various cell concentra-
tions after overnight incubation. The most pronounced inhibitory effect was observed at
a yeast concentration of 108 CFU/mL, which provided inhibition of bacteria at titers up
to 107 CFU/mL. At lower yeast titers, a clear inhibition of bacterial growth was observed
in the range of 3·105 to 106 CFU/mL. Thus, recombinant yeasts were shown to effectively
inhibit the growth of the tested model bacteria. This approach provides a convenient
model for the design of probiotics based on recombinant AMP-producing microorganisms.
However, further optimization of cultivation and probiotic characteristics is required.
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3. Discussion

Antibiotic resistance is spreading among pathogens and poses a serious threat to
public health. In 2015, the World Health Organization (WHO) declared the fight against
antibiotic-resistant pathogens a priority global problem. WHO released a list of priority
pathogens against which it is necessary to develop antimicrobials in the first place [37].
So-called ESCAPE pathogens include Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species.
Many strains of these bacteria also exhibit multidrug resistance. At the same time, the
mechanisms of resistance to antibiotics are highly diverse: these include direct modification
of the antibiotic, changes in the structure of the target binding site with the antibiotic, and
a decrease in the influx of the antibiotic into the cell due to changes in the operation of
transporters, as well as the formation of biofilms [38]. Thus, new antimicrobials must have
alternative mechanisms of action in order to overcome bacterial resistance. Antimicrobial
peptides have alternative mechanisms of action compared to conventional antibiotics and
therefore are ideal candidates for new antimicrobial drugs.

Clinical trials require a large amount of the test substance, so the development of
methods for obtaining antibiotics in large quantities is an urgent task. This work focused on
the production of the antimicrobial peptide thanatin in the cells of the methylotrophic yeast
Pichia pastoris. We have shown that the constitutive production of the peptide under the
control of the GAP promoter in the framework of fed-batch cultivation makes it possible
to obtain up to 20 mg/L of the purified peptide. Yeast cell factories for the production of
recombinant proteins are a good alternative to E. coli expression systems and mammalian
cells. They can rapidly increase biomass and, unlike mammalian cell lines, do not require
expensive media and equipment. At the same time, the native disulfide bond formation
allows them to obtain a rThan similar to chemically synthesized sThan that does not require
refolding, as was reported for E. coli cells [39]. The human cell line HEK293 was used
for thanatin production [40]. However, mammalian cell culturing elevates production
costs dramatically. Moreover, it could not be applied to the creation of biocontrol agents.
Examples of the production of antimicrobial peptides in yeast are known, but for some
AMPs, the yield is approximately hundreds of micrograms per liter, as in the case of
protegrin [41] or melittin [33]. We assume that the high production of thanatin in the
P. pastoris system is associated with its reduced toxicity towards yeast cells. Studies of
thanatin show that it has a low level of hemolysis [42] and low toxicity to mammalian
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cells [43]. This reduced toxicity may be because the main target of thanatin is the Lpt
system, which is absent in eukaryotes.

K. pneumoniae and Enterobacter spp. are dangerous pathogens, among which multire-
sistant strains are often found. In this work, it was shown that the obtained purified rThan
can inhibit the growth of K. pneumoniae and E. cloacae with MIC values of 10 and 20 µM,
respectively, which are similar to those for sThan. Thus, the yeast system can be used
for the effective production of thanatin, and the resulting peptide exhibits antimicrobial
activity similar to that of the chemically synthesized analog.

The beneficial feature of antimicrobial peptides is their genetically encoded nature,
which allows the use of a vast arsenal of molecular biology tools to create genetically
modified producers that efficiently counteract pathogenic microorganisms. Previously,
yeast P. pastoris was modified for biocontrol of the phytopathogen mold Penicillium expan-
sum [44], Gram-positive pathogenic bacteria Staphylococcus aureus [35], and Gram-negative
E. coli strains [34]. The biocontrol agents described above are applied to target specific
pathogens and, as in the case of antipenicillium yeasts, they require inductor addition. The
low cytotoxicity toward mammalian cells and exceptional specificity of thanatin toward
bacterial membranes [22] provide beneficial features for the development of thanatin-based
biocontrol agents. Although the probiotic features of P. pastoris were not extensively stud-
ied, there are several reports speculating their probable application as probiotics [45] and
highlighting their safety [46]. Here, we combined the high potential of yeast bioengineering
with the exceptional antimicrobial activity of thanatin, associated with low toxicity, to
broaden the arsenal of designer biocontrol agents and provide new AMP applications.
Hence, the further development of living biocontrol agents is of particular interest. Yeast
bioengineering provides a simple and efficient tool for their design. Here, we demonstrated
that the cocultivation of thanatin-producing yeast with model strain E. coli ∆tolC leads
to inhibition of the growth of the target bacterium. This effect is observed at various
concentrations of the effector and target, providing a highly promising concept of designer
living agents for the biocontrol of pathogens. Further studies on the effects of the combina-
tion of bioengineered microorganisms with other antimicrobial agents will propose novel
therapeutic strategies for the treatment of infectious diseases.

4. Materials and Methods
4.1. Bacterial and Yeast Strains

A bacterial strain collection including clinical isolates of Pseudomonas aeruginosa 51911,
Klebsiella pneumoniae 0980, Acinetobacter baumanii 444, Enterobacter cloaceae 185aa, Staphylococ-
cus haemolyticus 515, Bacillus cereus X1, and Enterococcus faecalis 125 was kindly provided
by Lytech Co. Ltd. (Moscow, Russia). Escherichia coli ∆lptD and Escherichia coli ∆tolC were
kindly provided by Professor Osterman I.A. and Pseudomonas aeruginosa MDR 522/17
was kindly provided by Professor Shamova O.V. Staphylococcus aureus GFP was described
previously [35]. Escherichia coli BL21(DE3) (Evrogen, Moscow, Russia) and Escherichia coli
XL-Blue (Evrogen, Russia) were used for plasmid cloning. Pichia pastoris GS115 was used
as a host organism for secreted rThan production.

4.2. Expression Vector Design and Construction

The expression vector was constructed from two parts.
For the first part, the intermediate vector pLvL1_GAP_MCS was prepared. Assembly

plasmids (Supplementary Table S1) from MoClo yeast [47] and MoClo pichia toolkits [48]
were used to generate the intermediate plasmid pLvL1_GAP_1 according to the proto-
col [47]. The resulting plasmid was amplified with PCR primers P1 and P2. The multiple
cloning site (MCS) sequence was synthesized by PCR using Primerize-predicted primers
P3 and P4 [49]. Both fragments were purified with the Cleanup kit (Evrogen, Russia)
and subjected to the HIFI DNA assembly reaction (New England Biolabs, Hitchin, UK)
followed by the transformation of E. coli XL-Blue. The resulting vector pLvL1_GAP_MCS
was verified by sequencing.
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For the second part, a region of the pPIC9K plasmid, including TT (transcription
terminator) and HIS4 sequences, was amplified by overlapping PCR to destroy the BsaI
restriction site at the HIS4 gene with primers P5–P8. The obtained PCR fragment (Fr1) was
purified with the Cleanup kit (Evrogen, Russia) for further cloning.

The pGAP4_MCS plasmid was constructed based on pLvL1_GAP_MCS and Fr1. The
fragment of pLvL1_GAP_MCS was PCR amplified with primers P9 and P10 and ligated
with Fr1 using the HIFI DNA assembly reaction (New England Biolabs, UK). The resulting
expression vector pGAP4_MCS was identified by PCR and verified by sequencing.

Thanatin coding sequence was codon optimized for efficient expression in Pichia
pastoris with GeneArt software (Thermo Fisher Scientific, Waltham, MA, USA). The cor-
responding sequence flanked by spacer sequences for homology recombination cloning
was obtained by PCR using P11 and P12 primers (Supplementary Table S2). The HiFi DNA
assembly kit (New England Biolabs, UK) was used to subclone the PCR product into the
expression vector pGAP4_MCS digested with BsaI restriction endonuclease. The resulting
expression vector pGAP4_rThan was identified by PCR and verified by sequencing.

4.3. Yeast Transformation, rThan Production and Purification

The yeast strain Pichia pastoris GS115 was transformed by electroporation according
to protocol [50] with the pGAP4_rThan plasmid linearized at the AvrII site. Transformed
cells were selected on RDB plates (1.34% (w/v) yeast nitrogen base, 0.00004% (w/v) biotin,
2% (w/v) glucose, 1M sorbitol, 1.8% (w/v) agar, 0.005% of L-glutamic acid, L-methionine,
L-lysine, L-leucine, and L-isoleucine) supplemented with 100 µg/mL of ampicillin and
kanamycin. The overnight culture of the selected yeast colony was used to inoculate
100 mL of buffered YPD medium (1% yeast extract, 2% peptone, 2% glucose, 100 mM
potassium phosphate pH 6.0) with final optical density A600 = 1. Recombinant yeasts
were cultured at 30 ◦C in 750 mL shake-flasks at 180 rpm for 48 h. Culture medium was
clarified by centrifugation at 5000 rpm for 5 min and filtered through a 0.22 um membrane.
Filtered culture media was applied to a SP Sepharose (GE Healthcare, Chicago, IL, USA)
1 mL column pre-equilibrated with 20 mM ammonium acetate pH 5.8 (buffer A) and
eluted with a linear gradient of buffer B (20 mM ammonium acetate pH 5.8, 1 M sodium
chloride) from 0 to 100%. Elution fractions were analyzed by Tricine-sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE). rThan concentration was
verified after Coomassie Brilliant Blue gel staining. Purified rThan was dialyzed overnight
in 20 mM Tris-HCl buffer pH 7.4 and stored at −20 ◦C. The final yield was estimated as
20 mg per 1 L of culture media.

4.4. Agar Overlay Assay

For agar overlay assay, P. pastoris clones were grown on YPD-agar plates (1% yeast
extract, 2% peptone, 2% glucose, 100 mM potassium phosphate pH 6.0, 1.8% agar) for
2 days at 30 ◦C. Soft agar (8 g/L tryptone, 2.5 g/L NaCl, 5 g/L yeast extract, 0.5% agar)
was melted, cooled to 42 ◦C, and inoculated with E. coli ∆tolC to a final concentration of
approximately 106 CFU/mL. P. pastoris colonies were then overlaid with inoculated soft
agar and incubated at 37 ◦C overnight.

4.5. Cocultivation with Target Bacteria

For the cocultivation assay, the E. coli ∆tolC strain producing sfGFP as a detection
marker was constructed according to previous work [51]. Cocultivation of rThan yeast with
target bacteria was provided according to the protocol described previously [35]. Briefly, E.
coli ∆tolC sfGFP and P. pastoris rThan overnight cultures were diluted with 2YT medium
(16 g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl) in 96-well culture plates using two-fold
serial dilutions starting with 4 × 108 and 108 CFU/mL, respectively, and incubated at 30 ◦C
overnight with vigorous shaking. sfGFP fluorescence was measured with a Varioskan Flash
multimode reader (Thermo Fisher Scientific, USA). One hundred percent target growth
corresponded to a fluorescence level at wells that contain target E. coli ∆tolC sfGFP only.
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Background level corresponded to a fluorescence of wells that did not contain target E. coli
∆tolC sfGFP.

4.6. Peptide Chemical Synthesis
4.6.1. Materials

N,N-Dimethylformamide (DMF), dichloromethane (DCM), and methyl tert-butyl
ether (MTBE) for peptide synthesis were purchased from Vecton (St. Petersburg, Rus-
sia). Acetonitrile for high-pressure liquid chromatography (HPLC) was purchased from
Honeywell Specialty Chemicals GmbH (Seelze, Germany). Fmoc-protected amino acids
(Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Gln(Trt)-
OH, Fmoc-Ile-OH, Fmoc-Lys(Boc)-OH, Fmoc-Met-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-
OH, Fmoc-Tyr(tBu)-OH, Fmoc-Val-OH, and Fmoc-Pro-OH), 2-chlorotrityl chloride resin
(100–200 mesh), and O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophos-
phate (HBTU) for solid-phase synthesis were obtained from Iris Biotech GmbH (Marktredwitz,
Germany). Trifluoroacetic acid (TFA), triisopropylsilane (TIS), and N-methylmorpholine
(NMM) were obtained from Sigma-Aldrich (Darmstadt, Germany). All other chemicals
were purchased from Sigma-Aldrich (Darmstadt, Germany).

4.6.2. Peptide Synthesis

The linear precursor of sThanatin was synthesized by the solid-phase peptide syn-
thesis method on a scale of 0.1 mmol. Then, 250 mg of 2-chlorotrityl chloride resin
(100–200 mesh, Iris Biotech) was swelled in dichloromethane (DCM) for 30 min in a
polypropylene vessel [52,53]. The first amino acid was directly coupled to the resin using
2% N-methylmorpholine (NMM) in DCM, with shaking for 1 h on a Heidolph Multi Reax
shaker. The resin was then capped by adding methanol directly into the reaction vessel.
Subsequent amino acids were coupled (without preactivation) using 0.4 mmol of Fmoc-
protected amino acid, 0.4 mmol of HBTU coupling agent, and 0.8 mmol NMM in dimethyl-
formamide (DMF), with shaking for 1 h [54]. Between amino acid couplings, the Fmoc-
protecting group was removed via two 10 min agitations with 20% 4-methylpiperidine in
DMF [55]. Removal of the final Fmoc-protecting group completed the peptide synthesis.
The peptide was cleaved from the resin via a 2 h reaction with a cleavage cocktail consisting
of 95:2.5:2.5 TFA:TIS:water [56]. Following cleavage, the resin was washed with TFA and
DCM, and the volume of the cleavage solution was reduced by evaporation with nitrogen.
The peptide solution was then transferred into cold methyl tert-butyl ether (MTBE) to
precipitate the peptide. Centrifugation at 4000 rpm for 5 min pelleted the peptide. The
peptide was dried, then dissolved in a minimal amount of 5% acetic acid and lyophilized.

4.6.3. Disulfide Bond Formation in Thanatin

The crude-reduced thanatin precursor (50 mg, 0.02 mmol, HPLC purity 52.3%) was
introduced into a 100 mL round-bottom flask, and a mixture of water and acetonitrile (1:1,
50 mL) was added and then stirred for approximately 15 min. Initially, the measured pH,
being 2.5, was adjusted to 6.5 by adding NH4OH (10%) dropwise. After the mixture was
mechanically stirred for 22 h at 350 rpm, at room temperature, the reaction was quenched
by adding TFA, adjusting the pH to 2.5. The reaction mixture was then lyophilized without
further evaporation [57]. The crude thanatin was obtained with 46% HPLC purity. The
molecular mass of the oxidized peptide was certified using mass spectrometry MALDI-TOF
data (m/z): [M + H]+ 2433.34 found; 2432.27 calculated.

4.6.4. Peptide Purification

Preparative HPLC runs were performed on a Symmetry C18 column (19 × 300 mm,
5 µm, Waters, Eschborn, Germany), using linear gradients water–acetonitrile (with 0.1%
TFA) 5–60% for 60 min with a flow rate of 8 mL/min (Figure 3). Fractions with more
than 95% HPLC homogeneity and with the expected molecular mass of the peptide were
combined, lyophilized, and used in subsequent experiments.
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4.7. Evaluation of Antimicrobial Activity

The minimal inhibitory concentrations (MIC) were estimated with a microwell broth
dilution assay. In brief, tested bacteria were diluted in 2YT media (10 g/L yeast extract,
16 g/L tryptone, 5 g/L NaCl) to a final concentration of approximately 1 × 106 CFU/mL in
a 96 microwell plate and the rThan sample was added to generate two-fold serial dilutions.
Serial dilutions of ciprofloxacin were used as a control for antimicrobial activity. Plates
were incubated at 37 ◦C with shaking at 450 rpm. MIC was determined as the lowest
concentration of peptide that inhibits the growth of tested bacteria after 16 h of incubation
at 37 ◦C. MICs were determined in triplicate and analyzed by t-test and non-parametric
(Mann–Whitney) tests using Prism 7 (GraphPad) software.

4.8. Evaluation of Cytotoxicity

The cytotoxicity of thanatin toward human cells was determined by the MTT assay [58].
Briefly, HEK 293T cells were cultured in DMEM (Gibco, Waltham, MA, USA) supplemented
with 10% fetal bovine serum (Gibco, USA) and GlutaMAX (Gibco, USA). Cells were seeded
in a 96-well plate at a concentration of 1× 104 cells/well and incubated in a 5% CO2
incubator at 37 ◦C. After 16 h, cells were exposed to various concentrations (1–256 µM)
of thanatin for 72 h. After thanatin treatment, MTT (Sigma-Aldrich, USA) solution in
DPBS (5 mg/mL) was added to a final concentration of 0.45 mg/mL, followed by a 2 h
incubation at 37 ◦C. Formazan crystals were dissolved by the addition of an equal volume
of solubilization solution (40% (v/v) dimethylformamide (Sigma-Aldrich, USA), 2% (v/v)
glacial acetic acid (Sigma-Aldrich, USA), and 16% (w/v) sodium dodecyl sulfate (Sigma-
Aldrich, USA). Finally, the absorbance was measured at 570 nm using a Varioskan Flash
multimode reader (Thermo Fisher Scientific, USA). MICs were determined in triplicate and
analyzed by t-test using Prism 7 (GraphPad) software.

4.9. Liquid Chromatography and Mass Spectrometry

Samples were loaded into a trap column 50 × 0.1 mm, packed with Inertsil ODS3
3 mm (GL Sciences, Tokyo, Japan) sorbent (Dr. Maisch, Ammerbuch, Germany), in the
loading buffer (2% ACN, 98% H2O, 0.1% TFA) at 4 mL/min flow, and separated at RT in a
home-packed [59] fused-silica column 300 × 0.1 mm packed with Reprosil PUR C18AQ 1.9
(Dr. Maisch, Germany) into an emitter prepared with P2000 Laser Puller (Sutter, Atlanta,
GA, USA). Reverse-phase chromatography was performed with an Ultimate 3000 Nano
LC System (Thermo Fisher Scientific, USA), which was coupled to the Q Exactive Plus
Orbitrap mass spectrometer (Thermo Fisher Scientific, USA) via a nano electrospray source
(Thermo Fisher Scientific, USA). Peptides were loaded in a loading solution (98% 0.1%
(v/v) formic acid, 2% (v/v) acetonitrile) and eluted with a linear gradient: 3–6% B for 3 min,
6–25% B for 30 min, 25–40% B for 25 min, 40–60% B for 4 min, 60% B for 3 min, 60–99%
B for 0.1 min, 99% B for 10 min, and 99–2% B for 0.1 min at a flow rate of 500 nl/min.
Buffer A was 5% acetonitrile and 0.1% formic acid and buffer B was 80% acetonitrile and
0.1% formic acid. MS1 parameters were as follows: 70K resolution, 350–1600 scan range,
max injection time—35 msec, and AGC target—3 × 106. Ions were isolated with 1.4 m/z
window, preferred peptide match, and isotope exclusion. Dynamic exclusion was set to
30 s. MS2 fragmentation was carried out in HCD mode at 17.5 K resolution with HCD
collision energy 30%, max injection time—80 ms, and AGC target—1 × 105. Other settings:
charge exclusion—unassigned, 1, >7.

5. Conclusions

Here, a self-maintaining source of antimicrobial activity was engineered by the consti-
tutive expression of AMP thanatin in the yeast P. pastoris. A simple purification scheme
was adopted for the high-scale production of recombinant thanatin (rThan). rThan was
equivalent to the chemically synthesized thanatin, mediating antibacterial activity on a
panel of bacteria, including the MDR pathogen Klebsiella pneumoniae 0980. The model target
bacterium E. coli ∆tolC was efficiently inhibited by bioengineered yeasts in a cocultivation
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assay. These results will facilitate research in the field of directed creation of biocontrol
agents. Further improvement in the antimicrobial activity of thanatin may be achieved by
increasing the permeability of the outer membrane with respective antimicrobials such as
pore-forming AMP or antibiotics. Overall, the achieved results support a growing trend
in the consideration of AMP-based antibiotics as a part of antimicrobial strategies. We
believe that yeast bioengineering and AMP development will provide novel prospects for
the construction of living biocontrol agents and the implementation of alternative strategies
to counteract antibiotic resistance.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/antibiotics12121719/s1: Figure S1: MS spectrum of rThan obtained
by electrospray LC-MS; Table S1: List of plasmids used in this study; Table S2: List of oligonucleotides
used in this study.
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