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Abstract: Staphylococcus aureus is a microorganism with an incredible capability to adapt to different
niches within the human body. Approximately between 20 and 30% of the population is permanently
but asymptomatically colonized with S. aureus in the nose, and another 30% may carry S. aureus
intermittently. It has been established that nasal colonization is a risk factor for infection in other body
sites, including mild to severe skin and soft tissue infections. The skin has distinct features that make it
a hostile niche for many bacteria, therefore acting as a strong barrier against invading microorganisms.
Healthy skin is desiccated; it has a low pH at the surface; the upper layer is constantly shed to remove
attached bacteria; and several host antimicrobial peptides are produced. However, S. aureus is able to
overcome these defenses and colonize this microenvironment. Moreover, this bacterium can very
efficiently adapt to the stressors present in the skin under pathological conditions, as it occurs in
patients with atopic dermatitis or suffering chronic wounds associated with diabetes. The focus of
this manuscript is to revise the current knowledge concerning how S. aureus adapts to such diverse
skin conditions causing persistent and recurrent infections.

Keywords: Staphylococcus aureus; persistence; adaptation

1. Introduction

Staphylococcus aureus is a versatile pathogen that can efficiently adapt to multiple
niches, causing a wide variety of infections in humans. Approximately between 20 and 30%
of the population is permanently but asymptomatically colonized in the nose, and another
30% may carry S. aureus intermittently [1], which is a risk factor for infection in other body
sites [1–5]. In addition to the nose, S. aureus colonizes human skin as a component of
the commensal flora. The skin has distinct features that make it a hostile niche for many
bacteria, therefore acting as a strong barrier against invading microorganisms. Healthy skin
is desiccated; it has a low pH at the surface; the upper layer is constantly shed to remove
attached bacteria; and several host antimicrobial peptides are produced [6]. However, S.
aureus is able to overcome these defenses and colonize this microenvironment. It is striking
how this bacterium has the capability to adapt to very different niches and colonize not
only healthy skin but also the skin under altered conditions, as is the case in individuals
with atopic dermatitis or diabetic patients with foot ulcers (DFU), causing persistent and
recurrent infections [7,8]. The focus of this manuscript is to revise the current knowledge
regarding S. aureus adaptation to such diverse skin conditions.
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2. S. aureus Metabolic Adaptation to the Skin
2.1. The Skin and Its Functions as a Cutaneous Barrier

The outermost layer of the skin, the corneal layer, is comprised of terminally differenti-
ated keratinocytes and contains highly cross-linked keratin fibrils. Under the corneal layer
are the granular, spinous, and basal layers of the epidermis. The epidermis is continuously
being reformed as keratinocytes migrate from the basal layer to the corneal layer, where
they are eventually shed. Below the epidermis is the dermis, which is essentially a fibrous
stroma consisting of collagen and elastin fibers. There are also skin appendages such as
sweat glands, sebaceous glands, and hair follicles that span these layers and open onto the
skin surface. Finally, the vasculature of the skin includes a superficial and deep plexus,
with additional networks around skin appendages. The superficial plexus is comprised
of arterioles and venules that are interconnected by capillary loops within the papillary
dermis [9].

At each of the above-mentioned layers, the skin presents different effectors that con-
tribute to its function as a barrier. From the outside to the inside, the first barrier is
determined by the microbial communities that live in the stratum corneum. These communi-
ties are dominated by Actinobacteria and gram-positive cocci species from the Staphylococcus,
Propionibacterium, and Corynebacterium genus, and their presence prevents the establish-
ment and proliferation of pathogenic bacteria [6,9,10]. The stratum corneum and epidermis
conform the physical barrier, where the system of tight junctions, comprised of trans-
membraneous proteins that include claudins, occludin, and zona occludens, is key to
maintaining the integrity of the barrier and protecting the skin against potentially invading
microorganisms. The cells of the physical barrier also contribute to the chemical barrier
by producing epidermal lipids. Keratinocytes deliver mainly triglycerides and cholesterol,
whereas sebaceous glands secrete triglycerides, wax esters, and squalene containing sebum
into the upper part of the hair follicle, thereby delivering those lipids directly onto the
stratum corneum. Bacteria and yeasts from the microbiome then hydrolyze triglycerides
into free fatty acids, contributing to the acidification of the skin [11]. The chemical barrier
comprises other factors that help to maintain the moisture and the acidic pH at the skin
surface; these hygroscopic compounds are aminoacids and their derivatives resulting from
the proteolysis of the epidermal protein filaggrin [12]. This protein is critical for optimal
skin barrier function as it binds keratin within the cytoskeleton, which is important for the
formation of the stratum corneum, therefore minimizing water loss and preventing the entry
of irritants and allergens [13]. Other components of the chemical barrier are lactate, urea,
and electrolytes. The immune barrier represents the final part of the cutaneous barrier and
comprises a variety of resident immune cells within the epidermis and dermis. The cellular
composition of the immune barrier includes innate sentinels, such as several types of
resident antigen-presenting cells, innate lymphoid cells, keratinocytes, and adaptive tissue
resident memory cells, which all work together to maintain barrier integrity. These immune
cells efficiently sense microbial danger signals via pathogen- and damage-associated molec-
ular patterns (PAMPs and DAMPs) and initiate an adequate immune response, leading
to subsequent tissue inflammation by the recruitment of circulating counterparts that will
attempt to clear bacterial invasion. In addition to this necessary but harmful action, resident
immune cells further contribute to barrier repair and homeostasis. Given that cells of the
immune barrier are distributed all over the skin, this barrier is highly interconnected with
other levels of the cutaneous barrier; for example, it responds to signals derived from
epithelial cells and secretes molecules that orchestrate epithelial behavior [9,14]. The skin
barrier in health and under pathological conditions such as atopic dermatitis (AD) or
diabetic foot ulcers (DFU) and its properties are graphically represented and described in
Figure 1.
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2.2. S. aureus Colonization of Healthy Skin

The ability of S. aureus to persist in the skin, either as a commensal or during an
infectious process, is highly dependent on its cellular structural dynamics and population
heterogeneity [15]. Considering the harsh skin microenvironment, a heterogeneous popula-
tion of bacteria that presents diverse subpopulations has a higher probability of surviving
during the stress conditions than a homogeneous population [16,17]. S. aureus regulates
gene expression to adapt to the niche where it replicates through global regulators and
transcription factors. SigB is the alternative sigma factor that regulates general responses
to stress [18]. Its levels are constant throughout the growth phase [19], but SigB can be
activated under unusual pH and high osmolarity conditions present in the skin [20]. Since
low pH is detrimental to S. aureus, the bacteria must neutralize the acidity in order to
colonize the skin [21]. To counteract acidic stress, S. aureus down-regulates organic acid
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production [21,22] and up-regulates purine biosynthesis and ammonia production, increas-
ing urease and arginine deiminase activity [23–25]. The genes encoding urease are highly
up-regulated in response to low pH [21,22,26]. Urease converts urea to ammonia and
carbon dioxide through a Ni(II)-dependent reaction [27]. It has been shown that S. aureus
in vivo uses the ammonia produced from urea to neutralize the acidic pH, contributing
to its survival and pathogenesis [24]. It has also been demonstrated that the arginine
deiminase (Arc) encoded in the arginine catabolic mobile element (ACME) of the highly
epidemic clone ST8 USA300 plays an important role in the adaptation of S. aureus to the
skin. Arc produces ammonia by catabolizing arginine, which prevents the formation of
nitric oxide but induces the synthesis of polyamines. The spermidine N-acetyltransferase
SpeG, also encoded in ACME, confers resistance to polyamines formed as a result of argi-
nine catabolism by Arc. Therefore, the presence of ACME in this clone is a key element
that allowed the adaptation to the skin [25,28]. In addition, the upregulation of purine
biosynthesis favors the development of persistent phenotypes such as those producing
biofilm and being resistant to antibiotics [24,25,29].

2.3. S. aureus Colonization of the Skin in Individuals with Atopic Dermatitis

AD is a chronic inflammatory disease of relapsing course that is clinically characterized
by periodic flares of dry, red, itchy skin lesions and pathogenically by a defective skin barrier
(Figure 1), recurrent infections, and both local and systemic Th2 immune responses [30–33].
It is estimated that AD affects from 5 to 30% of children and between 2 and 10% of adults
worldwide [30,34].

In AD, the pH of the skin shifts toward alkalinity, in part due to low sweat secretion
and decreased levels of fatty acids. Loss of function mutations in the filaggrin gene
(present in certain patients) may result in reduced levels of urocanic acid (UCA) and
pyrolidone carboxylic acid (PCA) [35]. Moreover, the Th2 cytokines IL-4 and IL-13 present
in the AD skin reduce filaggrin expression, and therefore the levels of UCA and PCA
are decreased even in patients carrying the filaggrin wild-type gene. IL-4 and IL-13 also
inhibit the production of β-defensins 2 and 3 [36–38]. In addition, IL-4 induces an increase
in fibronectin and fibrinogen, which can promote the skin binding of S. aureus through
fibronectin- or fibrinogen-binding proteins [39], therefore favoring bacterial colonization
of the skin. Among Th2 cytokines, increased levels of IL-5, which are correlated with
increased levels of IgE, have been detected in the skin of AD patients [40], and a role for
this cytokine in the induction of eosinophilia has been proposed [33]. IL-31 has also been
found at higher levels in lesional skin compared with non-lesional skin within the same
patient [41]. The increased expression of IL-31 originates from the microbiota alteration
and has an important role in pruritus, a condition that is the basis for scratching and favors
the entrance of infecting microorganisms into the skin [42,43].

The particular characteristics of the skin in AD patients have been associated with
alterations in the microbiota, and a reduction in microbial diversity during disease flares
with an increased prevalence of S. aureus and Staphylococcus epidermidis has been demon-
strated [7,44]. A meta-analysis of 95 studies showed that the prevalence of S. aureus
carriage in AD patients was 70% on lesional skin compared with 39% in non-lesional skin
or healthy control skin [45]. Moreover, the contribution of S. aureus to the onset, severity,
and perpetuation of inflammation in the skin of AD patients has been recognized [46,47].

Clinical isolates of S. aureus obtained from colonized AD patients exhibit changes
in gene expression and polymorphisms in metabolic genes, especially those involved
in the tricarboxylic acid cycle (TCA), the fumarate-succinate axis, and the generation of
terminal electron carriers [48]. Fumarate has the ability to inhibit glycolysis by binding
to glyceraldehyde 3-phosphate dehydrogenase [49], a crucial component of the glycolytic
pathway that converts glucose into pyruvate. Increased expression of fumarase C (encoded
by fumC) restricts fumarate production and facilitates glycolysis, which is necessary for S.
aureus proliferation in the skin [50]. Therefore, it appears that metabolic adaptation, driven
by the reliance on glycolysis for ATP generation, represents a significant selective pressure
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for S. aureus during skin colonization. The fumC locus was targeted in S. aureus isolated
from the skin of AD patients, and variants with over 100-fold induction of fumC expression
compared with USA300 were identified [48]. Increased fumC expression in these isolates
may lead to increased fumarate hydrolysis and prevent suppression of glycolysis.

S. aureus adhesion is also influenced by changes in the stratum corneum cell composition
and morphology that occur in AD. Corneocytes expose ligands such as fibronectin, loricrin,
and cytokeratin that interact with bacterial proteins as fibronectin-binding proteins A and
B (FnBPA, FnBPB), clumping factor B (ClfB), and the iron-regulated surface determinant A
protein (IsdA), promoting adhesion of S. aureus and providing resistance to antimicrobial
lipids [7,51]. In healthy human skin, S. aureus can be found in the epidermis and within the
dermis [52]. Using a mouse model of AD, increased invasion of S. aureus into the dermis
has been observed, and this process was dependent on bacterial viability and the activity of
proteases such as the V8 protease and ceramidase. Moreover, the entry of S. aureus through
the epidermal surface led to the interaction of the bacteria with immune cells, potentiating
the Th2 responses characteristic of AD [53]. This Th2 environment suppresses both the
expression of filaggrin and antimicrobial peptides with functional consequences in the skin
barrier, maintaining alkaline pH and decreasing antimicrobial action, therefore contributing
to the loss of immune homeostasis and favoring bacterial colonization [54,55]. Moreover,
the impaired skin barrier facilitates the penetration of allergens and irritants, which may
result in increased sensitization to microbes and high IgE levels, which perpetuate the
eczema [55].

2.4. S. aureus Colonization of the Skin in Individuals with DFU

In diabetic patients, foot ulcer formation is a major concern [8]. It is estimated that
one in three to one in every five patients with diabetes will develop a non-healing chronic
wound in their lifetime, such as a DFU, that has an alarmingly high recurrence [56–59]. The
most common risk factors for these wounds to occur include diabetic neuropathy, high
oxidative stress, and peripheral arterial occlusive disease. These lesions imply a breakdown
in the epidermis, affecting the physical and chemical barriers of the skin (Figure 1). Diabetic
wounds have unique features that make them hard to heal. Diabetic wounds exhibit dereg-
ulated angiogenesis, a chronically sustained suboptimal inflammatory response, increased
levels of reactive oxygen species, and persistent bacterial colonization. In the diabetic pa-
tient, hyperglycemia has important consequences for wound healing, affecting the normal
function of endothelial cells and the proliferation of keratinocytes and fibroblasts, which
are essential for re-epithelialization. Moreover, hyperglycemia also leads to increased pro-
duction of reactive oxygen species, which are detrimental for wound healing. There is little
to no production of cathelicidin (LL37), an antimicrobial peptide known to contribute to
wound healing in the skin [56–59]. In addition, the hypoxic and inflammatory environment
of the DFU favors the expression of elevated levels of metalloproteinases that contribute to
the important destruction of the extracellular matrix [60]. Non-healing diabetic wounds can
lead to deep ulcers affecting not only the epidermis but also the dermis and hypodermis,
and infection of these ulcers is a frequent complication that represents a major cause of
morbidity and mortality [61]. DFU infection can result in invasive severe complications
such as diabetic foot osteomyelitis (DFOM) in 10 to 15% of the patients, and S. aureus is the
primary pathogen associated with this pathology [62].

Patients with diabetes are more frequently colonized with S. aureus and more sus-
ceptible to staphylococcal infections [63,64]. Although the expression of β-defensins is
upregulated in DFU, this is not sufficient for microbial regulation [56–59]. Diabetic skin
ulcers are often colonized by a mixed community of microorganisms, including aerobic
and anaerobic bacteria as well as fungi [8]. Polymicrobial colonization is very common,
but among this community, S. aureus is a major participant [8,65–68]. A shotgun metage-
nomics sequencing analysis conducted with the microbiome of DFU with no clinical signs
of infection from 100 patients in the United States indicated that Staphylococcus was the
most abundant genera (18%) and S. aureus was the major staphylococcal species [65]. The
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situation in infected DFU (grades 2–4 according to the IDSA-IWGDF scale [69]) is very
similar. A study conducted with isolates from 200 diabetic individuals from India showed
that half of the infected wounds were positive for S. aureus, and one third of those were
monomicrobial. Moreover, polymicrobial infection was associated with a clinical history of
amputations [70]. The high abundance of S. aureus in infected DFU has also been reported
worldwide [67,68,71,72].

Some of the features of the microenvironment that S. aureus encounters in the DFU
include nutritional and metabolic stress. Moreover, the defect in microvascular circula-
tion in these patients contributes to the hypoxia that characterizes the DFU [56–59]. The
available levels of oxygen will depend on the depth of the ulcer and the degree of tissue
necrosis. S. aureus is a very versatile pathogen that, in addition to being able to promote
hypoxia through tissue cytotoxicity, has multiple regulatory pathways to respire in low
oxygen conditions. In response to decreased oxygen conditions, S. aureus upregulates
genes in glycolysis, fermentation, and anaerobic respiration and represses genes of the
TCA [73] through the respiratory response regulator AB (SrrAB) and the anaerobic iron-
sulfur cluster-containing redox sensor regulator (AirSR) regulatory systems [74,75]. Under
these conditions, S. aureus can use nitrate and nitrite as its final oxygen acceptors or switch
to fermentative metabolism [76]. It has been described that S. aureus has unique carbohy-
drate transporters that facilitate the maximal uptake of host sugars and serve to support
non-respiratory growth in inflamed tissue [77]. Moreover, S. aureus transcriptomic anal-
ysis using an in vivo murine model of excisional wounds revealed that genes related to
numerous metabolic pathways were differentially expressed at day 3 post-inoculation in
diabetic mice compared with wild-type mice, suggesting a differential adaptation in the
diabetic wound microenvironment. These changes included downregulation of the lac
operon, likely due to hyperglycemia [78]. In addition, in vivo studies have shown that
glucose-6-phosphate (G6P) is significantly elevated and is an important metabolic signal
that induces the expression of staphylococcal cytotoxins through activation of the hexose
phosphate transport system, Agr, and Sae systems, causing the lysis of host neutrophils,
which in turn results in severe tissue necrosis in the diabetic host [79].

3. Genotypic Diversity among Nasal and Skin S. aureus Isolates in Health and Disease

The characterization of S. aureus isolates by molecular typing is critical to identifying
high-risk clones that are able to adapt to a certain niche. Sequence-based methods such
as Pulse Field Gel Electrophoresis (PFGE), Multilocus Sequence Typing (MLST), staphy-
lococcal protein A (spa) typing, SCCmec typing, and Whole Genome Sequencing (WGS)
are the most commonly used to monitor the spread and circulation of the diverse S. aureus
lineages [80]. The population structure of S. aureus is highly clonal, and the human strains
can be grouped into a discrete number of clonal complexes (CC). The MRSA lineages are
less numerous because the introduction of the SCCmec must occur into MSSA lineages
that are “permissive” for this element to be acquired and maintained. Nonetheless, the
molecular epidemiology data for S. aureus are mainly focused on MRSA, and the infor-
mation available about MSSA is scarce. The predominant clones of hospital-acquired and
community-acquired MRSA by geographical region have been characterized and are listed
in Table 1 [80]. The MSSA population is more heterogeneous than the MRSA population.
This may be related to the fact that approximately 30% of the human population carries
MSSA, and its circulation precedes its emergence. Approximately 40 to 50% of MSSA
isolates from different geographical areas belong to clonal complexes CC5, CC8, CC22,
CC30, and CC45 (shared with MRSA), while the rest belong to lineages that contain mainly
MSSA, such as CC7, CC9, CC12, CC15, CC25, CC51, and CC101. Predominant clones found
among MSSA isolates from uncomplicated skin and soft tissue infections obtained in global
clinical trials (including those in the USA, South America, South Africa, and Europe) are
listed in Table 1 [81]. A clone that has emerged recently and represents a source of concern
is MSSA ST398 (CC398), mainly with spa type 571, which contains the phage-encoded
immune evasion cluster genes and is resistant to erythromycin. MSSA ST398 is responsible
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for serious infections in different geographical regions, including North America, Europe,
China, and the Caribbean [82].

Table 1. Predominant S. aureus clones by geographical region.

Region MRSA from
Hospital Setting

MRSA from
Community Setting MSSA

North America ST5, ST8, ST36, ST45 ST8, ST30 ST1, ST8, ST30, ST45, ST398 (CC398)
South America ST5, ST239 ST5, ST8, ST30 ST1, ST8, ST30, ST45

Europe ST5, ST8, ST22 ST8, ST30, ST80 ST1, ST8, ST30, ST45, ST398 (CC398)
Asia ST5, ST22, ST239 ST8, ST30, ST59, ST88, ST93, ST772 ST398 (CC398)

Australia and
New Zealand ST1, ST22 ST5, ST93 --

Africa ST5, ST239 ST80, ST88 ST1, ST8, ST30, ST45

3.1. S. aureus Nasal Carriage in Healthy Individuals

Considering that nasal carriage is an important risk factor for infection [1–5], several
studies have attempted to characterize the main clones associated with colonization of the
nasal epithelium. A study conducted in the United States with a large cohort (9622 indi-
viduals of age older than 1 year as part of the National Health and Nutrition Examination
Survey, 2001–2002) showed that 32.4% of the individuals were colonized with S. aureus,
and, at that point, CC30 was the major clone found among the MSSA isolates, whereas CC5
was prevalent among MRSA [83]. A more recent study indicates that isolates belonging
to CC8 are also prevalent among MRSA colonizing the nares and that this clonal complex
is associated with intermittent carriage, whereas isolates belonging to CC5 are associated
with persistent carriage [84]. Studies that characterized S. aureus isolates colonizing the
noses of individuals from other regions showed that, independently of the major circulating
clones, certain genotypes were prevalent among carriers. A large study conducted in the
Netherlands analyzing a strain collection of non-clinical origin (n = 829) indicated that
CC30 and CC45 accounted for almost half (47%) of all carriage isolates, with the remaining
isolates belonging to CC5, CC8, CC15, CC22, and CC121 [85]. CC30 was the most prevalent
lineage in healthy pediatric cohorts from Ireland [86], Scotland [87], and Korea [88]. A
study including 97 participants from Saudi Arabia showed a different scenario, and high
clonal diversity was described. Among the strains isolated, corresponding to 43% of the
individuals tested, seventeen clonal complexes were identified, and the more frequent were
CC15 (n = 5), CC1 (n = 4), CC8 (n = 3), CC22 (n = 3), CC25 (n = 3), and CC101 (n = 2) [89]. In
two studies that evaluated the carriage of MRSA in children from Iran and Jordan, CC22
appears as the prevalent clonal complex, followed by CC30, CC5, and CC1 [90,91]. Studies
conducted in South America showed a prevalence of CC30, CC22, CC1, ST101, and CC8
among MSSA from a student population in Chile, whereas the two MRSA isolates from
the same population belonged to CC5 [92]. MRSA isolated from a population of carriers in
Brazil corresponded to ST5 and ST30 [93]. Major S. aureus clonal complexes colonizing the
nares of healthy individuals worldwide are summarized in Figure 2.
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3.2. Lineages of S. aureus That Colonize and Infect Patients with Atopic Dermatitis

Although the prevalence of S. aureus in the skin colonization of AD patients has
been recognized, whether certain clones are better adapted to colonize and infect the skin
of these patients is still controversial. Studies conducted with AD patients, including a
pediatric population from Scotland and an adult population from Denmark, indicated that
MSSA isolates belonging to CC1 were prevalent [87,94]. This was in contrast with the high
prevalence of CC30 among MSSA isolated from nasal samples in healthy individuals [83,87].
A previous study in Spain indicated that the most common clonal complex in isolates from
AD patients (young adults) was CC5 (31.2%), followed by CC15 (18.7%), CC30 (18.7%),
and CC45 (15.6%). Similarly to the study of the Scottish population, isolates from atopic
individuals that had never suffered AD mainly belonged to CC30 (48.3%), but this CC
was underrepresented in AD patients [95]. The low prevalence of CC30 in the skin of AD
patients has also been observed in two other studies from Canada [34] and Korea [96]. In a
population of 119 children and 40 adults with AD from Canada, the prevalent genotypes
belonged to CC45, CC5, and CC15, followed by CC1, CC8, and CC30 [34]. In the study
conducted in Korea, which included 42 patients (11–43 years old), one-third of the isolates
belonged to CC1, and the second most prevalent clonal complex was CC5 [96]. A very
different situation has been described in a recent study conducted in Brazil with a cohort
of 106 children with AD [97]. Fifty percent of these patients have developed S. aureus
cutaneous infections, and among these, 40% of the isolates obtained were MRSA, in contrast
with what is observed worldwide regarding the association of MSSA and skin infection
in AD patients [34,46,98]. In this population, CC30 was the main lineage found (34.5%),
likely influenced by the high incidence of MRSA (52.2% of the MRSA were CC30) [97].
In line with these findings, the concept that the S. aureus population that colonizes AD
patients, characterized by spa typing and MLST-CC, mirrors the population present in
a given geographical area rather than being specific to the type of disease has also been
recently proposed by Ogonowska et al. [99]. In their study, the molecular analysis of
139 S. aureus isolates from 80 AD patients in Poland (29 children and 51 adults) revealed
that the most frequent genotype was CC7 (ST7-t091), followed by isolates belonging to
CC45, CC97, and CC15, resembling general population colonization in the area. Therefore,
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whether certain clonal complexes are associated with skin infections in AD patients is still
an open question.

Despite the descriptive studies characterizing the clones present in the skin of AD
patients at certain time points that have been conducted, only a few of those have been
designed to determine the putative adaptive advantages that certain clones may have
to colonize and infect the skin in this population. So far, the only association reported
has been the colonization by S. aureus belonging to CC1 and patients carrying filaggrin
mutations [100]. Among host genetic conditions, mutations in the filaggrin gene have
been reported as a major risk factor for the development of AD and are also associated
with disease severity [13]. As impaired skin barrier function is critical in the pathogenesis
of AD and might promote S. aureus colonization of the skin, the association between
filaggrin mutations and S. aureus colonization has been investigated. Loss-of-function
mutations such as pArg501Ter and 2282del4, present in up to 50% of Northern European
AD patients but absent in Southern European patients, were not associated with the S.
aureus colonization rate. However, S. aureus colonization had an impact on disease severity
in these patients [101,102]. On the contrary, the single-nucleotide polymorphism (SNP) of
filaggrin that is located at codon 478 (p.Pro478Ser), in spite of its low frequency worldwide,
has been shown to be significantly associated with higher S. aureus skin colonization as
well as increased disease severity [103]. A study conducted by Clausen et al. in Denmark
showed that CC1 was the most frequent clonal complex among isolates from patients
with mutations in filaggrin, followed by CC15 and CC45. In AD patients with wild-type
filaggrin, CC15 and CC45 were found with a frequency similar to that in AD patients
with filaggrin mutations, whereas CC1 was less frequent. The statistical analysis of the
frequency data indicated that CC1 was found in a significantly higher number of patients
with filaggrin mutations than wild-type filaggrin [100]. The potential molecular mechanism
behind the association of CC1 with skin colonization in AD has been recently characterized
by quantifying the in vitro adherence of AD strains to the ClfB ligand L2v, a loricrin-derived
peptide [86]. AD isolates belonging to CC1 adhered very strongly to L2v. In addition, ClfB
isolated from CC1 strains had significantly higher binding affinity for its ligand than ClfB
from strains of other clonal complexes, including CC30. Although these differences were
small, the authors propose that they could be amplified when multiple copies of ClfB are
present on the surface of S. aureus, leading to an increase in avidity [86].

In order to further investigate the putative relationship between the carriage of certain
clonal complexes and AD, the lineages present in the nose and the skin within the same
individual have been characterized. Interestingly, a study conducted in Scotland showed
that nasal colonization in AD patients could be attributed to strains of the CC1 lineage as
opposed to the CC30 lineage found in healthy individuals [87]. Moreover, in that study,
it was shown that each patient was colonized with only one CC, and colonies derived
from skin and nasal sites were interspersed throughout the phylogeny, suggesting an
exchange of S. aureus between sites rather than niche-specific populations. SNP analysis of
strains from different sites indicated that the nasal carriage represented a more established
population and hence, a potential source of S. aureus colonizing diseased skin through
self-transmission. This intra-individual spread has also been proposed by Clausen et al. in
a study including 101 patients in which the authors determined that 94% of the patients
presenting staphylococcal colonization of the nose, lesional skin, and non-lesional skin
carried the same clone in all three sites as characterized by MLST (CC) and spa type.
Among these patients, isolates from CC1, CC15, and CC45 were predominant [94]. Similar
findings were obtained by van Mierlo et al. in a population of 96 adults with AD from the
Netherlands [104]. Benito et al. also observed colonization of each individual with only one
CC but reported a high clonal diversity among skin isolates compared with nasal isolates in
AD patients from Spain. Whereas CC30 and CC5 were predominant among nasal samples,
thirteen different CCs were detected among skin isolates [98]. In a prospective cohort study
in Denmark undertaken to determine the clonal dynamics of S. aureus colonization and
infection during 1 year in 11 children with AD, samples from active eczema, anterior nose,
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axillae, and perineum were taken every 6 weeks. S. aureus colonization patterns ranged
from rare colonization over transient colonization to persistent colonization by a single
clone or a dynamic exchange of up to five clones. A role for household transmission was
also observed by analyzing siblings [105]. Therefore, although there is evidence to suggest
a correlation between the clones colonizing the nose and the lesional skin of AD patients,
more studies with individuals from different geographical areas are required to achieve
conclusive data.

Regarding the association between certain clones and the severity of disease, in a
pediatric cohort from Spain, strains of lineages CC45 and CC5 were detected in almost
all cases in AD patients with severe scoring of atopic dermatitis (SCORAD index [106]),
whereas lineages CC8 and CC30 were detected in those with mild or moderate ones [98].
In these samples, strains from CC1 were underrepresented similarly to what was found in
a previous study with adult AD patients from the same geographical region [95]. When the
relationship between the severity of the disease and the colonizing staphylococcal genotype
was evaluated in a cohort from Canada, where CC1 was abundant, it was observed that the
severity of the disease was significantly higher in AD patients colonized with strains from
the CC1 lineage compared with patients colonized with strains from the CC15 and CC30
lineages. The severity of the disease in AD patients colonized with strains from the CC45,
CC5, and CC8 lineages was in between CC1 and CD15/CC30 [34]. In a follow-up study,
Clausen et al. determined the colonization status and lineage of the strains isolated from
the nose, lesional skin, and non-lesional skin 18 months and 4 years after the first screening.
Fifty percent of the patients presented the same CC at follow-up and interestingly, patients
that showed changes in the CC compared to the first isolates had a higher SCORAD index,
indicating increased disease severity. Based on these findings, it has been proposed that
changes in the colonizing lineages within individuals could be associated with disease
severity and that these changes could be the cause of the flares [94]. From the studies
conducted so far, whether a certain genotype is associated with disease severity in AD is
still under debate. Major S. aureus clonal complexes identified in the skin of patients with
AD worldwide are summarized in Figure 2.

3.3. Major Clones of S. aureus That Colonize and Infect Skin Ulcers in Diabetic Patients

The putative advantages of certain S. aureus clones for surviving and persisting in
the very particular niche of the DFU have been evaluated by several groups. In all the
studies, the S. aureus population colonizing or infecting the DFU was highly diverse, as
determined by molecular typing methods [67,71,72,107,108]. However, certain clones were
predominant in some geographical regions. A study conducted in India showed that
among 30 isolates (15 from monomicrobial infections and 15 from polymicrobial infections)
randomly selected from 86 patients with infected DFU, ten different clones were detected,
but 50% of the isolates were within the CC1 lineage. Six isolates from polymicrobial
infections were CC1 ST1, and 7 isolates from monomicrobial infections were CC1 ST772.
Among these CC1 ST772 isolates, four were MRSA. Other clonal complexes reported were
CC22, CC672, CC5, and CC8 [70]. A report from Algeria indicated that CC1, CC15, and
CC121 were the most prevalent lineages among MSSA, whereas the Brazilian clone ST239
and the European clone ST80 accounted for 82% and 14%, respectively, of the MRSA isolates
from infected DFU (grades 2–4 according to the IDSA-IWGDF scale) [71]. In Portugal, CC5
accounted for 32% of the isolates evaluated (representative of the 23 pulsotypes found
among 53 isolates from infected DFU). Other CCs found were CC22, CC45, CC30, CC7,
CC182, and CC8 [72]. Among these, CC45 and CC30 have been associated with severe
invasive diseases [109]. A recent study conducted with patients from a Tunisian hospital,
comprising individuals from different areas in Africa, showed the presence of linages CC5,
CC8, CC1, and CC15 among MRSA and lineages CC1, CC12, CC22, and CC398 among
MSSA. The strains belonging to CC1 were all spa type t127, a genotype associated with
severe infections in the United States and Germany [107]. The molecular characterization
of S. aureus isolates from patients with DFU monomicrobial infection in France showed
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that 18 CCs and 11 ST were found, but 38% of the isolates from patients with diabetic
foot osteomyelitis (DFOM) belonged to the MSSA CC398 lineage, whereas 16% of the
isolates from patients presenting only skin and soft tissue infection (SSTI) were CC45.
Therefore, a significant association of these CCs with either condition (DFOM or SSTI)
was observed [108]. In this study, 16% of the isolates from patients with DFOM were
MRSA and belonged to the CC8, CC5, and ST22 lineages. In France there is an increasing
spread of the MSSA CC398 clone. A recent study characterizing isolates obtained between
2010 and 2017 from patients with DFOM showed that the prevalence of MSSA CC398
increased from 4% in 2010 to 26% in 2017. The presence of CC398 significantly correlated
with the severity of the ulcer [110]. The MSSA CC398 is also highly isolated in China and
is currently spreading around the world with heterogeneous prevalence and a significant
impact on severe infections such as bloodstream infections, endocarditis, and bone joint
infections [107,111]. Regarding colonizing lineages, CC5 and CC8 have been described as
significantly associated with uninfected DFU, which were able to heal and had a favorable
outcome [112]. Major S. aureus clonal complexes identified in the DFU of diabetic patients
worldwide are summarized in Figure 2.

In relation to antibiotic resistance, a high prevalence of MRSA is observed in infected
DFU, likely due to the multiple times that these patients must attend clinical centers for
wound healthcare and antibiotic treatment. In certain areas, such as India and Africa, the
percentage of MRSA reaches values between 40 and 85%, with some isolates reported as
multidrug-resistant (MDR) [67,70,71,107], whereas in others it is close to 10–15% [108,113].
In a study conducted with patients from the Lisbon area, most isolates from DFU were
identified as S. aureus (77.3%), and 48.7% of them were considered MRSA [72]. Moreover, it
has been reported that there is a significant association between the presence of MRSA and
delayed wound healing [113].

In order to further understand the dynamics of clones within the S. aureus population
that colonizes and infects DFU, a few studies have been designed to address the role of
nasal carriage in this process. A screening conducted in 660 individuals with diabetes
from Australia, which comprised initial nasal/axillary swabs with follow-up at 3–34 weeks,
indicated that 40% of them were S. aureus carriers, and out of these, 82% were persistent
carriers [114], a proportion higher than what is reported for the general population [115].
The evaluation of 79 patients with DFU without clinical signs or symptoms of infection
(ulcers grade 1, according to the IDSA-IWGDF scale) showed that 32% carried S. aureus in
the nares and 37% had colonization of the ulcer. However, only 15% had colonization of
both sites, and only 7 of those 12 patients carried related strains in the nose and ulcers as
determined by PFGE [113]. Other two studies, in which nasal and ulcer S. aureus strains
were characterized, were conducted with patients that had infected DFU (grades 2–4,
according to the IDSA-IWGDF scale). Out of the 236 patients evaluated in France, only 36%
had S. aureus in the nose and the ulcer, and 65% of those patients carried the same clone
in both sites. In this study, lineage ST398 was significantly associated with ulcer samples,
whereas MRSA CC8 was associated with nasal samples. Other CCs found were MSSA
CC30, ST398, CC15, and CC45 (in the nares) and MSSA CC15, CC45, CC8, CC30, CC5, and
MRSA CC8 (in the DFU) [116]. Recently, 115 diabetic patients from Iran were screened for
S. aureus in the nose and the infected wounds (grades 3–4, according to the IDSA-IWGDF
scale). In this case, only 11% of the patients were positive for S. aureus at both sites, and
of these, 50% carried the same clone [68]. Therefore, from the studies conducted up to the
present, endogenous transmission cannot be assumed as the only source for DFU infection.

DFU colonization/infection is a chronic condition in part due to the fact that S. aureus
can hide and persist in skin cells, thereby contributing to poor wound healing and creating
a circle of wound chronicity and infection. Longitudinal studies are required to determine
whether these chronic wounds are persistently infected or become re-infected multiple
times. In this regard, in the only study conducted so far, 48 patients with infected DFU at
the same anatomical site at each visit and with failure in wound healing were included.
These patients were recruited over a period of 7 consecutive years. The follow-up was
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classified into three timeframes: 23 patients with a follow-up between 4 and 10 weeks,
12 patients with a follow-up between 11 and 30 weeks, and 13 patients with a follow-up
beyond 30 weeks. At inclusion (48 isolates), MSSA ST30 represented the main genotype
identified, followed by ST45 and CC5. MRSA was isolated only in 7 cases (CC8 and CC5).
During the follow-up (62 isolates), ST398 (16%) and the Lyon clone CC8 MRSA-IV (14%)
were mainly detected, followed by ST45 and ST15. During the timeframe of the study,
51% of the patients had persistent S. aureus colonization/infection of their DFU. Among
these patients, 12 (25% of the total) presented persistent DFU colonization/infection by the
same strain for a period of ≤4 weeks. However, the number of patients with identical S.
aureus strains isolated over time significantly decreased with the increase in the follow-up
period. Among the seven CCs found in the persistently infected wounds, ST15-MSSA,
CC8-MRSA-IV, and CC25-MSSA were only detected in the first period of follow-up (4 to
10 weeks). ST45-MSSA was detected from the initial screening up to 30 weeks of follow-up
in 2 patients. The ST22-MSSA clone was identified even after a long period (52 weeks) in
one patient. Interestingly, that patient had ST30-MSSA at the initial screening and switched
to ST22 by week 4 [117]. The results of this study indicate that long-term persistence of
S. aureus in DFU is a less frequent finding compared with other chronic conditions such
as lung colonization in cystic fibrosis patients [118] or patients with osteomyelitis in the
long bones [119], likely due to the very hostile microenvironment of the DFU. Nonetheless,
although more studies are required, certain S. aureus clones, such as ST45 and ST22, seemed
to be able to adapt and persist in the infected wound. Interestingly, these persistent clones
were MSSA, indicating that MRSA is not the only concern for the infection of chronic
wounds in diabetic patients.

4. Regulation of Virulence Factor Expression and Its Impact on Disease Onset,
Exacerbation and Chronicity

S. aureus is a very successful pathogen due to its capacity to efficiently sense envi-
ronmental signals and rapidly adapt to changing environments. In order to do so, the
majority of S. aureus strains encode 16 two-component signal transduction systems (TCS).
Using these TCS, S. aureus senses a diverse array of environmental stimuli, such as nutrient
concentration, cell density, pH, ionic strength, and membrane stresses [120]. TCS in S.
aureus has been recently reviewed by Haag and Bagnoli [121]. Among the known S. aureus
TCS, AgrCA and SaeRS have been described as major global regulators of virulence gene
expression [122,123].

In the AgrCA system, the active pheromone called autoinducing peptide (AIP) is
sensed by the histidine kinase (HK) AgrC, and once a threshold concentration of the
AIP is reached, the response regulator AgrA becomes activated [121]. Phosphorylated
AgrA is the main regulator of the agr autoinduction cycle and binds to the agr P2 and P3
promoters, leading to transcriptional activation of the agrABCD operon and the regulatory
small RNA called RNAIII, respectively [124]. The main effector of the agr quorum sensing
system is RNAIII, which interacts with target mRNAs, controlling the expression of surface
proteins, secreted toxins, and proteases [125]. Capsule biosynthesis and the expression
of secreted proteins and toxins (i.e., lipases, proteases, nucleases, hyaluronidases, phenol-
soluble modulins, α, β, γ, and δ haemolysins, leukocidins, toxic shock syndrome toxins,
and exfoliative toxins) are upregulated by agr (recently reviewed by Haag et al. [121]). In
addition, AgrA induces the expression of α- and β-phenol-soluble modulins (PSMα1-4,
PSMβ1-2) by direct interaction with their respective promoters [126,127]. Expression of
surface proteins such as protein A and fibronectin-binding proteins, as well as coagulase,
is repressed by agr. Apart from its autoactivation, various environmental stimuli, such as
glucose and pH changes, are known to affect agr expression [128].

The S. aureus accessory element (sae) TCS is another key regulator of many secreted
toxins, exoenzymes, and immunomodulatory proteins critical for S. aureus pathogenesis.
SaeR and SaeS are the response regulator and the HK of the system, respectively [122],
while the other two gene products, SaeP and SaeQ, form a protein complex with SaeS
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to regulate the sensor kinase phosphatase activity. Thus, SaeP and SaeQ are involved in
dephosphorylating activated SarR, thereby affecting the expression levels of SarR-induced
genes [129]. The sae locus is essential for the transcription and production of α and β

haemolysins (hla, hlb) and coagulase, as well as toxins of the leucocidin family [130–132].
S. aureus is able to adapt to the host microenvironment by using the TCS in coordi-

nation with several important cytoplasmic regulators, such as the SarA protein family of
transcriptional regulators (SarA, Rot, and MgrA) and the alternative sigma factors (SigB
and SigH) (revised by Jenul and Horswill [133]).

4.1. Atopic Dermatitis

Experimental data have shown a role for numerous S. aureus virulence factors in the
pathogenesis of AD [7,134]. The carriage of genes coding for those virulence factors in
strains isolated from the skin of AD patients has been investigated [96,135]. Recently, whole
genome sequence analysis performed on 38 S. aureus strains from AD patients and healthy
carriers showed a high degree of genetic heterogeneity and a shared set of virulence factors,
suggesting that no genomic content is uniquely associated with AD [136]. Differential gene
expression patterns rather than the acquisition/loss of virulence genes are more likely to
be responsible for the onset, pathogenesis, and exacerbations of the disease. In line with
this hypothesis, recent studies have focused on characterizing the activation and repression
as well as the selection of mutations in global gene regulators of S. aureus isolated from
patients with AD.

A whole genome sequencing analysis of S. aureus strains isolated from the skin of
268 Japanese infants 1 and 6 months after birth indicated that skin colonization by S.
aureus at 6 months of age increased the risk of developing AD. Moreover, the presence of a
functional agr in the colonizing strains was associated with the development of AD, whereas
the acquisition of dysfunctional mutations in the S. aureus Agr system was primarily
observed in strains from 6-month-old infants who did not develop AD. In the same study,
the authors showed that the expression of a functional Agr system in S. aureus was required
for epidermal colonization and the induction of AD-like inflammation in mice [137].

In vivo activation of the Agr quorum sensing system in the skin has been shown using
a murine epicutaneous infection model. The expression of RNAIII, which is indicative
of the induction of agr, was observed four days after epicutaneous inoculation with S.
aureus, and the mice successfully colonized with S. aureus developed severe dermatitis on
day 7 [138]. Moreover, the expression levels of RNAIII in wash fluid obtained from the
lesional skin of patients with AD were upregulated compared with those determined in
non-lesional skin from the same individuals, suggesting an important role for Agr quorum
sensing in AD exacerbation [138–140]. The relationship between a functional agr and the
development of AD is also supported by several studies in which the pathogenic role of
toxins positively regulated by agr has been investigated. Among these, it has been shown
that α haemolysin (also positively regulated by sae) induces apoptosis and necrosis of
epidermal cells [135]. Moreover, this toxin induced higher proliferation of T cells and
increased production of IL-31 in PMBCs from AD patients than in those from healthy
individuals, highlighting the complex interaction between S. aureus and the host immune
response in AD. A significant increase in cytokines produced by T cells (IL-2, IL-9, IL-10,
and IFN-γ) and monocytes (IL-1β and TNF-α) was also observed [141]. The contribution of
staphylococcal toxins to inflammation has also been demonstrated by the upregulation and
release of pro-inflammatory chemokines and cytokines, including CXCL8, CCL20, TNF-α,
and IL-6, in primary human keratinocytes stimulated in vitro with sublytic concentrations
of synthetic PSMα3. In addition, bacterial supernatant containing α-type PSMs triggered
an intense induction of pro-inflammatory mediator expression and secretion during both
topical and basal layer stimulation of human skin explants, suggesting that α-type PSMs
can significantly contribute to AD flares through exacerbation of skin inflammation [142].
In addition to inflammation, it has been shown that PSMα induces epidermal keratinocyte
cell death and stimulates the release and secretion of the alarmins IL-1α and IL-36α. PSMα



Antibiotics 2023, 12, 1520 14 of 26

was also essential for inducing IL-17-dependent dermatitis via the release of alarmins in an
epicutaneous S. aureus inoculation model [140]. Concomitantly with the upregulation of
secreted toxins, when the Agr regulon is activated, the synthesis of protein A, a conserved
cell wall protein, is decreased [143]. Due to the critical role of protein A in the modulation
of the neutrophil and epithelial cell death programs in the skin [144], its low expression also
contributes to tissue necrosis. In addition to acting as a transcription-modulating factor,
RNAIII itself encodes PSMγ [139]. This toxin, also known as δ-toxin, can trigger mast cell
degranulation, inducing Th2-type dermatitis in mice [145].

S. aureus strains isolated from AD patients have also been shown to produce extra-
cellular proteolytic enzymes such as metalloproteinases and serine proteases, which can
contribute to epithelial damage. The proteolytic activity of the strains from patients with
AD was higher than isolates from healthy carriers, suggesting that staphylococcal pro-
teinases may contribute to the pathogenicity of atopic dermatitis [146]. S. aureus also has
the ability to alter the integrity of the skin barrier by subverting host responses. It has been
demonstrated that this pathogen stimulates keratinocytes to increase their endogenous
protease activity, including specific increases in trypsin activity and enhanced degradation
of desmoglein-1 and filaggrin [147].

Studies addressing the role of SaeRS in the pathogenesis of AD are lacking. However,
it has been shown that the SaeRS TCS is repressed by low pH and high NaCl concentra-
tions [148], conditions that resemble healthy skin. On the contrary, it is activated by H2O2
and α-defensins [149], suggesting that this operon might be active in the inflamed skin of
AD patients.

Although an active agr operon can favor the onset of the pathogenic features of AD,
once the disease has been established, the maintenance of an active regulon that induces
the expression of a large number of virulence factors may result in a huge metabolic
burden for the bacterium. A trade-off between metabolic burden and the expression of
agr-induced virulence factors might favor the selection of agr-strains. In agreement with this
hypothesis, the analysis of a collection of S. aureus isolated from chronically infected patients
with AD showed that 22% had an agr mutant-like phenotype [150]. Moreover, it was
demonstrated that agr mutants of MRSA USA300 were able to persist within keratinocytes
by stimulating autophagy, evading caspase-1, and inflammasome activation, reflecting
the survival advantage for mutants no longer expressing agr-dependent toxins [150]. The
presence of selective pressure favoring reduced virulence in the skin of AD patients has been
demonstrated in an independent study in which the presence of two different mutations in
the agrA gene was detected in isolates from the same patient [87].

In addition to the decrease in toxin/exoprotein production, the selection of agr-mutants
may have other adaptive advantages for S. aureus persistence in the skin of chronically
infected AD patients. These mutants have increased expression of adhesins such as FnBP A
and FnBP B, which will favor the attachment of the bacteria to the tissue [51]. The expression
of protein A is also increased in the agr mutants [143]. Interestingly, the characterization
of a large collection of isolates from AD patients showed that more than 85% of the tested
strains produced significant amounts of extracellular SpA [151]. In a recent study, it was
demonstrated that membrane vesicles of S. aureus strains recovered from the lesional
skin of AD patients had an enhanced membrane lipid and protein A content compared
with the strains from the non-lesional sites and also had an enhanced proinflammatory
potential [152]. Moreover, protein A has been detected in the keratinocytes as well as in the
intercellular space of the epidermis of AD lesions colonized with S. aureus [153]. We have
demonstrated that protein A has potent pro-inflammatory properties due to its capacity to
trigger TNF-α-like responses mediated by the TNF-α receptor type 1 (TNFR1) in immune
cells and epithelial cells [154,155]. More recently, the impact of protein A on the induction
of inflammatory signaling in keratinocytes has also been determined [151,152]. TNFR1
expression has been shown to be significantly higher in immune cells from patients with
AD than that in immune cells from healthy individuals, and the levels of TNFR1 expression
are correlated with the severity of the disease as determined by the SCORAD index [156].
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Therefore, increased expression and secretion of protein A in a microenvironment with
high levels of TNFR1 may significantly contribute to perpetuating the inflammatory state
in the skin during AD.

Protein A is also a component of S. aureus biofilm [157]. It has been shown that S.
aureus isolates from the lesional skin of patients with AD produce a substantial amount
of biofilm in vitro and are less susceptible to killing by the antimicrobial peptide LL-37
when compared with S. aureus grown in planktonic conditions [158]. Biofilm production is
usually enhanced in the presence of a dysfunctional agr [139], highlighting another putative
advantage for agr- mutants to persist in the skin. However, the impact of agr on biofilm-
associated infection is divergent, and a functional agr is necessary for biofilm dispersion
(via induction of PSMs with surfactant functions) [139], which explains the importance of
heterogeneity in the phenotypes that form the S. aureus biofilm community.

Another important feature of the role of quorum sensing systems in Staphylococcus
spp. is that members of the normal human skin microbiome, such as coagulase-negative
staphylococci species (CoNS), can contribute to epithelial barrier homeostasis by producing
AIPs that inhibit S. aureus agr and therefore toxin production. Metagenomic analysis of
the AD skin microbiome has shown that the increase in the relative abundance of S. aureus
in patients with active AD is correlated with a lower CoNS AIPs to S. aureus ratio, thus
overcoming the capacity of these AIPs to inhibit the S. aureus Agr system [159]. Moreover,
the strains of S. aureus can be organized into several groups according to their responses to
the different AIPs, since each of these pheromones will only activate the agr response in
strains belonging to the same group. Therefore, AIPs belonging to one group of S. aureus
can inhibit activation of the agr response in other groups [160,161]. A study of the dynamics
of S. aureus colonization and infection during 1 year in 11 children with AD has shown that
changes in the agr group were associated with disease flares and a higher SCORAD index,
whereas changes that implicated a different clone with the same agr type did not correlate
with disease exacerbation [105].

The regulation of S. aureus virulence factor expression during atopic dermatitis and
the impact on disease development are summarized in Figure 3.

4.2. Diabetic Foot Ulcer Infections

S. aureus secreted toxins significantly contribute to tissue damage and the poor healing
process in diabetic ulcers [8]. However, the capacity of S. aureus to form biofilms, to
differentiate into persister cells, including the small colony variant phenotype (SCV), and
to invade and hide in skin cells is critical for its survival and persistence in this very hostile
microenvironment (Figure 4).

Biofilm generation, maturation, and dissociation depend on a multitude of environ-
mental signals and several host factors, such as different nutrients, pH, temperature, and
oxygen availability, which determine the switch to this sessile growth mediated by the Agr
TCS and SigB. The increased capacity to form biofilms of S. aureus isolated from diabetic
ulcers compared with those isolated from non-diabetic patients has been demonstrated,
and strains that were strong biofilm producers have been associated with grade 3 ulcers
(according to the IDSA-IWGDF scale) [67,70,162,163]. Diabetic wounds are characterized
by hyperglycemia and advanced glycation end products (AGEs) [164]. Glucose is the most
important metabolic signal, to which S. aureus must respond rapidly to produce energy
and cellular components related to virulence [79]. The metabolism of glucose contributes
to the pathogenesis of S. aureus by promoting biofilm formation, resistance to NO2, and
replication within tissues [165–167]. AGEs are formed by the Maillard reaction, which
takes place irreversibly between amine-group compounds (proteins, lipids, and nucleic
acids) and carboxides (reducing sugar groups). Unlike blood glucose, AGEs can continu-
ously accumulate in biological tissues once formed and have been associated with diabetic
complications [168,169]. AGEs have been shown to promote S. aureus biofilm formation in
clinical isolates and laboratory strains in vitro by increasing extracellular DNA through the
S. aureus global regulator SigB [162]. In addition, glycated proteins formed from keratin
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and glucose also induce biofilm formation in S. aureus. Therefore, glycation-inhibiting and
AGE crosslink-breaking compounds are currently being assayed for their ability to inhibit
biofilm production [170]. The hyperglycemic microenvironment also has an impact on
the physical surface properties of the bacteria, such as hydrophobicity and surface elec-
trical charge, increasing hydrophobic attractive force and reducing electrostatic repulsion
between cells, which results in better packing of bacteria within the biofilm and more
efficient retention at the host surface [171]. Using an in vivo mouse model, the effect of
glucose on the enhancement of biofilm formation induced by vancomycin in S. aureus has
also been demonstrated [165]. In addition to bacterial persistence, biofilms also contribute
to the inflammatory state of chronic wounds. Human epithelial keratinocytes exposed
to products secreted by S. aureus grown in biofilms had significantly increased levels of
IL-6, IL-8, TNFα, and CXCL2 compared with those stimulated with products secreted by
S. aureus grown planktonically [172]. Biofilm production by S. aureus also has a negative
impact on re-epithelialization and wound healing [173–175].
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energy and cellular components related to virulence [79]. The metabolism of glucose con-
tributes to the pathogenesis of S. aureus by promoting biofilm formation, resistance to 
NO2, and replication within tissues [166–168]. AGEs are formed by the Maillard reaction, 
which takes place irreversibly between amine-group compounds (proteins, lipids, and nu-
cleic acids) and carboxides (reducing sugar groups). Unlike blood glucose, AGEs can con-
tinuously accumulate in biological tissues once formed and have been associated with 
diabetic complications [169,170]. AGEs have been shown to promote S. aureus biofilm for-
mation in clinical isolates and laboratory strains in vitro by increasing extracellular DNA 

Figure 3. Regulation of S. aureus virulence factor expression in the skin during atopic dermatitis. An
active Agr system is required for the initial development of atopic dermatitis. Once the disease has
been established, the selection of agr-strains has been observed. The switch between an active and an
inactive Agr system will lead to changes in the expression of virulence factors known to have a role
in the pathogenesis of atopic dermatitis.
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Figure 4. Regulation of S. aureus biofilm formation and detachment within the diabetic foot ulcer.
Upon entry into the ulcer (Left panel) S. aureus encounters a hyperglycemic and alkaline microenvi-
ronment. The high levels of glucose under those pH conditions turn off the Agr system. Increased
pH also activates SigB, which represses Agr. As a consequence of Agr downregulation and SigB
activation, increased biofilm production is observed (middle panel). As the infection progresses,
some individuals will turn back on Agr, likely due to the accumulation of AIPs and the heterogeneous
conditions that the bacteria encounter within the biofilm. Agr activation leads to the expression of
proteases and PSMs, which are known to be required for biofilm dispersion (right panel).

In conditions of non-maintained pH, as it occurs in the DFU, it has been shown that
the Agr system is turned off in response to glucose [128,165,166,176] which may favor the
development of persister phenotypes. In this regard, the relationship between the presence
of high glucose concentrations, the Agr system downregulation, biofilm formation, and SCV
has been described [128,165,166,176]. Moreover, using media mimicking the hyperglycemic
environment of DFU, it has been shown that S. aureus downregulates its secreted virulence
factors and enters a state characterized by a low-virulence phenotype, the development of
SCV, and the display of increased expression of genes involved in adhesion and biofilm
formation [177], and the downregulation or loss of a functional agr has been reported to play
a crucial role in this process [178,179]. The adaptive advantages that dormant phenotypes
have, include reduced or no expression of virulence factors, which allows the colonization
of a certain niche without clinical symptoms and also allows for antibiotic tolerance even
when the bacteria lack resistance mechanisms [180]. Persister cell development is favored
in the stationary phase of planktonic cultures and within biofilms, therefore contributing
to the high rates of treatment failure and relapse of infection in chronic wounds [181].
Among persister cell phenotypes, SCV are agr- variants characterized by small colony
size, slow growth, reduced metabolism, downregulated virulence genes, low cytotoxicity,
and high rates of resistance to antibiotics. Changes in the microenvironment can restore
the phenotype of SCV back to a virulent and fast-proliferating bacteria, reinitiating the
infectious cycle [178]. In addition, SCV present a high rate of internalization in host cells.
Intracellular survival within skin cells provides a protected niche where SCV can persist
for a long time. The mechanisms by which S. aureus can persist intracellularly have been
recently revised by Huitema et al. [182].

A high prevalence of SCV has been observed within S. aureus isolates from patients
with DFOM [183], and 10% of the MRSA isolated from DFU from a cohort of 120 patients
had a SCV phenotype [184]. The signals of the DFU environment that induce SCV forma-
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tion and/or internalization in skin cells have not been completely elucidated yet. In order
to investigate long-term global phenotypic changes that may occur in the DFU microenvi-
ronment, a wound-like medium biofilm model has been used in vitro. After 16 weeks of
culture, S. aureus had adapted its metabolism with the development of SCV and the loss of
β-hemolysin expression. A nematode model used to test the “adapted” variants suggested
a decrease in virulence, which was confirmed by a significant decrease in the expression of
toxin-encoding genes. Interestingly, an increased expression of genes involved in adhesion
and biofilm was noted [177]. In line with these findings, a decrease in toxin expression has
also been reported in persistent clones isolated from DFU patients [117].

The mechanisms underlying biofilm detachment are less understood. However, it has
been established that dispersal of cells from an established biofilm requires reactivation
of the Agr system [185]. Reactivation of agr within a biofilm has been demonstrated
by Yarwood et al., and it is likely to occur through local accumulation of AIP reaching
concentrations high enough to activate the Agr system [186]. Agr-dependent biofilm
dispersal has been shown to occur through the action of staphylococcal proteases aureolysin
and Spl [185], as well as PSMs, which disrupt the non-covalent forces holding the biofilm
extracellular matrix together [187].

5. Conclusions and Future Perspectives

The understanding of the mechanisms behind S. aureus adaptation to different mi-
croenvironments has advanced considerably in the last few decades, and the capability of
this microorganism to persist over long periods of time in the host is now well recognized.
The development of molecular typing methods and the advancement of whole genome
sequences, together with transcriptomic, proteomic, and metabolomic techniques, have
provided vast information about the dynamics of S. aureus populations and their ability to
differentially express genes according to the niche where they replicate. Important changes
in metabolism through a vast array of regulatory molecules account for the ability of S.
aureus to colonize healthy and chronically altered skin. Whereas the capacity of S. aureus
to adapt to the nutrients available, pH conditions, and certain chemical properties of the
skin have been studied, the impact that the Th2 milieu present in AD skin and the hypoxic
environment of the DFU may have on the bacteria are aspects that remain to be elucidated.
Whether certain genotypes are associated with recurrent and/or persistent skin infections,
such as flares in AD and DFU, is still under debate. Certain strong associations, however,
have been described, such as the impact of CC1 and CC45 strains on the severity of skin
lesions in AD patients and the relevance of MSSA CC398 DFU infection in the ulterior
development of DFOM. However, more studies are required to understand the reasons
behind the apparent increased virulence of those genotypes. Moreover, data that may
reveal the association of certain genotypes with increased virulence in patients with AD or
DFU from more diverse geographical areas is needed. Nasal colonization seems to have
an important role in AD, whereas for DFU, endogenous clones are not the only source of
infection. For both types of infections, more longitudinal studies are required to better
understand the dynamics of reinfections versus the persistence of a certain clone within
the same patient. Altered skin conditions found in AD and DFU favor biofilm formation,
which in turn can lead to the development of persistent phenotypes, including SCV, that
are refractory to antibiotic treatment regardless of the presence or absence of resistance
genes. Moreover, internalization of SCV within host cells may lead to long-term persistence
within the host, explaining recurrent infections in these patients. The ability of S. aureus to
develop into dormant forms helps to explain why, although MRSA have a major clinical
impact, MSSA are also highly relevant in persistent infections.
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