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Abstract: Background: The objective was to identify associations between beta-lactam pharma-
cokinetic/pharmacodynamic (PK/PD) targets and Gram-negative bacteria resistance emergence in
patients. Methods: Retrospective data were collected between 2016 to 2019 at the University of Florida
Health-Shands Hospital in Gainesville, FL. Adult patients with two Gram-negative isolates receiving
cefepime, meropenem, or piperacillin-tazobactam and who had plasma beta-lactam concentrations
were included. Beta-lactam exposures and time free drug concentrations that exceeded minimum
inhibitory concentrations (ƒT > MIC), four multiples of MIC (ƒT > 4× MIC), and free area under the
time concentration curve to MIC (ƒAUC/MIC) were generated. Resistance emergence was defined as
any increase in MIC or two-fold increase in MIC. Multiple regression analysis assessed the PK/PD
parameter impact on resistance emergence. Results: Two hundred fifty-six patients with 628 isolates
were included. The median age was 58 years, and 59% were males. Cefepime was the most common
beta-lactam (65%) and Pseudomonas aeruginosa the most common isolate (43%). The mean daily
ƒAUC/MIC ≥ 494 was associated with any increase in MIC (p = 0.002) and two-fold increase in MIC
(p = 0.004). The daily ƒAUC/MIC ≥ 494 was associated with decreased time on antibiotics (p = 0.008).
P. aeruginosa was associated with any increase in MIC (OR: 6.41, 95% CI [3.34–12.28]) or 2× increase
in MIC (7.08, 95% CI [3.56–14.07]). Conclusions: ƒAUC/MIC ≥ 494 may be associated with decreased
Gram-negative resistance emergence.

Keywords: drug resistance; gram-negative bacteria; beta-lactams; pharmacokinetic/pharmacodynamic

1. Introduction

Antimicrobial resistance puts millions of lives at risk, and in the United States,
antimicrobial-resistant bacteria and fungi contribute to more than 35,000 deaths each
year [1,2]. Antimicrobial resistance occurs when changes in bacteria cause the drugs used
to treat them to become less effective [3]. Gram-negative resistance is especially a con-
cern regarding Enterobacterales and Pseudomonas aeruginosa, which have demonstrated
resistance to all available antibiotics through varying mechanisms [1,4]. Gram-negative bac-
teria are highly adaptable to antibiotics, warranting a judicious use to minimize resistance
emergence [5]. In addition, given the slow development of new antibiotics, alternative
strategies to minimize resistance emergence are necessary, such as optimizing pharmacoki-
netic/pharmacodynamic (PK/PD) drug targets [6–9].

Beta-lactams are the most commonly used class of antibiotics, and their bacterial
killing depends upon the percent of time that free drug concentrations remain above the
bacteria minimum inhibitory concentration (ƒT > MIC) [10]. Clinical data have suggested
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that PK/PD targets such as 100% ƒT > 4–5× MIC may be necessary to improve clinical and
microbiological outcomes [11–13]. Given that beta-lactams are widely used due to their
broad efficacy and excellent safety profile, resistance to them is particularly concerning [6].
Consensus is currently lacking as to what PK/PD target maximizes beta-lactams’ clinical
efficacy while also minimizing resistance emergence [14]. It may be expected that the
pharmacodynamic driver for resistance suppression would be the same as for bacterial
cell killing, but this is not always the case [15]. Given the lack of evidence, the purpose of
this study was to identify associations between beta-lactam PK/PD targets and resistance
emergence in patients with Gram-negative bacterial infections.

2. Results

In total, 256 patients with 628 Gram-negative isolates were included. The median
(interquartile range) age and body mass index (BMI) were 58 (42–69) years and
26 (21.4–33.4) kg/m2, respectively (Table 1). Seventy-nine percent of patients were critically
ill at the start of beta-lactam antibiotics. The most common Gram-negative isolates were
P. aeruginosa (43%), Escherichia coli (14%), and Klebsiella pneumoniae (8%). The most com-
mon culture types were from the lung (38%) and blood (38%). Multi-drug resistance was
identified in 9.8% of isolates. Most patients received cefepime (65%). Fifteen (6%) patients
received more than one study antibiotic, but not concurrently.

Table 1. Patient characteristics, n = 256 patients.

Clinical Characteristics Median (IQR) or n (%)

Age, years 58 (42–69)

Sex, Male 151 (59)

Weight, kg 73.6 (60.9–94.3)

Serum creatinine, mg/dL 0.81 (0.57–1.27)

BMI, kg/m2 26 (21.4–33.4)

Renal replacement therapy 44 (17)

Liver Disease 78 (30)

COPD 55 (21)

Diabetes 113 (44)

Heart failure 105 (41)

Mechanical Ventilation 66 (26)

Patient in ICU at beta-lactam initiation 203 (79)

Length of stay, days
ICU
Hospital

14 (2–29)
25 (16–47)

Mortality 122 (48)

Gram-negative isolates, n 628

Common isolated bacteria, n (% developing resistance)
Pseudomonas aeruginosa
Escherichia coli
Klebsiella pneumoniae
Enterobacter cloacae
Serratia marcescens
Proteus mirabilis
Acinetobacter baumannii
Klebsiella aerogenes

134 (35.6)
30 (6.7)

26 (11.5)
20 (0)

19 (5.2)
14 (0)

14 (14.2)
10 (10)
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Table 1. Cont.

Clinical Characteristics Median (IQR) or n (%)

Multi-drug resistant isolates # 62 (9.8)

All Culture Sources
Lung
Blood
Wound
Urinary Tract
Abscess/body fluid
Other

233
230
80
36
32
17

Culture Sources (Same Final and Initial Source)
Lung
Blood
Wound
Urinary Tract
Abscess/body fluid
Other

204
214
46
32
16
6

Beta-lactam Received ˆ

Cefepime
Meropenem
Piperacillin/tazobactam

179 (65)
54 (20)
41 (15)

Number of samples
Cefepime
Meropenem
Piperacillin/tazobactam

316
91
73

Beta-lactam therapy duration, days 8 (5–14)

Time between cultures, days 7 (4–15)

Time between start of beta-lactam therapy and TDM, days 3 (2–8)

Concomitant Antibiotics
-Aminoglycoside
-Fluoroquinolone
-Polymyxin

124 (48)
57 (22)
30 (12)

IQR—interquartile range; BMI—body mass index; COPD—chronic obstructive pulmonary disease; ICU—intensive
care unit; TDM—therapeutic drug monitoring; ˆ Total = 274. Fifteen patients received more than one
beta-lactam during the study period; # Multidrug resistant (MDR) isolates include extended spectrum beta-
lactamase (ESBL) Enterobacterales, carbapenem-resistant (CR) Enterobacterales, MDR-Pseudomonas aeruginosa, MDR-
Acinetobacter baumannii, or any bacteria non-susceptible to ≥1 agent in ≥3 antimicrobial categories.

Figure 1 shows beta-lactam target attainment stratified by beta-lactam and time win-
dow (0–24 h, 0–7 days, and duration of therapy). In the first 24 h, 81% and 45% (ce-
fepime), 70% and 48% (meropenem), and 37% and 16% (piperacillin) achieved 100% ƒT
> MIC and 100% ƒT > 4× MIC, respectively. In the first 7 days, 61% and 34% (cefepime),
55% and 38% (meropenem), and 18% and 2% (piperacillin) achieved 100% ƒT > MIC
and 100% ƒT > 4× MIC. For the total duration of antibiotics, 49% and 24% (cefepime),
50% and 34% (meropenem), and 14% and 2% (piperacillin) achieved 100% ƒT > MIC and
100% ƒT > 4× MIC, respectively. Figure 2 shows the mean (SD) daily ƒAUC/MIC stratified
by beta-lactam. Meropenem had the highest mean free area under the time concentra-
tion curve to MIC (ƒAUC/MIC) of 708 (999), followed by cefepime with a mean daily
ƒAUC/MIC of 500 (499), and then piperacillin with a mean AUC/MIC of 145 (175).

Nineteen percent of isolates had an increase in MIC between cultures, of which 77%
was due to P. aeruginosa. After testing for associations between baseline characteristics
and resistance, renal replacement therapy (RRT) during admission, intensive care unit
(ICU) length of stay (LOS), hospital LOS, mechanical ventilation, and days between first
and second culture were significantly associated with resistance (Table 2). The Sequential
Organ Failure Assessment (SOFA) score was associated with a two-fold increase in MIC.
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These covariates were controlled for in the multiple regression analysis (Table 3). Classi-
fication and regression tree (CART) analysis determined a significant ƒAUC/MIC target
of 494 associated with resistance emergence that was included in the models. Subjects
with a mean daily ƒAUC/MIC ≥ 494 had significantly less resistance emergence when
defined as any increase in MIC (aOR 0.25, 95% CI [0.11–0.61]) or at least a two-fold increase
in MIC (aOR 0.27, 95% CI [0.11–0.67]). These relationships held true even in a subgroup
analysis including only initial and final culture types of the same source. In the subgroup
analysis, a daily ƒAUC/MIC ≥ 494 was significantly associated with an increased risk
of Gram-negative resistance emergence when defined as any increase in MIC (aOR 0.33,
95% CI [0.13–0.87]) or at least a two-fold increase in MIC (aOR 0.38, 95% CI [0.14–0.99]).
No associations were found between ƒT > MIC and Gram-negative resistance emergence.
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Figure 1. Violin plots showing PK/PD target attainment stratified by beta-lactam. PK/PD—pharma-
cokinetic/pharmacodynamic; MIC—minimum inhibitory concentration; ƒT > MIC—time free drug
concentrations exceed minimum inhibitory concentration; ƒT > 4× MIC—time free drug concentra-
tions exceed four multiples of MIC.

Table 2. Univariate analysis.

Resistance
(Any Increase in MIC)

Resistance
(≥2× MIC Increase)

Covariates OR p-Value OR p-Value

Age (per 1 year) 0.99 0.08 0.99 0.35
BMI (per 1 kg/m2) 1.00 0.73 1.00 0.82
RRT during admission 2.24 0.03 2.50 0.01
Days on antibiotic therapy (per 1 day) 1.01 0.06 1.01 0.06
Days between cultures (per 1 day) 1.06 <0.0001 1.06 <0.0001
Mechanical Ventilation 2.27 0.007 2.61 0.002
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Table 2. Cont.

Resistance
(Any Increase in MIC)

Resistance
(≥2× MIC Increase)

Covariates OR p-Value OR p-Value

Hospital LOS (per 1 day) 1.01 <0.0001 1.01 <0.0001
ICU LOS (per 1 day) 1.02 <0.0001 1.02 <0.0001
Diabetes 1.14 0.67 0.94 0.88
Liver Disease 1.38 0.28 1.30 0.43
COPD 1.38 0.39 1.38 0.38
Heart Failure 1.18 0.56 1.36 0.30
SOFA Score (per 1 point) 1.05 0.12 1.08 0.02

Note: MIC—minimum inhibitory concentration; BMI—body mass index; RRT—renal replacement therapy;
LOS—length of stay; ICU—intensive care unit; COPD—chronic obstructive pulmonary disease; SOFA—sequential
organ failure assessment.
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Figure 2. Bar graphs showing mean (standard deviation) daily ƒAUC/MIC stratified by beta-lactam.
ƒAUC/MIC—free area under the time concentration curve to minimum inhibitory concentration.

P. aeruginosa was found to be significantly associated with bacterial resistance emer-
gence for both any increase in MIC (OR: 6.41, 95% CI [3.34–12.28]) and at least a two-fold
increase in MIC (7.08, 95% CI [3.56–14.07]).

Figure 3 shows the Kaplan–Meier curve for the time on beta-lactams based upon
the mean daily ƒAUC/MIC target attainment. Thirty-one percent achieved a mean daily
ƒAUC/MIC ≥ 494. Patients achieving ƒAUC/MIC ≥ 494 had a significantly shorter time
on antibiotics (p = 0.008).
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Table 3. Final statistical models with PK/PD predictors.

Resistance (Any Increase in MIC) Resistance (≥2× MIC Increase)

PK/PD Parameter aOR (95% CI) p-Value aOR (95% CI) p-Value

% ƒT > MIC 0–24 h (per 10%) 0.96 (0.88–1.07) 0.50 1.06 (0.95–1.20) 0.34

% ƒT > 4× MIC 0–24 h (per 10%) 0.98 (0.91–1.06) 0.64 1.02 (0.94–1.10) 0.71

% ƒT > MIC 0–7 d (per 10%) 1.06 (0.95–1.21) 0.31 1.08 (0.94–1.24) 0.27

% ƒT > 4× MIC 0–7 d (per 10%) 1.03 (0.94–1.12) 0.51 1.08 (0.99–1.19) 0.08

% ƒT > MIC duration of therapy (per 10%) 0.98 (0.89–1.08) 0.67 1.03 (0.92–1.14) 0.63

% ƒT > 4× MIC duration of therapy (per 10%) 0.99 (0.92–1.09) 0.95 1.03 (0.94–1.13) 0.53

Mean daily ƒAUC/MIC (per increments of 10) 0.99 (0.98–1.00) 0.08 1.00 (0.99–1.001) 0.17

Mean daily ƒAUC/MIC of 494 achieved (yes) 0.25 (0.11–0.61) 0.002 0.27 (0.11–0.67) 0.004

Note: MIC—minimum inhibitory concentration; PK/PD—pharmacokinetic/pharmacodynamic; aOR—adjusted
odds ratio; CI—confidence interval.
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3. Discussion

This study’s objective was to identify associations between beta-lactam target attain-
ment and the prevention of resistance emergence in patients with Gram-negative infections.
In the covariate analysis, RRT, mechanical ventilation, ICU LOS, hospital LOS, and days be-
tween first and last culture were associated with resistance. The SOFA score was associated
with a two-fold increase in MIC. The mean daily ƒAUC/MIC ≥ 494 was associated with
a decreased risk of resistance development. Time-to-event analysis showed that patients
achieving a mean daily ƒAUC/MIC ≥ 494 had less time on beta-lactam therapy. These
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results indicate that optimizing daily beta-lactam ƒAUC/MIC exposure may minimize
Gram-negative resistance and the duration of therapy.

In a previous study of 76 patients receiving either cefepime or ceftazidime, researchers
aimed to characterize the relationship between PD parameters and clinical and microbiolog-
ical outcomes. Patients were included if they had sepsis and suspected or proven infection
due to a pathogen susceptible to cefepime/ceftazidime. Patient PK parameters were esti-
mated from doses administered and patient-specific data. Patients achieving ƒAUC/MIC
ratios ≥ 250 had significantly higher rates of clinical cure (p = 0.002) and bacteriological
eradication (p < 0.001) [16]. In a study by Schentag et al., researchers performed simulations
to evaluate ƒAUC/MIC targets for cefmenoxime, tobramycin, and ciprofloxacin. They
found that for cefmenoxime, a cephalosporin, an ƒAUC/MIC ratio of 540 per 24 h was
required for bacterial eradication. They also proposed that each antibiotic has a unique
24-h ƒAUC/MIC value associated with bacterial eradication at 4 days [17]. Our PK/PD
target of 494 falls within the ranges from the previously published literature and may be
beneficial for clinical outcomes, bacterial eradication, and/or resistance suppression.

In general, the efficacy of beta-lactams depends upon ƒT > MIC, with 40–70% ƒT > MIC
proposed as the minimum threshold for bactericidal activity [18]. In a study by Gatti et al.,
116 ICU patients receiving beta-lactam continuous infusions for Gram-negative infections
with at least one therapeutic drug monitoring in the first 72 h of treatment were assessed
for PK/PD target thresholds. Steady state concentration/MIC ratios ≤ 5 were associated
with microbiological failure. In addition, P. aeruginosa infection was associated with micro-
biological failure [14]. Felton et al. compared piperacillin/tazobactam PK/PD indices to
suppress bacterial resistance in both high and low burdens of P. aeruginosa. A Cmin/MIC
of 3.4 was required, unless the bacterial burden was high, in which case a Cmin/MIC of
4.6 was needed [19]. In our study, we did not find an association between ƒT > MIC and
ƒT > 4× MIC with the emergence of Gram-negative resistance. However, based upon the
findings of the previous study and increased target concentrations with a high bacterial
burden, there is the potential that our targets of ƒT > MIC and ƒT > 4× MIC were not
sufficient to suppress bacterial resistance. In addition, P. aeruginosa was responsible for
approximately 43% of the isolates in our study and was an independent risk factor for
resistance emergence, which may have impacted the ability of PK/PD target attainment to
suppress resistance emergence.

Beta-lactam target attainment (ƒT > MIC, ƒT > 4× MIC, and ƒAUC/MIC ≥ 494)
for patients in the present study was in general poor, especially for piperacillin. The
low target attainment could be due to the high percentage of ICU patients (approxi-
mately 79%) who have an increased risk of pharmacokinetic variability. Of note, while
patients achieving daily ƒAUC/MIC ≥ 494 had significantly less time on antibiotics, only
31% of patients met this target. In a previous study of 80 ICU patients receiving cefepime,
meropenem, and piperacillin-tazobactam, researchers found that serum concentrations
remained 4× above target concentrations for the P. aeruginosa breakpoint for 34% (ce-
fepime), 57% (meropenem), and 33% (piperacillin-tazobactam) of the dosing interval. They
concluded that only meropenem had acceptable serum concentrations and that more ag-
gressive dosing may be needed to empirically cover pathogens, especially in critically
ill patients [20]. The EXPAT study was a prospective observational study in two ICUs.
Researchers enrolled patients receiving beta-lactam antibiotics and collected drug sam-
ples on day 2 of therapy. Of 147 patients, researchers concluded that 63.3% and 36.7% of
patients achieved 100% ƒT > MIC and 100% ƒT > 4× MIC, respectively. They identified
male gender, high BMI, and elevated eGFR as risk factors for target non-attainment [21].
While our study did not find an association between ƒT > MIC or ƒT > 4× MIC, we have
demonstrated that ƒAUC/MIC target attainment decreased time on antibiotics, which
provides further support for early target attainment in clinical practice. Therefore, due
to the risks of subtherapeutic beta-lactam concentrations and the benefits of early target
attainment, especially in critically ill patients, therapeutic drug monitoring would ideally
be initiated on day 1 of beta-lactam therapy to improve target attainment.
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There are limitations to this study. This was a retrospective study utilizing data from
a single center with a high percentage of critically ill patients, which may limit external
generalizability to other sites. In addition, protein binding values were estimated and used
to calculate the unbound fraction, as total drug concentrations were measured. Unbound
fractions may be highly variable due to critical illness, hypoalbuminemia, and chronic
kidney disease. Sixteen percent of patients received renal replacement therapy during
beta-lactam therapy. However, the models used to generate beta-lactam exposures do not
account for patients receiving renal replacement therapy, so beta-lactam exposures may
have been impacted. In addition, it is generally accepted that MICs have variability, with
repeat assessments potentially producing MIC values that differ by 200% [22]. Additionally,
due to the retrospective nature of the study, bacterial cultures were ordered by the treating
team and were not taken at scheduled intervals. Although controlled for in analysis, future
studies should utilize scheduled intervals to obtain cultures to assess resistance emergence.

4. Materials and Methods
4.1. Data Collection

This retrospective study utilized pooled data from the UF Health-Shands hospital in
Gainesville, Florida, USA between 2016 to 2019. Patients were included if ≥18 years old,
had two separate cultures positive for Gram-negative bacteria during the same hospitaliza-
tion, were receiving cefepime, meropenem, or piperacillin (administered with tazobactam),
and had beta-lactam concentrations measured during therapy as part of the usual thera-
peutic drug monitoring service [23]. Cultures were included if collected from the same
site at least one day apart. The first culture was included if it was before or at the start of
antibiotic therapy, and subsequent cultures were included if collected up to 30 days after
therapy discontinuation. Additional data collected included age, BMI, ICU LOS, hospital
LOS, SOFA score, days on antibiotic therapy, days between cultures, and clinical factors,
such as renal replacement therapy, mechanical ventilation, diabetes, liver disease, chronic
obstructive pulmonary disease (COPD), and heart failure. These covariates were chosen
due to their potential to be associated with resistance emergence [24–27].

Resistance was defined as any increase in minimum inhibitory concentration (MIC)
or at least a two-fold increase in MIC. If the second culture had no growth, it was con-
sidered susceptible. If multiple MICs were available after the first culture, the highest
available MIC was used. MICs were determined by the UF-Health Shands microbiology.
Methods to identify bacteria and MICs included VITEK® Mass Spectrometry and Vitek® II
(bioMérieux, Inc., Durham, NC, USA). Etest was utilized for MIC quantification for the fol-
lowing bacteria (beta-lactam) combinations: Acinetobacter spp. (cefepime, meropenem, and
piperacillin), Burkholderia cepacia complex (meropenem), and Gram-negative non-fermenters
(cefepime, meropenem, and piperacillin). Multidrug-resistant (MDR) isolates were defined
as extended spectrum beta-lactamase (ESBL) Enterobacterales, carbapenem-resistant (CR)
Enterobacterales, MDR-Pseudomonas aeruginosa, MDR-Acinetobacter baumannii, or any bacteria
non-susceptible to ≥1 agent in ≥3 antimicrobial categories [4,28–30].

Following collection, total beta-lactam plasma concentrations were quantified using
liquid chromatography with tandem mass spectrometry assays at the Infectious Disease
Pharmacokinetics Laboratory at UF. The calibration range was 2–100 mg/L with an inter-
and intra-day accuracy and precision < 10%. Values below the limit of quantification
were assigned a value of “0” for analysis. Free drug concentrations were estimated us-
ing previously published values (80% for cefepime, 98% for meropenem, and 70% for
piperacillin) [31–33].

Posterior predictions were generated using the nonparametric adaptive grid (NPAG) in
Pmetrics v1.9.7 (Laboratory of Applied Pharmacokinetics and Bioinformatics, Los Angeles,
CA, USA) with previously published cefepime, meropenem, and piperacillin models, drug
doses, drug concentrations, and covariates, including renal function (CrCl or SCr), weight,
and age [34–36]. Beta-lactam exposure was generated from initiation of antibiotics up until
therapy discontinuation or the time of resistant bacteria culture collection, whichever was
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reported first. Beta-lactam posterior predictions were imported to Phoenix WinNonlin
v8.3.4 (Certara, Princeton, NJ, USA) to calculate the free area under the time concentration
curve (ƒAUC) and ƒT > MIC and ƒT > 4× MIC for 0–24 h, 0–7 days, and the duration
of beta-lactam therapy or up to the day of resistant bacterial culture. Calculated ƒAUC
was used to estimate mean daily ƒAUC to MIC (ƒAUC/MIC) ratios. If patients received
beta-lactam therapy for less than or had a resistant bacteria culture in less than 7 days,
PK/PD calculations were stopped after the last dose of beta-lactam.

4.2. Statistical Analysis

Statistical analysis was performed on JMP Pro v17 (SAS Institute, Cary, NC, USA).
Continuous data were presented as the median and interquartile range (IQR) and categori-
cal data as count and percentages. Covariates including age, BMI, RRT, days on antibiotics,
days between first and last culture, mechanical ventilation, hospital and ICU LOS, diabetes,
liver disease, COPD, heart failure, and SOFA score were tested individually for association
with resistance emergence (defined as both any increase in MIC or ≥2× increase in MIC)
in a univariate analysis. Significant covariates identified in the univariate analysis were
included and controlled for in the final multiple regression models, and PK/PD parame-
ters were tested individually for associations with bacterial resistance. PK/PD parameters
tested in the multiple regression models included the mean daily ƒAUC/MIC and ƒT > MIC
and ƒT > 4× MIC for 0 to 24 h, 0 to 7 days, and the duration of therapy. Classification and
regression tree (CART) analysis was used to test PK/PD parameters including fT > MIC
and ƒAUC/MIC for breakpoint values of significance. These breakpoints were then tested
in the multiple regression models for associations with bacterial resistance. A subgroup
analysis was also conducted to test PK/PD relationships with resistance emergence when
only using cultures of the same source. The same significant covariates were included in the
final multiple regression model. Kaplan–Meier estimators were reported for associations
between PK/PD parameters and the time on beta-lactam therapy. A p-value of less than
0.05 was considered statistically significant for all analyses.

5. Conclusions

Daily ƒAUC/MIC ≥ 494 may be associated with a decreased risk of Gram-negative
resistance emergence and a reduced duration of antibiotics. These results could be a
potential PK/PD target for future investigations, such as interventional prospective studies
with a larger sample size. P. aeruginosa was significantly associated with an increase in
resistance emergence. No associations between resistance emergence and ƒT > MIC and
ƒT > 4× MIC were found.
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