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Abstract: In his 1945 Nobel Prize acceptance speech, Sir Alexander Fleming warned of antimicrobial
resistance (AMR) if the necessary precautions were not taken diligently. As the growing threat of
AMR continues to loom over humanity, we must look forward to alternative diagnostic tools and
preventive measures to thwart looming economic collapse and untold mortality worldwide. The
integration of machine learning (ML) methodologies within the framework of such tools/pipelines
presents a promising avenue, offering unprecedented insights into the underlying mechanisms of
resistance and enabling the development of more targeted and effective treatments. This paper
explores the applications of ML in predicting and understanding AMR, highlighting its potential
in revolutionizing healthcare practices. From the utilization of supervised-learning approaches to
analyze genetic signatures of antibiotic resistance to the development of tools and databases, such as
the Comprehensive Antibiotic Resistance Database (CARD), ML is actively shaping the future of AMR
research. However, the successful implementation of ML in this domain is not without challenges.
The dependence on high-quality data, the risk of overfitting, model selection, and potential bias in
training data are issues that must be systematically addressed. Despite these challenges, the synergy
between ML and biomedical research shows great promise in combating the growing menace of
antibiotic resistance.
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1. Understanding the Scale of AMR

In 1928, Sir Alexander Fleming inadvertently ushered in the modern era of antibi-
otics, following his groundbreaking discovery of penicillin. With the onset of the Second
World War, penicillin would become mass-produced and prove to be instrumental in the
treatment of wounded soldiers, given its impressive chemotherapeutic properties. This
significantly reduced the mortality rate that was previously caused by common infectious
diseases, marking a revolutionary milestone for global healthcare. After garnering world-
wide popularity as a wonder drug, penicillin became widely available to the public. This
spurred searches for other antibiotics, culminating in the identification of multiple antibi-
otic classes. Unfortunately, the decades following these medical breakthroughs have seen
deleterious consequences to public health. This is mainly attributed to two reasons: first,
the rampant misuse of antibiotics—particularly in developing countries [1]—has led to the
proliferation of numerous antibiotic-resistant bacterial strains. Second, the golden age of
antibiotic discovery dramatically dwindled after the 1960s, which led to a “discovery void”
(Figure 1); wherein very few new antibiotics have been brought to light, further compound-
ing the issue [2].
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Figure 1. Timeline showcasing the discovery of various antibiotic classes used clinically. The “golden
age” spans the period from the 1940s to 1960, during which sources of half of today’s commonly
prescribed drugs were discovered. In contrast, the “discovery void” encompasses the period from
roughly 1990 to the present, a time in which limited new clinical discoveries have been made [1,3].

As of 2023, antimicrobial resistance (AMR) is among the greatest threats to human
health, with an estimated 1.27 million deaths being directly attributed to AMR infections
in 2019 [4] and a projection that such deaths will reach ~10 million per year by 2050 [5].
AMR arises from bacterial pathogens’ coevolved resistance mechanisms, rendering the use
of antibiotics ineffective or drastically reducing the efficacy of treatment. This means that
previously antibiotic-susceptible bacteria may confer resistance to the antibiotics, following
acquisition of such traits via mechanisms such as mutation or horizontal gene transfer
(HGT). Pathogenic bacterial strains may gain resistance determinants that give rise to
superbugs—often those of yet unknown genotypic composition. This poses, potentially, the
greatest risk to vulnerable healthcare patients, as hospitals are hotspots for HGT, resulting in
life-threatening infections with extremely limited treatment options [6]. In certain instances,
resistant strains of Escherichia coli and Klebsiella pneumoniae have resulted in infections
that are impervious to all known antibiotics, including carbapenems, a class of drugs that
is typically reserved as the last line of defense in treating bacterial infections [7]. One
notable example was an incident that occurred in 2016, when an infected patient in Nevada
developed septic shock and died from a Klebsiella pneumoniae strain that was resistant to all
26 antibiotic classes available in the United States and, therefore, was given the informal
title of the “nightmare superbug” [8]. The coexistence of susceptible microorganisms
with resistant bacteria facilitates the exchange of AMR genes, especially within a spatial
population, such as a biofilm [9].

The emergence of superbugs among bacteria is closely intertwined with an evolu-
tionary phenomenon of gene exchange among different lineages—namely, the horizontal
gene transfer (HGT) or the lateral gene transfer (LGT)—which is driven by three primary
mechanisms: conjugation, transduction, and transformation. These mechanisms facilitate
the transfer of resistance genes between bacteria, albeit through distinct processes. Conju-
gation involves the direct transfer of plasmids, which may carry resistance genes, between
bacterial cells. Transduction entails the transfer of DNA via bacteriophages. Transformation
involves bacteria taking up free DNA fragments from their environments. While each
of these processes facilitates the lateral transfer of foreign DNA into a host bacterial cell,
each mechanism differs vastly and may signify a genomic signature that is specific to the
respective mechanism [10].
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Understanding the nuances of HGT mechanisms is vital in the context of antibiotic
resistance, as these processes drive the spread of resistance genes across bacterial popu-
lations, exacerbating the challenge of treating bacterial infections. Thus, it is imperative
that necessary precautions be undertaken to combat antimicrobial resistance. The overuse
and misuse of antibiotics, poor infection control practices, and inadequate investment in
research and development are major players in promoting the rise of AMR [11]. Figure 2
provides a visual representation of antibiotic prescription trends in the United States over
the decade from 2011 to 2021, showcasing the five leading antibiotic classes and agents
prescribed during that period [12]. Promoting the responsible use of antibiotics should
be encouraged and the public should be made aware of the consequences of their misuse.
Further monitoring of the spread of resistant bacteria should be conducted through the
implementation of antimicrobial stewardship programs to reduce the dissemination of re-
sistance genes and the impact of antibiotics on the environment and, further, by advocating
for practices that safeguard both human well-being and ecological health.
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Figure 2. A bar graph showcasing the leading five antibiotic classes and agents prescribed in the
United States from 2011 to 2021, measured in millions. The colors differentiate the antibiotic classes,
including penicillin, macrolides, cephalosporins, fluoroquinolones, quinolones, beta-lactams, and
tetracycline [12].

Antibiotic usage in agriculture is responsible for a significant portion of the occur-
rence of resistant bacterial strains. The mass administration of antibiotics seeks to promote
growth and hinder the prophylaxis of diseases among livestock [13]; it accounts for ~80%
of total antibiotic usage in the United States [14]. It is estimated that by 2030, worldwide
usage of antibiotics for livestock will be in excess of 107,500 tonnes; for comparison, this
was under 100,000 tonnes in 2020 [15]. These practices, evidently, have led to the de-
velopment of antibiotic-resistant bacteria in animals, which can then be transmitted to
humans through the food chain, through animal–human interactions, or via environmental
contamination. For instance, resistant bacteria are transmitted to humans from livestock
via direct contact or exposure to animal manure. The consumption of undercooked meat
and direct contact also contribute to the spread of resistant bacteria. Various environmental
sources, such as soils, freshwater, and wastewater systems, can become reservoirs of AMR,
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partly due to runoff from agricultural practices [16]. When such environments are contami-
nated with antibiotic residues and resistant bacteria, they act as a conduit for the spread
of AMR, impacting wildlife, pets, and humans [17]. Furthermore, these environmental
resistomes—the collection of all antibiotic resistance genes in a microbiome—pose a sub-
stantial threat to public health. As bacteria can share resistance genes through horizontal
gene transfer, even non-pathogenic environmental bacteria can contribute to the spread
of AMR by acting as a reservoir of resistance genes [18]. Therefore, the unregulated and
excessive use of antibiotics in agriculture not only enriches the pool of resistance genes
but also contributes significantly to the global dissemination of antibiotic resistant bacteria.
Regarding the global trends, it has been estimated that antimicrobial use in chicken, cattle,
and pigs—accounting for >90% of food animals—was in excess of 93,000 tonnes in 2017
and is projected to reach 104,000 tonnes by 2030 [14]. Very recently, the United States
Food and Drug Administration (FDA) has taken actions to combat AMR by supporting
antimicrobial stewardship in veterinary matters. With effect from June 2023, the FDA
requires animal owners to have a veterinary prescription to purchase antibiotics that were
previously available over-the-counter and misused [19].

In the context of the escalating problem of AMR, there exists an urgent imperative
for the discovery of new antibiotics. However, the pace of development of new antimi-
crobial drugs has markedly decelerated. During what is often referred to as the golden
age of antibiotic discovery, research was equally focused on both naturally derived and
synthetic antibiotics. However, following almost half a century of intensive screening, the
pursuit of antibiotics from natural sources appears to have reached a saturation point [20].
Identifying and validating new bacterial targets, overcoming bacterial defense mechanisms,
and ensuring that an antibiotic can reach its target site all contribute to the difficulty of
the task [21]. Furthermore, the scientific challenges are compounded by economic and
regulatory issues. Developing a new drug is costly and time-consuming, often requiring
more than a decade and hundreds of millions of dollars to bring a drug from discovery to
market [22]. However, new antibiotics may not be profitable because they are often kept as
a last resort to prevent the development of resistance, which limits their use and, thus, their
market potential.

In light of these challenges, there is a need for innovative strategies and policies to
stimulate antibiotic discovery. Regulatory hurdles can further delay or discourage the de-
velopment of new antibiotics. Designing clinical trials for antibiotics is a complex process,
requiring the comparison of a new drug to an existing standard-of-care treatment. This
comparison is inherently challenging, due to the varying and sometimes unpredictable
responses of patients with bacterial infections. Ultimately, the development of new antibi-
otics requires human efficacy data which, in turn, requires further interpretation in the
context of other strong and relevant information that supports the effectiveness of the new
therapy [23].

Over the course of the previous decades, several methods have been developed to as-
sess an antibiotic’s ability to inhibit bacterial infection. Commonly used in modern clinical
laboratories is in vitro susceptibility testing, also known as antibiotic susceptibility testing
(AST). This method involves the exposure of isolated bacterial colonies to different antimi-
crobial agents. The minimum inhibitory concentration (MIC) is then measured via the
inhibition zones on an agar plate to determine the sensitivity of each tested antibiotic [24].
AST is relatively cost-effective and easy to perform, providing valuable information on an
antibiotic’s activity against any specific bacterial isolate; however, it is conjointly limited by
its simplicity. In vitro AST does not account for the complexities of its host’s infection site
or for host immune response. While MIC testing may aid in the observation of antibiotic
resistance patterns, the results may not always correlate directly with its in vivo efficacy.
This may be due to a variety of factors, including but not limited to an antibiotic’s limited
ability to penetrate certain tissues, biofilm formation, host metabolism, and immune re-
sponse. Comparable methods that also bear these limitations include disk diffusion, broth
dilution, and E-test strips, all of which provide quantitative MIC values.
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Biofilm formation, linked with chronic infections that result from indwelling devices,
wounds, and cystic fibrosis lung conditions, is a frequent occurrence in hospital settings.
Biofilms are the congregations of bacterial communities that can cling to both living and
non-living surfaces. Moreover, these biofilms typically become entrenched in an extra-
cellular matrix, an environment that fosters their interactions with host molecules [25].
Despite the fact that biofilm formation represents the standard mode of bacterial growth,
clinicians predominantly employ planktonic inoculums when conducting almost all tests
for antimicrobial resistance in pathogenic bacteria [26]. The word planktonic refers to
free-living bacteria, i.e., those bacteria which are regarded as standard in traditional AST.
Infective endocarditis (IE) is a condition characterized by the entrance of biofilm bacteria
into the bloodstream, which then reside within cardiac tissue.

Traditional diagnostic methods evaluate the blood culture of an IE-infected host;
however, the results may return as a false-negative, since biofilm bacteria seldom enter
the bloodstream in planktonic form [27]. Thus, immunodiagnostic assays have been
employed to identify antibodies that are aimed at components of the biofilm matrix. One
such instance includes ELISA, an immunodiagnostic assay that is specifically designed
to detect antibodies that target slime polysaccharide antigens in staphylococci. However,
the sensitivity and specificity of currently available ELISA assays are not sufficient to
independently confirm the presence of biofilm-associated infections [28]. On the other hand,
sessile bacteria, or those that lack mobility, display significantly increased AMR compared
with their planktonic counterparts. Consequently, biofilm-derived pathogenesis contributes
to the diminishing treatment options available to patients with chronic, resistant bacterial
infections, and in some instances, biofilms may even contribute to cancer morbidity [29].

As previously stated, bacterial communities in a biofilm interact through their extra-
cellular matrix with host molecules; however, biofilms may also form within the living
cells of the host. This can cause collateral tissue damage by simultaneously potentiating
both the innate and acquired immune response in the host. Especially in cases of chronic
infections, the host remains in a perpetual inflammatory phase that is characterized by
oxidative damage, fibroblast senescence, and a lack of beneficial growth factors that are
needed for tissue resolution [30]. When biofilm pathogenesis and AMR coexist, they can
significantly amplify host immune challenges. This situation is further complicated when
existing antibiotic treatments are ineffective.

Conventional AST methods, used for their precision and clinical applicability, come
with drawbacks, such as substantial time investment and relative costliness. In critical-care
scenarios, these inherent delays might force physicians to opt for broad-spectrum antibi-
otics that are designed to combat a wide array of infections. However, these antibiotics,
despite their “broad-spectrum” designation, may not always serve as the most effective
treatment modality [31]. Even more concerning, their utilization has been scientifically
linked to the growing phenomenon of AMR. Conventional cell culturing methods, with
their limitations in mimicking the in vivo microenvironment of cells, call for the need to
adapt two-dimensional techniques to a three-dimensional problem. This requires innova-
tive methodologies and more comprehensive insights. In parallel, in the realm of drug
discovery, the traditional means of determining antibiotic efficacy have spurred demand
for quicker testing. Although new techniques are being developed to accelerate suscepti-
bility testing, the time required for validation is often less than optimal, underscoring the
necessity for further refinement and advancement [32].

Vocat et al. have spearheaded recent advancements in antibiotic susceptibility testing
(AST) by devising a method to classify Mycobacterium tuberculosis (MTB) strains based on
their resistance to isoniazid and rifampicin. Their innovative technique fuses nanomotion
technology with machine learning to provide a swift and precise test for MTB suscep-
tibility [33]. Unlike traditional MIC growth-dependent methods, which typically take
3–5 days for resistance profiling [34], this novel approach directly assesses bacterial reac-
tions to antibiotics through nanomotion, reducing the turnaround time to less than 24 h.
Further analysis of the raw nanomotion data (indicative of bacterial responses to antibiotics)
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entails inputting this information into a machine-learning model for training and testing.
Their model had been implemented to classify bacteria using their nanomotion data into
either susceptible or resistant groups, showing effective differentiation capabilities. This
approach underscores the trend in the emergence of new computational techniques to
augment the power of AST, which is indicative of a larger trend toward the integration of
advanced technologies in microbiological research.

2. Machine Learning: An Overview

In today’s rapidly advancing technological landscape, we are witnessing an almost
Renaissance-like resurgence in the growth and development of artificial intelligence (AI)
and machine-learning (ML) models. AI is set to become an increasingly integral aspect
of our everyday lives, as illustrated by the public’s awareness of OpenAI’s ChatGPT,
the fastest-growing consumer application in history, with over 100 million active users.
We have entered AI’s most accessible era yet, now allowing laymen to interface with
powerful computational tools without any preliminary understanding of the underlying
technology. AI has captured the attention of global CEOs as well, with 80% of Fortune
500 companies purportedly having integrated ChatGPT into their organization at the
time of this writing [35]. Leveraging the capabilities of next-generation AI and machine-
learning models, we can explore openly available disease-related datasets. This enables
us to uncover hidden patterns, particularly functionally critical regions within multiomic
sequencing data and beyond.

ML is concerned with fitting models, or mathematical representations of processes
using algorithms, in order to elucidate relational patterns within data [36]. Consequently,
we may leverage this technology to gain unprecedented insights into the intricate biological
systems that underlie a wide range of diseases. This insight is gained through predictions
or decisions made by the model, which can be further investigated. Generally speaking,
ML is classified into two broad categories: supervised learning and unsupervised learning.
In supervised learning, an ML model is trained using labeled data, which have already
been characterized prior to training. Predictions and decisions made by a supervised model
are akin to learning with a guiding hand. In contrast, unsupervised models are used to
discover intrinsic patterns within data in order to gain insights surrounding the data. This
lends itself to clustering, or abstract data grouping, based on the similarities or differences
found within the dataset. In either case, these techniques greatly rely on the availability of
high-quality data for the model to make accurate predictions and decisions.

Deep learning (DL), a subset of machine learning, is rooted in a mathematical frame-
work known as the artificial neural network (ANN). Similar to the way cells are the basic
units of life, nodes or neurons are the basic units of an ANN. ANNs are foundational
computational models that are analogous to the functional aspects of biological neural
networks in the human brain; they consist of interconnected nodes that process input data
and yield certain outputs. These nodes are arranged in layers, with each layer executing
a distinct computation. The output from one layer serves as the input for the subsequent
layer, continuing until the final layer, which offers the prediction. Figure 3 provides a visual
representation of this process; i.e.; a simplified depiction of a neural network, illustrating
the flow of data from input to output, and the learning process involved. At the core of
each neuron in the ANN is a fundamental equation that combines an input vector, X, with
a weight vector, W, then adds a bias term, b, followed by the application of an activation
function, f (). This relationship is mathematically represented as follows:

a = f (
L

∑
l=1

wl xl−1 + bl )

where x1, x2,. . .,xn are input features, w1, w2,...wn are their corresponding weights, b is the
bias term, f () is the activation function, and a represents the neuron’s output.



Antibiotics 2023, 12, 1604 7 of 18

Antibiotics 2023, 12, x FOR PEER REVIEW 7 of 18 
 

𝑎 = 𝑓   𝑤 𝑥 + 𝑏  
where x1, x2,…,xn are input features, w1, w2,...wn are their corresponding weights, b is the 
bias term, f() is the activation function, and a represents the neuron’s output. 

Data are represented as input X, and corresponding labels as Y. In the process of 
training a machine-learning model, it is essential to meticulously divide the data into 
training, testing, and validation sets. This division serves distinct purposes: initiating 
model training, evaluating the model’s performance, refining the parameters to improve 
the model’s performance, and, finally, testing the model on a held-out test dataset. This is 
a foundational step in both classification and regression problems. Within this context, 
features—i.e., the known properties or characteristics of a given training dataset—serve 
as the input to the model, aiding in the identification of relevant information within a 
dataset. Within the context of bacterial studies, these features could include the genotypes 
(genes) and phenotypes (e.g., gram-negative or gram-positive, morphology, and mode of 
respiration) of bacteria. Note that the labels function as the output variables, representing 
what the model aims to predict (e.g., antibiotic-susceptible or antibiotic-resistant). More-
over, the labels used as output variables might also denote distinct bacterial resistance 
mechanisms—for example, assigning label 0 for “antibiotic target alteration” and label 1 
for “antibiotic efflux”. In the realm of supervised learning, these labels are supplied with 
the training data for the model to learn the association between data features and the out-
put variables. Unsupervised learning, however, forgoes labels, seeking patterns or group-
ings without preconceived outcomes. 

 
Figure 3. A simplified neural network showcasing the flow of data. The input layer takes in data (x1, 
x2, …, xn,), such as sequence information. The hidden layers process and learn relevant features un-
derlying the data, interpreting the data through weighted connections. Finally, the output layer gen-
erates outcomes, that is, class prediction (y1, y2), such as the binary classification of susceptible and 
resistant phenotypes. The network adjusts its weights during training to increase the prediction 
performance, based on the input features and the desired outcomes. 

To gauge the match of a model’s predictions with the actual target values, a loss func-
tion is deployed. This function quantifies the disparity between the predicted values and 
the true values. The procedure for minimizing this loss during the training phase aims to 
learn parameters that result in alignment of the model’s predictions with the correspond-
ing known values. In turn, this bolsters its performance and accuracy. An optimization 
algorithm iteratively refines the process by updating the model’s parameters and compu-
ting the loss function to carry out the updating, based on the level of convergence between 
the predicted values and the true values. The challenge, here, is to strike a balance to avoid 
overfitting or underfitting the model to the training data. Overfitting occurs when a model 

Figure 3. A simplified neural network showcasing the flow of data. The input layer takes in data
(x1, x2, . . ., xn), such as sequence information. The hidden layers process and learn relevant features
underlying the data, interpreting the data through weighted connections. Finally, the output layer
generates outcomes, that is, class prediction (y1, y2), such as the binary classification of susceptible
and resistant phenotypes. The network adjusts its weights during training to increase the prediction
performance, based on the input features and the desired outcomes.

Data are represented as input X, and corresponding labels as Y. In the process of
training a machine-learning model, it is essential to meticulously divide the data into
training, testing, and validation sets. This division serves distinct purposes: initiating
model training, evaluating the model’s performance, refining the parameters to improve
the model’s performance, and, finally, testing the model on a held-out test dataset. This
is a foundational step in both classification and regression problems. Within this context,
features—i.e., the known properties or characteristics of a given training dataset—serve
as the input to the model, aiding in the identification of relevant information within a
dataset. Within the context of bacterial studies, these features could include the genotypes
(genes) and phenotypes (e.g., gram-negative or gram-positive, morphology, and mode of
respiration) of bacteria. Note that the labels function as the output variables, representing
what the model aims to predict (e.g., antibiotic-susceptible or antibiotic-resistant). More-
over, the labels used as output variables might also denote distinct bacterial resistance
mechanisms—for example, assigning label 0 for “antibiotic target alteration” and label 1 for
“antibiotic efflux”. In the realm of supervised learning, these labels are supplied with the
training data for the model to learn the association between data features and the output
variables. Unsupervised learning, however, forgoes labels, seeking patterns or groupings
without preconceived outcomes.

To gauge the match of a model’s predictions with the actual target values, a loss
function is deployed. This function quantifies the disparity between the predicted values
and the true values. The procedure for minimizing this loss during the training phase
aims to learn parameters that result in alignment of the model’s predictions with the
corresponding known values. In turn, this bolsters its performance and accuracy. An
optimization algorithm iteratively refines the process by updating the model’s parameters
and computing the loss function to carry out the updating, based on the level of convergence
between the predicted values and the true values. The challenge, here, is to strike a balance
to avoid overfitting or underfitting the model to the training data. Overfitting occurs
when a model fails to generalize from the training data, becoming ineffectual with new
data, while an underfitting model misses the underlying data trends, yielding suboptimal
performance. Ensuring a model’s robustness requires assessing its performance against
yet-unseen data. Depending on the problem at hand, various metrics can be used for this
assessment. For classification tasks, where the output is a discrete label, metrics such as
accuracy, precision, recall, and F1 score are commonly used. For regression problems,
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where the output is continuous, metrics such as the mean squared error (MSE) are more
suitable. Precision (PR) is calculated as follows:

Precision =
true positive

true positive + f alse positive

Sensitivity (SN) is calculated as follows:

Sensitivity =
true positive

true positive + f alse negative

The harmonic mean (F1) of precision and sensitivity is calculated as follows:

F1 score = 2 × PR × SN
PR + SN

The mean squared error is calculated as follows:

MSE =
1
n ∑n

i=1

(
Yi − Ŷi

)2,

where n is the number of data points, Yi represents observed values, and Ŷi represents
predicted values.

In the final stages of model optimization, once satisfactory performance is reached,
attention is often turned to the fine-tuning of hyperparameters. These are distinct from
the parameters that the model learns during training. While parameters adapt, based
on the data, hyperparameters are preset configurations that are integral to the model’s
architecture. Challenges often arise in the successful implementation of ML; a significant
challenge is choosing the best hyperparameters for the model to learn effectively. These
hyperparameters might include choices related to the learning rate, the structure of hidden
layers in a neural network, or other higher-level structural settings that guide the training
process. The learning rate is a measure that determines the extent of changes made to the
parameters during training. Choosing a suitable learning rate is crucial. If it is too high,
the training process might miss the ideal configuration that minimizes the loss, hindering
the convergence. On the other hand, if it is too low, the training may take an excessively
long time to converge. The correct configuration of hyperparameters is crucial, as they
govern fundamental aspects of model training, such as convergence speed and the model’s
capacity to generalize from the training data. Through calibration, changes may be made
to the model to enhance its learning ability and its decision-making ability—ultimately
adapting the architecture to best suit the data and the task at hand.

3. The Application of Machine Learning to Biomedical Research

Within the rapidly evolving paradigm of AI and machine learning, a niche has been
carved out that marries computational power with human-like decision-making. This
interplay between data and algorithms transcends mere technological curiosity; their
tangible impacts on human health are within our grasp. As we delve into the intricate
world of genomics, proteomics, and complex biological systems, ML becomes more than a
tool—it emerges as a partner in unraveling the mysteries of life and disease. With the open
availability of massive datasets, nuanced algorithms, and precise hyperparameter tuning,
we have forged a pathway toward understanding, predicting, and potentially reversing
maladies that have plagued humanity. From predictive modeling in personalized medicine
to real-time diagnostics in critical-care settings, machine learning is poised to revolutionize
the way we approach, manage, and, ultimately, conquer disease.

ML’s application in computer science and technology is just the tip of the iceberg.
Its integration with biomedical data has led to the development of predictive algorithms
that can identify disease markers, analyze genetic mutations, and even assist in person-
alized medicine. Machine learning is frequently used in cancer diagnosis and detection,
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particularly in cancer prediction and prognosis [37]. It has been applied to improve the
accuracy of predicting cancer susceptibility, recurrence, and mortality by 15–25% [38]. The
integration of machine learning, particularly deep learning (DL), into digital image analysis
has enabled rapid advances in computational pathology. Applications of ML methods in
pathology have significantly improved the detection of metastases in lymph nodes [39],
Ki67 scoring in breast cancer [40], Gleason grading in prostate cancer [41], and more. DL
models have also been demonstrated to predict the status of molecular markers in various
cancers [42].

AI and the Internet of Medical Things (IoMT) are being combined to design efficient
point-of-care biomedical systems that are suitable for next-generation intelligent health-
care. AI’s role in supporting advanced robotic surgeries and improving the functionality,
detection accuracy, and decision-making ability of IoMT devices has been discussed in
recent research [43]. AI algorithms have also been developed for diagnosing and treating
colorectal cancer [44], the third most diagnosed malignancy. AI-assisted techniques in
routine screening represent a pivotal step in the decline in colorectal cancer morbidity.
ML models have contributed to individual-based cancer care, including robotic surgery
and computer-assisted drug delivery techniques [45]. Undoubtedly, the convergence of
machine learning with biomedical applications is actively shaping the future of healthcare.
By leveraging the computational power of modern computers and the analytical capabili-
ties of ML, researchers and clinicians are unlocking new opportunities for understanding
and combating diseases. This synergy heralds a new era of innovation and discovery in
healthcare, demonstrating the versatility and potential of AI.

4. Machine Learning and Antimicrobial Resistance

Predicting AMR using ML methodologies often utilizes a supervised learning ap-
proach. In this approach, a dataset with known labels indicating antibiotic susceptibility
and resistance phenotypes is used for training. The model learns to elucidate patterns in
the features (e.g., gene sequences or MIC concentrations) to accurately predict these labels
for bacterial pathogens [46].

ML’s applicability in AMR prediction tasks has seen its usage in various forms. ML
has been applied to characterize antibiotic-resistant strains of Escherichia coli by utilizing
a pan-genome approach to identify core gene clusters and antibiotic resistance genes
(ARGs) [47]. That study demonstrated how ML can be used to annotate genomic FASTA
files and predict resistance to specific antibiotics, achieving better prediction accuracy for
AMR genes within the accessory part of the pan-genome and, thus, elucidating clusters of
AMR genes that are not present in all strains of E. coli. Their approach demonstrated the
uneven distribution of genes, particularly ARGs, which reside in the accessory pan-genome.
Through the implementation of a genetic algorithm (GA) within their model, the prediction
of ARGs and their corresponding clusters was performed by learning the presence/absence
patterns of E. coli gene clusters downloaded from the Pathosystems Resource Integration
Center (PATRIC) database. This GA discriminates between gene clusters through binary
representations—annotating them as either including [1] or not including [30] certain genes
in predicting AMR activities. A fitness function, based on the area-under-the-curve (AUC),
estimated fitness for the support vector machine (SVM) training method. The GA process
was repeated 30,000 times to determine all subsets of gene clusters and to establish those
that are associated with AMR phenotypes; in turn, better prediction of resistance profiles
could be analyzed for downstream analysis. Their analysis of the E. coli pan-genome
combined re-annotation, clustering, machine learning, and genetic algorithms to identify
key factors and to offer insights into the complexities of AMR.

Further, an SVM ensemble approach, trained using the pan-genomes of Staphylococcus
aureus, Pseudomonas aeruginosa, and Escherichia coli, was developed to establish resistance
determinants and to predict AMR phenotypes [48]. Similar to the model developed by
Her and Wu, a binary labeling was used, which resulted in a sparse binary matrix. The
pan-genomes of the three pathogens were encoded by the model, based upon the presence
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or absence of each gene and allele. By encoding these features into a binary matrix, the
genomic variation between strains could then be sampled to train the SVM. Given a
genotype, the model predicted the AMR phenotype by outputting binary values for an
antibiotic of interest. The weights—the assigned values to represent the “strength” of the
relationship between the features—were then averaged across the ensemble of models
to rank features by their association to AMR. A detailed analysis of fluoroquinolone’s
resistance profile revealed perfect segregation by the presence or absence of known AMR-
conferring mutations. Their study identified 25 candidate AMR-conferring genetic features,
several of which are of interest in potentially identifying resistance determinants at the
gene level.

The two studies mentioned above utilized the PATRIC database, which is an excellent
resource for genome-scale data for bacteria, particularly those that are pathogenic to
humans [49]. However, there exist multiple databases dedicated to hosting specific types
of AMR data. For example, APD3, DBAASP v3, dbAMP, and PhytAMP are all databases
that are dedicated to antimicrobial peptides (AMPs). In recent years, the discovery of
novel AMPs has garnered interest to address the growing challenge of AMR. As traditional
antibiotics are becoming less effective, the unique mechanisms of actions of AMPs have
been increasingly recognized for their capacity to inhibit pathogens from developing
resistance against them. Due to the natural versatility and specificity exhibited by peptides,
researchers are exploring ways to engineer AMPs for therapeutic application. Studying
AMPs reveals a promising pathway toward developing novel drugs that may be able to be
used concurrently with existing antibiotics, or even as standalone treatments [50].

AMPTrans-lstm is an approach that was created to produce and design diverse, novel
functional peptides by employing a deep generative model [51]. This model combines
the stability of long short-term memory (LSTM) with the novel application of transformer
architecture. The integrated model includes a pre-trained phase on a large dataset, followed
by fine-tuning on a smaller dataset. The model generates sequences through LSTM sam-
pling and then decodes them into novel peptide sequences using the transformer model.
In total, 36,000 AMP candidates were generated from AMPTrans-lstm and evaluated with
support vector machine (SVM) and random forest (RF), then further examined using
quantitative-structure-activity-relationship (QSAR) modeling to estimate the probability
that the generated sequences would have antimicrobial properties. The success rate of
AMPTrans-lstm is calculated to be between 30% and 50%, marking a step toward generating
novel AMPs, of which only a few have historically advanced to clinical trials [52].

AMPlify is an attentive DL model that has identified 75 putative AMPs derived
from the genome of Lithobates catesbeianus [53]. The model was trained and tested using
data sourced from the Antimicrobial Peptide Database (APD3) [54] and the Database of
Anuran Defense Peptides (DADP) [55], which contained 3061 and 1923 AMP sequences,
respectively. After removing duplicates, a negative dataset of 4173 sequences was curated
from the UniProtKB/Swiss-Prot database [56]. Both the positive and negative datasets were
split into 80% for training and 20% for testing. The MAKER2 gene prediction pipeline [57]
was employed to refine the sequences that aligned to the bullfrog draft genome, including
two filtering stages: the selection of sequences characterized by a distinct lysine-arginine
motif and a threshold of 200 amino acids. From these filtered sequences, AMPlify output
a probability score, with a threshold of >0.5 indicating AMPs and ≤0.5 indicating non-
AMPs. In all, AMPlify predicted 75 putative AMPs. Of those sequences, 11 were ultimately
selected for in vitro testing, and four novel AMPs demonstrated significant potency as
an antimicrobial when tested on the clinical multi-drug resistant (MDR) isolate of CPO E.
coli. The bacterial isolates employed for this testing encompassed a spectrum, inclusive of
strains resistant to multiple drugs. The outcomes of these tests were quantified in terms of
MIC and minimum bactericidal concentrations (MBC). While the MIC values represented
the peptide concentration threshold that inhibits visible bacterial proliferation, the MBC
values signified the concentration required to exterminate 99.9% of the initial bacterial
population. An MBC assay was performed only in select clinical scenarios, typically when
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a patient’s immune system was unable to effectively combat the pathogen—as observed in
cases of endocarditis, osteomyelitis, and immunosuppressed patients who were diagnosed
with neutropenia [58].

AMPlify’s architecture uses attention mechanisms during sequence analysis, assigning
weights to each of the positions within a given sequence. After residues are one-hot
encoded for preprocessing, they are passed through the three hidden layers, beginning with
a bidirectional long short-term memory (Bi-LSTM) layer. From this first layer, positional
information is encoded in a recurrent manner. A multi-head scaled dot-product attention
(MHSDPA) layer follows to represent the sequence, using multiple weight vectors. The
final hidden layer of context attention generates a single summary vector from a weighted
average, leveraging contextual information learned earlier during training. Binary cross-
entropy is employed as the model’s loss function, along with Adam optimization to adjust
the weights. To counteract any overfitting, dropout is utilized—a regularization technique
that “drops” or nullifies noisy activations in the model’s layers.

The HMD-ARG-DB database is the largest and most comprehensive ARG database
to date. It is constructed by merging sequences from seven existing databases: CARD,
ARDB, ResFinder, ARG-ANNOT, MEGARes, SARG, and NDARO [59]. It includes over
17,000 manually curated ARG sequences, allowing for ML models to capture the most rele-
vant features associated with resistance phenotypes. By performing multi-level annotation
by integrating data from various sources, HMD-ARG-DB bridges gaps between different
ARG databases, offering a unified and standardized resource. Traditional computational
methods for identifying ARGs are primarily based on sequence alignment, which are
limited in their ability to identify new ARGs, due to reliance on prior characterization.
To overcome these challenges, Li et al. introduced a novel hierarchical multi-task deep
learning framework for ARG annotation (HMD-ARG). This ML framework can identify
multiple ARG properties simultaneously; it can determine if a given protein sequence is
encoded by an ARG, the antibiotic family it resists, its resistance mechanism, and whether
it is intrinsic or acquired. Furthermore, if the predicted antibiotic family is beta-lactamase,
HMD-ARG can also predict its subclass. To improve HMD-ARG’s ability to generalize,
66,000 non-ARG sequences from UniProt were added as negative examples during training.
HMD-ARG’s architecture is based on an end-to-end convolutional neural network (CNN),
which utilizes one-hot encoding for the input. These inputs come as strings of protein
sequences composed of 23 characters that correspond to the different amino acids. After the
sequences are one-hot encoded, representing them as vectors for the model to process, the
data proceed through six convolutional layers and four pooling layers to learn statistical
patterns and motifs within the input sequences. The outputs are piped into three fully
connected layers to discern functional mapping patterns; each layer corresponds to the task
of predicting the drug, mechanism, or source. This multitasking framework forces each
connected layer to simultaneously discover features with a single forward-propagation.
HMD-ARG performed with an F1-score of 0.948 when performing binary classification to
discern between ARGs and non-ARGs. While surpassed by DeepARG’s [60] F1 of 0.963,
HMD-ARG still outperformed CARD, DeepARG, AMRPlusPlus [61], and Meta-MARC [62]
in classifying antibiotic classes and predicting antibiotic mechanisms. The overall robust
performance of HMD-ARG makes it a valuable contribution to the field; however, its
applications are limited when working with short reads. This means that inputting AMPs
to HMD-ARG would likely yield an unfavorable performance, due to small peptide lengths
compared to the greater lengths of gene sequences.

Identifying the components that characterize those bacterial strains that confer re-
sistance to antibiotics becomes difficult without an understanding of the known genetic
markers that are responsible for the resistance phenotype. Without this knowledge, the
challenge intensifies, especially in machine-learning development. Selecting an appropri-
ate classification algorithm to predict novel genetic features that contribute to antibiotic
resistance adds an additional layer of complexity. Since no single optimal ML algorithm
exists to predict resistance phenotypes across all bacterial species, conducting performance
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assessment through hyperparameter tuning and cross-validation becomes a necessary task.
A framework for selecting the best performing model(s) that predict the most relevant AMR
loci involved in resistance has been developed specifically for the purpose of predicting the
phenotype, along with the identification of genetic factors that underlie resistance traits [63].
Sourcing all data from the isolates browser from the NCBI Pathogen Detection website,
filtered by AMR and AST phenotypes, Sunuwar and Azad created a binary representation
of all bacterial samples, based on genotype (0 for absence and 1 for presence of an ARG)
and the relevant antibiotic phenotype (0 for AST, 1 for AMR).

Following this representation of the data, a three-fold performance assessment was
carried out. This includes three separate workflow instances, as follows.: all performance:
metrics were derived from the entire AMR dataset, with a focus on cataloging AMR
genes of high importance; intersection performance: metrics were based on genes that
consistently ranked among the top AMR genes throughout the 6-fold cross-validation
in the first workflow—specifically, “consistent” genes that were chosen from the top
30 high-importance genes in each cross-validation fold. These were identified as the
most critical features that the machine-learning algorithm used to predict the susceptible
and resistance phenotypes; 3. random sampling: metrics were calculated using randomly
selected AMR genes, termed “random features”—the final performance measure was an
average derived from 10 such random sets sampled from the entire dataset. They assessed
the performance of 12 different ML algorithms using genotypic data from K. pneumoniae,
E. coli and Shigella, P. aeruginosa, C. jejuni and S. enterica genotypic, and the respective
phenotypic data sourced from tests with several antibiotics. These 12 algorithms—logistic
regression (logR), Gaussian naive Bayes (gNB), support vector machine (SVM), decision
trees (DT), random forest (RF), k-nearest neighbors (KNN), linear discriminant analysis
(LDA), multinomial naive Bayes (mNB), AdaBoost classifier (ABC), gradient boosting
classifier (GBC), extra trees classifier (ETC), and bagging classifier (BC)—were deployed
using the scikit-learn library in Python.

Continuing to leverage ML toward addressing AMR, Sunuwar and Azad built upon
their previous research using homology modeling and molecular docking to predict po-
tential interactions of novel ARG products to different antibiotics. Using bacterial isolates
filtered by genotypic and AST phenotypic data from the NCBI Pathogen Detection database,
the researchers constructed an AMR-AST matrix for each combination of antibiotic-species
groupings. This matrix consisted of the features (genes), binary AST labels as target classes,
and sample accession numbers to be input into a variety of ML algorithms to perform
supervised binary classification [64]. These algorithms were trained and tested using 6-fold
stratified cross-validation—implemented in StratifiedKFold—for all genes and AST pheno-
type data to ensure that genes deemed important for discrimination were obtained. Recall,
Precision, F1, AU ROC, and AUPR were used as performance metrics computed for both
training and test datasets, with the highest overall accuracy (F1) on test datasets informing
which model would be selected as the optimal model.

As compared to the previous study of Sunuwar and Azad, which focused solely on
AMR genes, this more recent study used all genes within the strains to identify genes which
ones had yet to be implicated in resistance phenotypes, showcasing an unbiased whole-
genome approach. The top-ranking putative novel AMR genes underwent homology
modeling and molecular docking analyses. This led to the discovery of several modifying
enzymes bearing catalytic activity functionally, similar to acetylation, phosphorylation,
and adenylation. The researchers used AutoDock Vina v1.1.2 for docking [65], preparing
the best protein data bank (PDB) models for receptors by removing water molecules and
other heteroatoms, repairing hydrogens, and adding charges. The structured data file of
the respective antibiotics (ligands) was sourced from PubChem and converted to PDB
format. The receptors were then docked with the respective ligands, and ligand-receptor
binding free energy was scored. Upon closer analysis, these enzymes were associated
with steric hindrance, which decreases the affinity of antimicrobials and provides insight
into their unique mechanisms of resistance. Ultimately, the proteins encoded by the novel
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ARGs displayed high binding affinity with their respective antibiotics in silico. This
integrated approach of combining ML, homology modeling, and simulated molecular
docking facilitated both the classification of novel AMR genes and the validation of their
potential interactions with antibiotics within a unified framework.

It should be emphasized that their unbiased whole-genome approach need not be
limited to pathogens and may be extended to commensal microorganisms that act as
reservoirs for pathogenic strains to gain resistance determinants via HGT. Harnessing the
plethora of computational tools and resources offers a comprehensive analytical perspective.
By delving into AMR-associated omics data via ML, researchers are paving the way for
future research that might unveil intricate biomolecular interactions, propelling computer-
aided drug design for life-saving therapeutic treatments.

5. Machine Learning for Antibiotic Drug Discovery

ML is emerging as a transformative tool in the realm of antibiotic drug discovery. Since
the advent of penicillin, antibiotics have been pivotal in modern medicine. However, the
rise of antibiotic-resistant strains and the decline in new antibiotic development pose signif-
icant threats to global health. Traditional methods of antibiotic discovery, such as screening
soil-dwelling microbes, have been challenged by issues such as the dereplication problem,
where the same molecules are repeatedly identified [66]. Furthermore, high-throughput
screening, which was once seen as a promising avenue, has not yielded new clinical antibi-
otics since its inception in the 1980s [67]. The slow pace of drug development and AMR’s
persistent threat underscore the urgent need for innovative therapeutic solutions. Recent
advances in computational methods, particularly computer-aided drug design (CADD), of-
fer a more efficient approach to drug discovery. CADD techniques, which encompass both
structure-based and ligand-based drug design, leverage vast chemical databases and com-
putational models to expedite the drug-development process. The integration of machine
learning and artificial intelligence into these computational methods is poised to revolution-
ize the antibiotic discovery landscape, enabling researchers to explore vast chemical spaces
and identify novel antibiotic candidates more efficiently and more cost-effectively. Since
traditional methods of drug discovery, especially antibiotics, can be time-consuming and
expensive, ML offers a route toward accelerated drug discovery, given its ability to analyze
vast amounts of data rapidly and its powerful predictive ability. The marriage of ML and
drug discovery shows great promise, considering how well ML algorithms can analyze vast
datasets, identify abstract patterns, and predict potential therapeutic compounds, thereby
accelerating the research process and enhancing the precision of drug development.

Several databases are available for antibacterial drug design, with ChEMBL [68]
being the most comprehensive for small molecules. Other notable databases include
CO-ADD [69], SPARK, and the antimicrobial index. ML has been applied to design an-
tibacterial small molecules with impressive results. Yang et al. utilized machine learning
to design antibacterial small molecules, achieving prediction accuracies of up to 98.15%.
Other studies employed machine learning to predict antibacterial activity and permeation
in Gram-negative bacteria, and to design “hybrid” molecules from multiple fragments.
ML has been instrumental in targeting mycobacterial infections. Notably, the MycoCSM
method, a graph-based decision-tree model, has been used to predict bioactivity against
the Mycobacterium genus [70]. ML has emerged as a potent tool in bioactivity prediction; en-
hancing the accuracy of high-throughput virtual screening, employing various approaches
such as ligand-based, structure-based, and consensus-based methods. The increasing
availability of quality data, coupled with curated and resistance-focused libraries, has
further enhanced the effectiveness of machine learning in this domain. Stokes et al. already
employed a directed message passing neural network, a type of graph CNN, and identified
a new antibiotic, halicin, along with several other potential antibiotic candidates. Halicin
has been experimentally validated to be effective against Staphylococcus aureus biofilms
in vitro [71]. While the potential of machine learning in antibacterial drug design is evi-
dent, the field is largely still in its nascent stages. It should be noted that many ML-based
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drug-design studies are proof-of-concept works, with models primarily tested on data
without subsequent experimental biological evaluation. While the insights gained from
these studies—especially regarding featurization approaches and methods—are invaluable,
in silico predictions alone are insufficient to develop novel chemotherapeutic therapies.

Drawing from an extensive dataset encompassing 63,410 metagenomes and
87,920 microbial genomes, researchers have developed AMPSphere, a comprehensive
catalog that houses 863,498 non-redundant peptides [72]. Intriguingly, a significant ma-
jority of these peptides were previously undiscovered. Focusing on human-associated
microbiota, their study revealed discernible differences at the strain level in AMP produc-
tion. To substantiate their computational AMP predictions, the researchers chemically
synthesized 50 peptide sequences and subjected them to experimental testing against
11 clinically pertinent drug-resistant pathogens; including Acinetobacter baumannii,
Escherichia coli (including one colistin-resistant strain), Klebsiella pneumoniae, Pseudomonas
aeruginosa, Staphylococcus aureus (including one methicillin-resistant strain), vancomycin-
resistant Enterococcus faecalis, and vancomycin-resistant Enterococcus faecium. Upon initial
screening, 27 AMPs were found to completely inhibit the growth of at least one of the
aforementioned pathogens. Further, 72% (32 of 50) of the synthesized AMPs demonstrated
antimicrobial activity against commensal or pathogenic strains. Interestingly, some trials
yielded bacterial inhibition with AMP concentrations as low as 1 µmol·L−1; analogous with
MICs discovered among known potent peptides [73]. A standout observation was that
the majority of the identified AMPs bore no significant resemblance to existing sequences,
underscoring their novelty.

6. Concluding Remarks and Future Directions

The potential of ML in revolutionizing various domains, including healthcare, is un-
deniably profound. However, the successful integration of ML into healthcare practices
necessitates a meticulous examination of its inherent limitations and challenges. Drawing
from the existing body of literature, we identified drawbacks that must be systematically
addressed to harness the full potential of ML in a meaningful and effective manner. These
limitations encompass aspects such as data quality, the risk of overfitting, model selection,
computational resources, interpretability, continuous updating, and potential bias in train-
ing data. The thoughtful consideration and mitigation of these challenges are paramount
in the responsible and impactful application of ML in healthcare and beyond.

For an ML workflow to efficiently discern the genetic features that are instrumen-
tal in driving AMR, a model’s success is contingent upon the availability and integrity
of high-quality data. Such data are indispensable for the accurate characterization and
understanding of the underlying phenomena. Despite the prevalence of data, significant
limitations persist within the clinical domain. Even as the European Committee on An-
timicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards
Institute (CLSI) continually update and publish standards on an annual basis, interpre-
tations pertaining to the susceptibility of key antibiotics to common pathogens, such as
Acinetobacter spp. and Stenotrophomonas maltophilia, remain conspicuously absent (Gajic
et al., 2022). It is imperative that the provision of laboratory guidelines for all nations
persist in reporting epidemiological specificities. This meticulous approach is vital in the
fight against AMR, as it fosters the integration of biomedical research and ML for practical
application in clinical settings.

Moreover, the expansion of models to incorporate higher dimensionality of data in
their architecture, such as 3D structural data, SNPs, and variants, is necessary to further
improve our understanding of the complex biological mechanisms that underlie AMR. The
success of ML performance is contingent on available, high-quality data in large quantities.
While strides have been made in curating robust AMR-related datasets, the absence of
standardized repositories and a unified ontology across databases has created barriers to
effective data-sharing and collaboration among various institutions, healthcare providers,
and governmental entities. AI, though still in the nascent stages of its evolution, is man-
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ifesting as an indomitable force in the transformation of healthcare. As methodologies
for data collection continue to advance and expand in scope, there is an imperative to
align computational strategies and techniques with the breakthroughs that are occurring in
biomedical research. This alignment is vital for the development of innovative therapeutic
interventions and the enhancement of global health and human well-being.
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