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Abstract: Effective antimicrobial exposure is essential to treat infections and prevent antimicrobial
resistance, both being major public health problems in low and middle income countries (LMIC).
Delivery of drug concentrations to the target site is governed by dose and pharmacokinetic processes
(absorption, distribution, metabolism and excretion). However, specific data on the pharmacokinetics
of antimicrobials in children living in LMIC settings are scarce. Additionally, there are significant
logistical constraints to therapeutic drug monitoring that further emphasize the importance of un-
derstanding pharmacokinetics and dosing in LMIC. Both malnutrition and diarrheal disease reduce
the extent of enteral absorption. Multiple antiretrovirals and antimycobacterial agents, commonly
used by children in low resource settings, have potential interactions with other antimicrobials.
Hypoalbuminemia, which may be the result of malnutrition, nephrotic syndrome or liver failure,
increases the unbound concentrations of protein bound drugs that may therefore be eliminated
faster. Kidney function develops rapidly during the first years of life and different inflammatory
processes commonly augment renal clearance in febrile children, potentially resulting in subthera-
peutic drug concentrations if doses are not adapted. Using a narrative review approach, we outline
the effects of growth, maturation and comorbidities on maturational and disease specific effects on
pharmacokinetics in children in LMIC.
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1. Introduction

Despite widespread implementation of childhood immunization programs, improve-
ments in hygiene and better access to healthcare, infections have remained the most frequent
cause of childhood mortality in low and middle income countries (LMIC) [1,2]. Antimi-
crobials are potentially lifesaving and are among the most frequently administered drugs
in children. Unfortunately, the development of antimicrobial resistance (AMR) is a direct
consequence of antimicrobial use. LMIC are disproportionately affected by AMR [3,4],
driven by numerous circumstances such as excessive use of broad spectrum antimicro-
bials in healthcare settings, supply issues, limited availability of diagnostic resources, and
over-the-counter dispensation [5]. Antimicrobial stewardship (AMS) is a coordinated set of
actions to preserve antimicrobials through enhancing the quality of antimicrobial prescrib-
ing and has been proposed as a tool in to combat AMR [6]. While unnecessary antimicrobial
prescription should be avoided [7], adequate dosing is also of utmost importance since
subtherapeutic concentrations result in therapy failure and selection of drug-resistant or-
ganisms [8,9]. Achievement of the effective concentration of a drug is governed by the
pharmacokinetic processes absorption, distribution, metabolism and elimination, which is
depicted in Figure 1.

Figure 1. Overview of the pharmacokinetic processes absorption, distribution, metabolism and elimination.

The need for adapted drug therapies for children has been increasingly acknowledged,
and pediatric pharmacokinetic studies have expanded during the most recent years to
optimize dosing in children. A good understanding of pharmacokinetics of antimicrobials
is critical for successful treatment of infections and to combat AMR. In this clinical review,
we outline the key processes that dictate the pharmacokinetics of antimicrobials to treat
bacterial infections in children, detailing important considerations for antimicrobial dosing,
as well as highlighting specific challenges in LMIC.

2. Pharmacokinetic–Pharmacodynamic Interaction of Antimicrobials

For each bacterium, the lowest concentration at which an antimicrobial inhibits growth
is defined as the minimum inhibitory concentration (MIC) [10]. Since antimicrobials target
bacteria, MIC is a key component determining whether the concentration achieved at the
site of infection will lead to treatment success or failure. The relationship between the free
(unbound) concentration of an antimicrobial over time and the bacterial killing effect in vitro,
is described by pharmacokinetic-pharmacodynamic (PK/PD) indices (Figure 2). Broadly
speaking, antimicrobials can be categorized as concentration-dependent or time-dependent
agents [11]. The bacterial killing effect of concentration-dependent antimicrobials is char-
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acterized by the ratio between the peak concentration (Cmax) and MIC. Hence, this is
directly related to the maximum concentrations that can be achieved at the site of infection.
Although bacterial killing of concentration-dependent drugs is dose-dependent, dosing
is curtailed by the minimum concentration at which toxicity usually occurs (minimum
toxic concentration; MTC); the area between MIC and MTC is called the therapeutic win-
dow [12]. Concentration-dependent antimicrobials also tend to exert a post-antimicrobial
effect, thereby maintaining a significant antimicrobial effect below the MIC. On the contrary,
time-dependent antimicrobials kill bacteria for as long as concentrations are above the
MIC. Therefore, the time above the MIC (T > MIC) is the PK-PD index best associated with
efficacy for these antimicrobials [13]. Last, the bacterial killing effect of some antimicrobials
can be described as being both concentration- and time-dependent; the ratio between
area under the concentration-time curve and MIC (AUC/MIC) is the index of choice for
concentration-dependent with time-dependent antimicrobials [13].

Figure 2. Concentration-time curve following oral administration or prolonged infusion (a) and
after intravenous administration (b). Abbreviations: AUC0-t4: area under the curve between dosing
interval. Cmax: maximum concentration. T: time. MIC: minimum inhibitory concentration. MTC:
minimum toxic concentration.

3. Pharmacokinetics: Drug Transport through Cell Membranes

Antimicrobials are mostly administered distant to their site of action and therefore
require transportation to the target site. Drugs that are administered via an extravascular
route (e.g., enteral, transdermal, intramuscular) must be absorbed into the bloodstream
for distribution to target sites. Once in the circulation, drugs distribute rapidly to the
organs to which blood flows instantaneously such as the heart, liver and kidneys; this
is called the central compartment [14]. Subsequently, some drugs may distribute to the
peripheral compartment, which refers to organs, tissues and cells that are perfused at a
slower rate. In order to egress the intravascular space, a drug molecule must cross through
cell membranes, either via passive diffusion or using active cell processes that involve
receptors, transport proteins or transcytosis [15]. Cell membranes are highly hydrophobic
and negatively charged. The drug’s ability to transport across cell membranes is governed
by intrinsic physicochemical properties of the drug, such as the amount of protein binding,
molecular size, charge, lipophilicity and partition coefficient [16]. Drugs that are bound to a
protein, either intravascularly or in the extravascular space, cannot move across membranes
due to its molecular size [17]. At any body site, drugs reach an equilibrium between the
amount that is either protein bound or free. Albumin, the main drug binding protein, is
alkalic and therefore tends to bind to acidic drugs. Generally, lipophilic and uncharged
molecules diffuse easily across membranes, whereas hydrophobic and charged molecules
are dependent on active processes to disseminate into the peripheral compartment [12].
LogP, the logarithm of the partition coefficient, expresses the affinity of a molecule to
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dissolve in either water or octanol, and hence the lipophilicity of a drug. In general, a
LogP less than 0 indicates a hydrophilic molecule, whereas LogP greater than 0 reflects a
lipophilic molecule [18]. The degree of ionization of a drug is predicted by the acid-base
dissociation constant (pKa) that relates the pH at which the ionized and unionized forms
exist in equal amounts [19]. Therefore, the amount of unionized drug molecules is not
constant, since pH varies in different cells and tissues. Table 1 outlines the physicochemical
characteristics of antimicrobials.

Table 1. (A) Physicochemical & pharmacokinetic characteristics of antimicrobials mainly eliminated
by urine. (B) Physicochemical and pharmacokinetic characteristics of antimicrobials mainly elimi-
nated by feces. (C) Physicochemical and pharmacokinetic characteristics of antimicrobials mainly
eliminated by bile.

(A)

Class Agent PK/PD Index Molecular Weight
(g/mol) [20] pKa [21] LogP [20] Fraction Protein

Binding (%) [20] Metabolism [21]
Alternative

Route of
Elimination [21]

Aminoglycosides

Amikacin

Cmax/MIC [22]

585.6 8.1–12.1 −8.8–−7.4 <10%

Aminoglycosides are
not significantly

metabolized.

Gentamicin 477.6 10.1–12.6 −4.1–−1.9 0–30%

Kanamycin 484.5 9.5–12.1 −6.9–−6.3 N/A

Neomycin 614.6 12.9 [23] −9–−3.7 N/A

Streptomycin 581.6 11.1–11.6 −8–−2.5 N/A

Spectinomycin 332.4 7.0–9.2 −3.1–−2.3 Not significant

Tobramycin 467.5 9.7–12.5 −6.2–−5.8 Not significant

First line anti-mycobacterials

Isoniazid AUC/MIC [24] 137.1 1.8–13.6 −0.8–−0.7 0–10% Hepatic

Pyrazinamide AUC/MIC [24] 123.1 −0.5–13 −1–−0.6 ~10% Mainly hepatic

Rifabutin AUC/MIC, Cmax/MIC [25] 847.0 6.9–9.0 4.1–4.7 85% Hepatic Feces

Second line antimycobacterials

Cycloserine T > MIC [26] 102.1 4.2–8.4 −1.5–−0.9 N/A Hepatic [27]

Ethionamide AUC/MIC [28] 166.3 5–11.9 0.4–1.1 ~30% Extensive hepatic
metabolism

Beta-lactamase inhibitors

Clavulanic acid

T > MIC [29]

199.2 −2.6–3.2 −2.3–−1.2
~25% for

amoxicillin-clavulanic
acid

Hepatic Feces, exhaled air

Sulbactam 233.2 −3.8–3.1 −1 ~38% <25% is metabolized
by the liver [30]

Tazobactam 300.3 0.8–2.9 −2 ~30% Hepatic

Avibactam 265.3 −3.9–−2 −1.8 5.7–8.2% Not significant

Vaborbactam 297.1 −2.6–3.8 1.0–1.9 [31] ~33% Not significant

Relebactam 348.4 −2–10 −3.6 ~22% Not significant

Carbapenems

Doripenem

T > MIC [22]

420.5 3.3–9.5 −5.6,−1.3 [32] 8.1% Limited hepatic
metabolism

Ertapenem 475.5 3.2–9.0 0.3–1.5 85–95% Limited hepatic
metabolism

Imipenem 299.4 3.2–10.9 −0.7 20% Renal metabolism

Meropenem 383.5 3.3–9.4 −2.4–−0.6 ~2%
<30% of a dose

undergoes hepatic
metabolism

First generation cephalosporins

Cephalexin

T > MIC [33,34]

347.4 3.3–7.2 0.6–0.7 10–15% Not significant

Cefazolin 454.5 0.3–2.8 −0.6 74–86% Not significant

Cefadroxil 363.4 3.3–7.2 −2.1–−0.4 28.1% Not significant

Second generation cephalosporins

Cefaclor 367.8 2.8–7.2 −2.3–0.9 23.5% Not significant

Cefuroxime 424.4 −1.1–3.0 −0.8–−0.2 50% Not significant

Cefuroxime
axetil 510.5 −1.2–10.9 0.9 28–38% [35] Axetil is metabolized

by the liver

Cefotetan 575.6 −1.5–3.0 0.1 88% Not significant

Cefoxitin 427.5 −3.8–3.4 0 31–54% [36] Minimal hepatic
metabolism

Cefprozil 389.4 3.3–7.2 −1.4–0.6 36% Not significant

Cefmetazole 471.5 −1.7–3.2 −2.2–−0.6 85% [37] Not significant



Antibiotics 2023, 12, 17 5 of 23

Table 1. Cont.

(A)

Class Agent PK/PD Index Molecular Weight
(g/mol) [20] pKa [21] LogP [20] Fraction Protein

Binding (%) [20] Metabolism [21]
Alternative

Route of
Elimination [21]

Third generation cephalosporins

Cefdinir 395.4 2.7–9.7 −3.5–0 60–70% Not significant

Cefditoren 506.6 2.3–3.7 0.7 88% Not significant

Cefixime 453.5 2.5–4.0 −0.7–−0.4 65% Hepatic

Cefpodoxime 427.5 2.8–3.6 −1.4 21–33% Minimal hepatic
metabolism

Ceftazidime 546.6 2.4–4.0 −1.6–0.4 5–23% Not significant

Ceftizoxime 383.4 2.7–3.6 0 30% Not significant

Ceftibuten 410.4 2.9–4.7 −0.3 65% ~10% is metabolized
by the liver

Ceftriaxone 554.6 2.7–3.4 −1.7–−1.3 95% Negligible Bile

Cefotaxime 455.5 2.7–3.6 −1.4–−0.5 8–41% [36] Partially (15–20%)
by the liver [38]

Ceftolozane 666.7 2.5–9.1 −6.2–−3.2 16–21% Not significant

Fourth generation cephalosporins Cefepime 480.6 2.8–3.6 −0.1 20% <1% is metabolized
by the liver

Fifth generation cephalosporins

Ceftobiprole 534.6 2.9–10.4 −2.4 <16% [39] Minimal hepatic
metabolism [39]

Ceftaroline 684.7 0.4–1.8 2.3 ~20% Minimal hepatic
metabolism Feces

Siderophore cephalosporins Cefiderocol 752.2 2.6–4.0 −2.3–1 40–60% Minimal hepatic
metabolism

Fluoroquinolones

Ciprofloxacin

AUC/MIC [34]

331.3 5.6–8.8 −1.1–2.3 20–40% Up to 15% hepatic
metabolism Feces

Delafloxacin 440.8 −1.3–5.6 2.7 84% Hepatic Feces

Gatifloxacin 375.4 5.5–8.8 −0.7–2.6 20% Limited hepatic
metabolism

Levofloxacin 361.4 5.4–6.7 −0.4–2.1 24–38% Very limited
metabolism Feces

Norfloxacin 319.3 5.6–8.8 −1.0–2.1 10–15% Hepatic and renal Feces

Ofloxacin 361.4 5.4–6.7 −0.4–2.1 32% Hepatic Feces

Prulifloxacin 461.5 5.2–6.0 1.0 41–59% [40] Hepatic Feces

Glycopeptides
Teicoplanin

AUC/MIC [41]

1879.7 3.0–7.1 0.5 90–95% [42] Minimal hepatic
metabolism

Vancomycin 1449.3 3.0–9.9 −3.1–−2.6 ~50% Not significant

Lipoglyco-peptides

Dalbavancin 1816.7 1.7–9.9 [43] 3.8 93%
Unlikely to have

significant
metabolism

Feces

Telavancin 1755.6 1.6–10.0 −2.1 >90% Unknown

Oritavancin 1793.1 2.2–10.0 1.5–4.1 85% Not significant Feces

Lincosamides
Clindamycin

AUC/MIC [22,34]
425.0 7.6–12.4 2.2 60–94% [44] Hepatic Feces

Lincomycin 406.5 8.0–12.4 0.2–0.6 28–86% Hepatic Bile

Monobactams Aztreonam T > MIC [45] 435.4 −1.5–3.9 0.3 43–56%
6–16% is

metabolized by the
liver

Nitroimidazoles

Metronidazole AUC/MIC, Cmax/MIC [22,46] 171.2 2.6–15.4 −0.1–0 <20% Hepatic Feces

Secnidazole Undefined 185.2 3.1–15.2 0.2 <5–15% N/A

Tinidazole Undefined 247.2 3.3 −0.4–0.7 12% Hepatic Feces

Oxazolidones Linezolid AUC/MIC [22] 337.4 −1.2–14.9 0.7–1.3 ~31% Hepatic

Natural penicillins Penicillin G

T > MIC [22]

334.4 −2.8–3.5 1.5–1.8 45–68% Hepatic Bile

Aminopenicillins Amoxicillin 365.4 3.2–7.2 −2–0.9 17% Hepatic

Ampicillin 349.4 3.2–7.2 −1.1–1.4 8–25% [47] Hepatic

Semi-synthetic penicillins

Cloxacillin 435.9 −0.4–3.8 2.4–3 ~94% Intestinal Bile

Dicloxacillin 470.3 −0.7–3.8 2.9–3.7 96–97% [48] Hepatic

Flucloxacillin 453.9 −0.9–3.8 2.6–3.2 95–96% [48] Hepatic

Oxacillin 401.4 −0.1–3.8 2.4 92–96% 45–50% hepatic [49]

Temocillin [50] 414.5 −4.3–3.1 1.1 ~80% [48] N/A

Ureidopenicillins Piperacillin 517.6 −4.3–3.5 0.3–0.5 39.4–71.3% [51] Not significant Bile

Carboxy-penicillins Ticarcillin 384.4 −6.3–3.1 0.8 45% N/A

Polymixins * Polymyxin B AUC/MIC [33] 1203.5 8.9–11.6 −2.5 79–92% N/A

Sulfonamides

Sulfadiazine

Cmax/MIC, AUC/MIC [22]

250.3 2.0–6.4 −0.2–−0.1 20–25% [52] Hepatic

Sulfadoxine 310.3 3.4–6.1 0.7 ~94% [53] Hepatic

Sulfamethoxazole 253.3 2.0–6.2 0.7–0.9 ~70% Hepatic
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Table 1. Cont.

(A)

Class Agent PK/PD Index Molecular Weight
(g/mol) [20] pKa [21] LogP [20] Fraction Protein

Binding (%) [20] Metabolism [21]
Alternative

Route of
Elimination [21]

Tetracyclines
Doxycycline

AUC/MIC [54]
444.4 3.1–8.3 −0.7–0.6 >90% Hepatic Feces

Tetracycline 444.4 3.3–9.3 −2–−1.3 20–67% Not significant Feces

Miscellaneous

Chloramphenicol Cmax/MIC, AUC/MIC [22] 323.1 −2.8–8.7 0.7–1.1 50–60% in adults, 32%
in premature neonates

Extensive hepatic
metabolism

Daptomycin AUC/MIC [22] 1619.7 3.0–9.6 −5.1 90–94% [55]
Minimum extent,
metabolism site
unknown [56]

Feces

Fosfomycin AUC/MIC [34] 138.1 −4.3–1.3 −1.6–−1.4 No plasma binding Not significant

Trimethoprim Cmax/MIC, AUC/MIC [22] 290.3 7.1–17.3 0.6–0.9 44% Hepatic

Nitrofurantoin Undefined 238.2 −2.2–8.3 −0.5 <90% Hepatic

(B)

Class Agent PK/PD Index Molecular Weight
(g/mol) [20] pKa [21] LogP [20] Fraction Protein

Binding (%) [20] Metabolism [21]
Alternative

Route of
Elimination [21]

First line anti-mycobacterials
Ethambutol Cmax/MIC, AUC/MIC [24] 204.3 9.7–14.8 −0.4–0.4 20–30% Hepatic Urine

Rifabutin AUC/MIC, Cmax/MIC [25] 847.0 6.9–9.0 4.1–4.7 85% Hepatic Urine

Third line antimycobacterials

Bedaquiline AUC/MIC, Cmax/MIC [57] 555.5 8.9–13.6 7.7 >99.9% Hepatic

Clofazimine Not identified [26] 473.4 6.6–16.2 7–7.7 N/A N/A

Delamanid Not Identified [26] 534.5 5.5 5.6 >99.5% Hepatic

Beta-lactamase inhibitors Clavulanic acid T > MIC [29] 199.2 −2.6–3.2 −2.3–−1.2
~25% for

amoxicillin-clavulanic
acid

Significant hepatic
metabolism Urine, exhaled air

Fluoroquinolones
Gemifloxacin

AUC/MIC [34]
389.4 5.4–9.4 −0.7–2.3 60–70% Limited hepatic

metabolism Urine

Moxifloxacin 401.4 5.5–9.5 0.6–2.9 50% <50% hepatic
metabolism Urine

Macrolides
Clarithromycin

AUC/MIC, T > MIC [34]
748.0 9–12.5 1.7–3.2 ~70% Hepatic Urine

Fidaxomicin 1058 −1.4–5.9 6.4 31% [48] Intestinal

Oxazolidones Tedizolid AUC/MIC [22] 370.3 −1.7–14.6 1.4 70–90% Hepatic Urine

Tetracyclines

Eravacycline

AUC/MIC [54]

558.6 3.0–9.0 1 79–90% Hepatic Urine

Omadacycline 556.6 2.9–10.5 3 ~20% Not significant Urine

Tigecycline 585.7 3.2–9.0 −0.2–1.1 71–89% Hepatic [58] Urine

Daptomycin AUC/MIC [22] 1619.7 3.0–9.6 −5.1 90–94% [55] Metabolism site
unknown [56] Urine

(C)

Class Agent PK/PD Index Molecular Weight
(g/mol) [20] pKa [21] LogP [20] Fraction Protein

Binding (%) [20] Metabolism [21]
Alternative

Route of
Elimination [21]

First line Antimyco-bacterials Rifampicin AUC/MIC, Cmax/MIC [25] 822.9 1.7–7.4 2.7–4.9 90% Hepatic Urine

Third generation cephalosporins Cefoperazone T > MIC [33,34] 645.7 −1.7–3.2 −0.7 82–93% Not significant

Lincosamides Lincomycin AUC/MIC [22,34] 406.5 8.0–12.4 0.2–0.6 28–86% Hepatic Urine

Macrolides
Azithromycin

AUC/MIC, T > MIC [34]
749.0 8.5–12.4 3.0–4.0 7–51% Hepatic Urine

Erythromycin 733.9 9–12.5 2.6–3.1 70–93% Hepatic Urine

Natural penicillins
Penicillin V

T > MIC [22]

350.4 −4.9–3.4 1.4–2.1 50–80% Hepatic Urine

Penicillin G 334.4 −2.8–3.5 1.5–1.8 45–68% Hepatic Urine

Semi-synthetic penicillins
Cloxacillin 435.9 −0.4–3.8 2.4–3 ~94% Intestinal Urine

Nafcillin 414.5 −1.9–3.3 2.9–3.3 88.4–91.4% Hepatic

Ureidopenicillins Piperacillin 517.6 −4.3–3.5 0.3–0.5 39.4–71.3% [51] Not significant Urine

Tetracyclines Minocycline AUC/MIC [54] 457.5 3.2–8.8 −0.6–0.1 76% Hepatic Urine

* The route of elimination for Polymyxin is unknown. For molecular weight, LogP and fraction protein binding
refer to reference [20] unless cited otherwise. For pKa, metabolism and main route of elimination refer to reference
[21] unless cited otherwise.

4. Pharmacokinetic Processes
4.1. Absorption

Absorption, the transfer of a drug from the site of administration into the bloodstream,
is relevant for all drugs that are not injected intravascularly. Bioavailability (F), the extent
to which a drug enters the circulation following administration, is by definition 100%
when the drug is infused directly into the bloodstream, but lower for all other routes of
administration [59].

The oral route is the most common route of administration for antimicrobials. Follow-
ing oral ingestion, the drug needs to dissolve into smaller particles that can subsequently
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be absorbed [60]. Since liquid formulations are better dissolved than tablets within the
GI tract, liquids have typically greater bioavailability than tablets [61]. In addition to
molecular characteristics of a drug, different physiologic factors determine the amount
of GI absorption, including the pH at the different parts of the GI tract, gastric emptying,
intestinal motility and perfusion [62]. Furthermore, directly after intestinal absorption,
some drugs undergo first-pass metabolism in the portal circulation, before reaching the
systematic circulation. This reduces systemic drug concentrations relative to the amount
absorbed of a drug [63].

Within 48 h after birth, gastric pH decreases to around 3, and then gradually returns
to neutrality by day 8–10 of life. Thereafter, the gastric pH slowly declines again to reach
adult values at about two years of age [62,63]. These pH changes are less apparent in
infants born before 32 weeks’ gestation [64]. A smaller fraction of acid-labile antimicrobials
(e.g., benzylpenicillin, ampicillin, amoxicillin, nafcillin, flucloxacillin and erythromycin)
will become inactivated in a higher intragastric pH, and will therefore attain a higher
bioavailability in neonates and infants [65].

Gastric emptying is delayed immediately after birth, but approach adult values within
the first six to eight months of life [62,64]. Delayed gastric emptying typically leads to degra-
dation of drug molecules through prolonged exposure to intragastric acid, which impairs
drug absorption [66]. Similarly, intestinal motility is also reduced in neonates and young
infants. However, this results in increased transit time and improved absorption; intestinal
motility gradually increases by 6–8 weeks of life [64]. Last, immaturity of secretion and
activity of bile and pancreatic fluid leads to impaired fat digestion in neonates and infants,
which particularly reduces the dissolution of lipophilic drugs, and hence impede this ab-
sorption [67]. Concluding, gastrointestinal (GI) absorption is complex and highly variable
across drugs, particularly in neonates. Contrasting processes lead to large inter-individual
variability in absorption rates across infants. Nevertheless, commonly used antimicrobials
(amoxicillin, cephalexin, cefpodoxime) often attain adequate serum concentrations to treat
most relevant neonatal pathogens (E. coli, S. pneumoniae, S agalactiae) [68].

There is a complex interaction between food and drug absorption. Different food
categories affect absorption in varying ways [66]. High fat meals delay gastric emptying
and impair absorption of hydrophilic drugs, but improve absorption of lipophilic drugs
(e.g., itraconazole) by enhancing solubility. High protein nutrients increase intestinal
blood flow and may thereby increase absorption. However, bioavailability of drugs with
similar structures to peptides (e.g., cephalexin, cefadroxil) can be lowered if ingested with
proteins. High fiber foods delay gastric emptying, reduce solubility of drugs, and decrease
bile salt concentrations. Moreover, fasting decreases gastric pH and leads to delayed
gastric emptying, while enhancing splanchnic blood flow and stimulating release of bile
salts [66]. These complex interactions make it important for clinicians to be aware about
when drugs should be taken with food. Table 2 summarizes food effects on commonly
used antimicrobials.

Table 2. Summary of antimicrobial-food interactions.

Agent Food Effect on Absorption

Amoxicillin No effect of fasting status for infants, children
and adults [69,70].

Amoxicillin/clavulanate Concomitant food ingestion may enhance
absorption and reduce gastric upset [71].

Ampicillin
Impaired when taken with food. Therefore, if
administered PO, ampicillin should be
administered 1 h before or 2 h after meals [70].

Azithromycin Tablets and suspension present no food effect [69].
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Table 2. Cont.

Agent Food Effect on Absorption

Cephalexin, cefadroxil, cefaclor, cefprozil, cefixime Not affected by food intake [72].

Cefuroxime axetil Absorption and dissolution into active form
are improved when taken with food [73,74].

Ciprofloxacin Impaired by dairy products, Ca2+ and Mg2+

supplements [75].

Metronidazole
Food may decrease the rate but not the extent
of absorption. However, food may reduce
gastric upset [76].

Rifampicin Impaired when taken with food, therefore
should be taken on an empty stomach [77].

Tetracycline Impaired when taken with food or with divalent
metal cations, such as Fe+2 and Ca+2 [78].

Some antimicrobials are administered intramuscularly. Similar physiologic principles
determine the bioavailability after intramuscular absorption, such as the local pH and the
tissue perfusion rate. As neonates and infants have low muscle mass and low regional blood
flow to muscles, bioavailability via intramuscular administration is lower in infants [79].

4.2. Distribution

Volume of distribution (Vd) is a pharmacologic parameter that relates the amount of a
drug in the body to its measured concentration in blood or plasma [14]. It is an apparent
volume, since it may well exceed any physiologic volume required to contain all the drug in
the body at the measured concentration. The magnitude and the sites of drug distribution
are dependent on the physicochemical properties of the drug and different biologic factors,
such as body composition and various physiological processes, which are all altered by
both ontogeny and disease states [80].

Body composition changes markedly throughout childhood. Premature neonates
have a much higher total body water content than term born infants. This increases Vd of
hydrophilic drugs, such as aminoglycosides and glycopeptides. As a result, higher doses
per kilogram are necessary at initiation for premature neonates to attain the same target
serum concentration, compared to term born infants [81]. For some drugs, loading doses
are given to rapidly attain optimal concentrations. Since Cmax is directly related to Vd,
neonates need higher loading doses of hydrophilic antimicrobials [82]. Furthermore, protein
composition evolves in childhood. In infants, lower protein binding has been reported [83].
This increases Vd of antimicrobials that are highly protein bound, such as ceftriaxone.
Hypoalbuminemia is common in many diseases, such as nephrotic syndrome, liver failure
and cachexia. Under these circumstances, the free fraction of protein bound drug rises [84].
However, this does not necessarily translate to higher drug exposure, as unbound molecules
are available for excretion, more unbound drug is cleared [85]. Furthermore, free drug
molecules may egress the circulation and bind to extravascular proteins.

Tight junctions and multiple cellular mechanisms prevent substances and micro-
organisms from entering the brain and cerebrospinal fluid (CSF), which is known as the
blood-brain barrier [86]. Therefore, some antimicrobials may not cross the blood-brain
barrier at all. But, the integrity of the blood-brain barrier decreases during central nervous
system infection (CNS) [87]. In general, unbound lipophilic and uncharged drugs enter
the CSF at a higher rate than hydrophilic drugs with a large size or charge. The abilities of
antimicrobials to penetrate CSF are displayed in Table 3.

Efflux transporters, such as p-glycoprotein (P-gp), avert intracellular transport of xeno-
biotics and toxic substrates [88,89]. As these transporters excrete certain drug molecules,
this restricts the distribution of some antimicrobials. On top of that, drugs may both induce
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and inhibit P-gp, such as rifampicin (inducer) and protease inhibitors (inhibitor), and hence
further affect exposure to substrates.

Table 3. Cerebrospinal fluid penetration of antimicrobials.

Agent Cerebrospinal Fluid (CSF) Penetration

Aminoglycosides

Amikacin
Gentamicin
Tobramycin

Systemic amikacin, gentamicin and tobramycin penetrate
the CSF of inflamed meninges to a limited extent. Their
clinical use for CNS infections is restricted by toxicities if
administered intravenously. Intrathecal doses of amikacin,
gentamicin, and tobramycin have been reported to be
effective and well tolerated [90,91]. No information
available for other aminoglycosides.

Antimycobacterials

Ethambutol Limited data suggest poor to moderate CSF penetration of
inflamed meninges [92].

Isoniazid CSF concentration comparable with plasma concentration
in inflamed meninges [92].

Pyrazinamide CSF concentration comparable with plasma concentration
in inflamed meninges [92].

Rifabutin Higher CSF penetration than rifampicin, but toxicities may
restrict its use in CNS infections [93].

Rifampicin
Moderate CSF penetration at standard doses, therefore
higher doses may be necessary for adequate CSF
penetration [91,92].

Bedaquiline Bedaquiline penetrated freely into the CSF of adults under
treatment with pulmonary tuberculosis [94].

Clofazamine Poor CSF penetration, which may be improved by
chemical modification [95].

Cycloserine Good CSF penetration of inflamed meninges [92,96].

Ethionamide Good CSF penetration [90].

Delamanid Very limited clinical data available, low total CSF levels [97].

Beta-lactamase inhibitors

Avibactam No data available.

Clavulanic acid Very limited data suggest that amoxicillin-clavulanate may be
effective for the treatment of bacterial meningitis [98,99].

Sulbactam
Very high CSF:plasma concentrations in combination with
ampicillin [91]. However, clinical experience with this
agent for meningitis is limited.

Tazobactam No clinical data available.

Vaborbactam No clinical data available.

Carbapenems

Doripenem No clinical data available.

Ertapenem No clinical data available.
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Table 3. Cont.

Agent Cerebrospinal Fluid (CSF) Penetration

Carbapenems

Doripenem No clinical data available.

Ertapenem No clinical data available.

Imipenem Measurable CSF penetrations, but high proconvulsive
activity may restrict its use [100].

Meropenem CSF concentrations adequate for treating meningitis [91].

Cephalosporins

Cephalexin Usually ineffective due to lower CSF:serum concentrations [91].

Cefazolin CSF concentrations of uninflamed meninges close to the
MIC of moderately susceptible bacteria [90].

Cefadroxil Usually ineffective due to lower CSF:serum concentrations [91].

Cefaclor No clinical data available.

Cefotetan No clinical data available.

Cefoxitin No clinical data available.

Cefprozil No clinical data available.

Cefuroxime Reaches CSF concentrations in excess of MIC [91].

Cephamycin No clinical data available.

Cefdinir No clinical data available.

Cefepime Adequate CSF penetration for treatment of meningitis [90].

Cefixime
Cefixime crosses the blood brain barrier of inflamed
meninges, but at limited concentrations and should
therefore not be used to treat meningitis [91].

Cefotaxime Adequate CSF penetration [90,91]

Ceftriaxone

Ceftriaxone has an adequate CSF penetration of inflamed
meninges. CSF concentrations are lower compared with
cefotaxime, most likely given the higher degree of protein
binding of ceftriaxone. Nevertheless, ceftriaxone is an
adequate agent for treatment of meningitis [90,91].

Ceftaroline Different case studies reported that ceftaroline attained
CSF concentration above MIC [101–103].

Ceftazidime CSF attains therapeutic levels in CSF [90,91].

Ceftizoxime Limited clinical data available suggest that ceftizoxime
penetrates CSF [91].

Ceftobiprole No clinical data available, clinical study ongoing
(NCT04178629).

Cefiderocol
Very limited clinical data available in humans suggests
that cefiderocol CSF concentrations in meningitis exceed
MIC of gram negative organisms [104].

Fluoroquinolones

Ciprofloxacin
Delafloxacin
Gatifloxacin

Gemifloxacin
Levofloxacin
Moxifloxacin
Norfloxacin
Ofloxacin

As a group, fluoroquinolones demonstrate excellent CSF
penetration. Clinical data are only available for
ciprofloxacin, ofloxacin, levofloxacin and moxifloxacin [90].
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Table 3. Cont.

Agent Cerebrospinal Fluid (CSF) Penetration

Glycopeptides

Teicoplanin The high protein binding of teicoplanin restricts CSF
penetration after IV administration [100].

Vancomycin
Vancomycin is highly hydrophilic and may reach sub
therapeutic CSF concentration at conventional doses, but
adequate concentrations at increased doses [91].

Dalbavancin No clinical data available.

Telavancin No clinical data available.

Glycylcycline

Tigecycline Limited clinical data available suggest that tigecycline reaches
adequate concentrations of inflamed meninges [90].

Lincosamides

Clindamycin
Lincomycin

Lincomycin and its derivative Clindamycin is considered
to have poor CSF penetration [91].

Monobactams

Aztreonam
Scant clinical data available suggest that aztreonam
reaches sufficient CSF concentrations after systemic
administration in inflamed meninges [45].

Macrolides

Azithromycin
Clarithromycin
Erythromycin
Fidaxomicin

Macrolides have been unable to reach therapeutic CSF
concentrations in adults [91].

Nitroimidazoles

Metronidazole Good CSF penetration in both inflamed and no inflamed
meninges [90,91].

Tinidazole No clinical data available.

Oxazolidinones

Linezolid CSF concentrations above the MIC of susceptible pathogens
both with inflamed and uninflamed meninges [90].

Tedizolid No clinical data available.

Penicillins

Penicillin G
Penicillin V Good CSF concentrations after intravenous administration [91].

Temocillin

Very limited clinical data available suggest that temocillin
may reach therapeutic concentrations in the CSF of
patients with gram negative meningitis, but more data are
necessary to assess this [105].

Amoxicillin
Ampicillin Good CSF penetrations after IV administration [91].

Cloxacillin

Penetrates in CSF of inflamed meninges to a limited
extent, therefore higher doses may be necessary to attain
therapeutic targets [106]. Furthermore, therapy failure has
been described in patients under treatment for
Staphylococcus meningitis [107].

Flucloxacillin
Penetrates in CSF of inflamed meninges to a limited
extent, therefore higher doses may be necessary to attain
therapeutic targets [106].

Nafcillin Insufficient CSF penetration for treatment of meningitis [91].
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Table 3. Cont.

Agent Cerebrospinal Fluid (CSF) Penetration

Oxacillin Limited CSF diffusion at conventional doses [108].

Piperacillin Crosses the inflamed and non-inflamed blood-brain
barrier but in unpredictable amounts [109].

Ticarcillins
Very limited data available, rather low and variable CSF
concentrations after administration of
ticarcillin-clavulanate [110].

Polymyxins

Polymyxin B
Polymyxin E

(Colistin)

Limited clinical data available suggest very low CSF
penetration after systemic administration [111].

Sulfonamides

Sulfamethoxazole High doses achieve good CSF concentrations both with
inflamed and uninflamed meninges [90].

Tetracyclines

Doxycycline Limited clinical data, same CSF penetration in both
inflamed and uninflamed meninges [90].

Minocycline No clinical data available.

Miscellaneous

Chloramphenicol Chloramphenicol penetrates well into CSF, but significant
toxicities prohibit the clinical use [90,91].

Daptomycin
Limited PK data available on CSF penetration. Some case
reports described the successful use of daptomycin in
meningitis.

Fosfomycin Enters the CSF in the presence and absence of meningeal
inflammation [90].

4.3. Metabolism

Metabolism is the process of chemical modification of a drug molecule (substrate)
into a hydrophilic metabolite [112]. This is typically needed to eliminate lipophilic drugs,
as these do not dissolve in water and therefore preclude renal excretion [113]. Some
metabolites are toxic, other substrates only become active after metabolism; these substrates
are therefore called pro-drugs.

Drug metabolism is divided in two main phase reactions [114]. Phase I reactions
introduce a functional group to the substrate through oxidation, dealkylation, reduction or
hydrolysis; therefore, phase 1 reactions are referred to as functionalization. Importantly,
substrates can remain pharmacologically active after phase 1 reactions. Phase II reactions
inactivate a substrate through adding a polar conjugate, most commonly glucuronide,
which facilitates subsequent elimination through urine or bile. The extent of metabolism of
a molecule is determined by the molecular structure, as a substrate may undergo either or
both phase reactions [115].

Although most metabolism happens in the liver, other sites of metabolism include
the kidneys, lung, intestines, brain and muscle [116]. Cytochrome P450 (CYP) is the major
enzyme family responsible for phase 1 reactions [117]. Cytochromes are a superfamily
of proteins containing heme as a cofactor, with the role of enzymatic metabolism of both
endogenous substrates such as steroids or lipids, and of exogenous substrates such as
nutrients and drugs [118].

CYP isoenzymes activity changes during lifetime, increasing significantly during the
early years of life, when activities ultimately become similar to adult levels [119]. There-
fore, lower doses of drugs that require hepatic metabolism may be needed during the
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early years of life, while a pro-drug can have lower efficacy early in life. To make drug
metabolism even more complex, some isoenzymes like CYP3A7 may be more expressed
during the early weeks of life or even in the fetus [120]. Furthermore, phase II enzymes
may have varying expression during different periods of life. For example, uridine 5′-
diphosphoglucuronic acid glucuronosyltransferases (UGT), which is responsible for about
15% of drug metabolism, is less expressed during early weeks of life. Exemplarily, the
grey baby syndrome was observed in infants who were treated with the antimicrobial chlo-
ramphenicol, as their low UGT activity restricted metabolism, resulting in mitochondrial
chloramphenicol toxicity [121].

Clinically relevant drug interactions may occur in the metabolism processes. Drug
interactions are best understood by examining the three main actors: (i) the substrate drug,
which is usually metabolized by CYP enzymes, (ii) the inducer drug that can increase
the synthesis of CYP enzymes and potentially increase the metabolism of a substrate
(thus decreasing serum concentrations of the substrate); (iii) the inhibitor drug that can
inhibit CYP and potentially decrease the metabolism of a substrate (increasing serum
concentrations of the substrate) [122]. For example, rifampicin is a potent CYP inducer that
leads to reduced concentrations of substrate, causing subtherapeutic concentrations [123].
On the contrary, CYP inhibitors such as macrolides and isoniazid increase concentrations
of the substrate, therefore increasing the chance of toxicity [124]. An important concept
is that inhibition processes require hours and therefore has a relatively quick effect on
the substrate’s drug concentration, while induction events require nuclear transcriptional
effects that take days to weeks [122].

4.4. Elimination

Elimination or excretion (also called clearance, CL) represents the process of removal
of drugs or by-products from the body, sometimes following metabolism [115]. The renal
and hepatic routes are the most common ways of elimination, other routes include the
lungs, intestine and secretory glands such as sweat, saliva and tears. Half-life (t1/2) is a
pharmacokinetic parameter of elimination, which is defined as the time to reduce Cmax by
50%. t1/2 is dependent on both Vd and clearance, as is mathematically expressed by the
formula t1/2 = 0.693 × Vd/CL [125].

The renal route is the commonest form of eliminating antimicrobials [126] with
glomerular filtration rate (GFR) as its major determinant, which is dependent on renal
blood flow. On top of GFR, the tubular processes secretion and reabsorption also can be of
relevance for elimination [127]. Both maturational and non-maturational factors affect the
performance of renal clearance throughout childhood. The maturational changes associ-
ated with renal clearance are related to increases in glomerular filtration rate and tubular
secretion with age. Glomerular filtration starting from 2 mL/min in a newborn markedly
increases in the first year of life, reaching adult rates by 1–2 years of age. Age-related tubular
secretion changes occur in the form of an increase in number and isoforms of transporters me-
diated by an increase in serum glucocorticoids and thyroid hormone, occurring in synchrony
with weaning, and show notable increments after five years of age [128].

Multiple non-maturational factors affect renal excretion in children. However, facti-
tious changes should be discerned. For example, trimethoprim competitively interferes
with the tubular secretion of creatinine. Therefore, prolonged administration of trimetho-
prim results in an increase in serum creatinine, without a decreased GFR, due to impaired
tubular secretion [129]. Hence, while trimethoprim has a potential to cause nephrotox-
icity, isolated increases in serum creatinine should not be taken as an indicator of renal
injury. Disease states are also relevant non-maturational factors affecting antimicrobial
clearance in children in both directions, as both an increase (hyperfiltration) or decrease
(renal impairment) can occur. Augmented renal clearance triggers low plasma concentra-
tions of administered antimicrobials [129]. High cardiac output and the subsequent raised
glomerular filtration (>10% increase from normal clearance rates) are associated with the
development of augmented renal clearance [130]. Infants and children, especially those in



Antibiotics 2023, 12, 17 14 of 23

the post-traumatic or post-operative period, having sepsis, burns or hematologic malignan-
cies are at a higher risk of ARC [131,132]. In order to maintain adequate drug exposure in
such children, either prolonged infusions, frequent dosing and increased dosing or change
to an alternative antimicrobial drug are required [133–135].

5. Therapeutic Drug Monitoring

Therapeutic drug monitoring, which refers to individual patient dose adjustments
based on measured drug concentrations, is an important tool to optimize therapy. It may
be indicated in patients where high peak concentrations are desired in infections caused
by organisms with high MICs, or in patients who are receiving antimicrobials that exert
dose-dependent toxicities such as nephrotoxicity. In the case of aminoglycosides, which are
nephrotoxic drugs, monitoring through concentrations could limit toxicity. Additionally
in cases of treating organisms with higher MICs there may be a need to achieve higher
peak concentrations since Cmax/MIC is the PK/PD parameter of efficacy associated with
aminoglycosides. Furthermore, pharmacokinetic variability exists with many drugs, this
compounded with physiological and anatomical changes seen in pediatric patients further
supports the need for therapeutic drug monitoring. Many studies have recommended
therapeutic drug monitoring to address the pharmacokinetic variability seen with antitu-
berculosis agents [136–138]. Newer drug monitoring approaches are aimed at achieving
targeted AUC as opposed to single trough concentrations. Such practices are apt for drugs
that utilize AUC/MIC as a PK/PD parameter, such as vancomycin. Newer vancomycin
guidelines have proposed targeted therapy by achieving appropriate AUC [139]. Model-
based approaches have allowed for easier computing of the AUC for individualization
of therapy but requires a drug concentration for dose prediction [139]. Notably, Ewoldt
et al. in a recent study reported no beneficial effect of model informed precision dosing
of beta-lactam antibiotics and ciprofloxacin on ICU length of stay in critically ill patients
however, the study was conducted in adult patients and did not include the pediatric popu-
lation [140]. In the case of aminoglycosides, which are nephrotoxic drugs, monitoring trough
concentrations during the treatment course could limit toxicity. Additionally in cases of treat-
ing organisms with higher MICs there may be a need to achieve higher peak concentrations
since Cmax/MIC is the PK/PD parameter of efficacy associated with aminoglycosides.

6. Challenges in Attaining Effective Drug Concentrations in Children Living in LMIC

Just under half (45%) of all deaths in children under 5 years of age globally are at-
tributed to undernutrition. Infections are responsible for a large proportion of mortality
in malnourished children, due to reduced serum immunoglobulin levels, atrophied im-
mune tissues like the thymus, and impaired epithelial mucosal barriers, such as the skin,
respiratory and intestinal tract [141,142]. Therefore, the World Health Organization recom-
mends that all children admitted with severe acute malnutrition receive broad-spectrum
antimicrobials. However, different comorbidities and restrictions in resources make it chal-
lenging to attain PK-PD targets in LMIC settings. There are relatively few studies available
that investigated the effects of protein-energy malnutrition on the pharmacokinetics of
medicines in children [143]. While a complete overview of the effects of malnutrition on
antimicrobial pharmacology is beyond the scope of this review, it is important for clinicians
to recognize that the severity of malnutrition and characteristics of the drug will impact
pharmacokinetics. In general, the volume of distribution and drug disposition will be
increased for hydrophilic drugs and decreased for lipophilic drugs in severe malnutri-
tion [144]. In addition, alterations in total body water, muscle mass and serum protein
concentrations in malnourished children will further impact drug delivery [145]. Dose
modifications of enteral medications may be necessary to account for impaired absorption
and the reduced total drug clearance associated with malnourishment [146]. Furthermore,
hypoalbuminemia associated with severe acute malnutrition can result in hydrophilic
drugs having larger volumes of distribution. Therefore, higher doses may be necessary to
attain adequate serum concentrations to treat blood stream infections [147,148].
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6.1. Co-Morbidities

Apart from the effects of malnutrition, many diseases in LMIC may alter the pharma-
cokinetics of antimicrobials. The faster intestinal transport of oral antimicrobials during
prolonged diarrhea leads to reduced absorption [149]. Furthermore, HIV and tuberculosis
are common diseases in LMIC that both require drugs affecting P-gp. Rifampicin is an in-
ducer, while protease inhibitors are either inhibitors or substrates of P-gp, which potentially
results in drug-drug interactions [150]. Augmented renal clearance and chronic kidney
disease are commonly observed in children with sickle cell disease that may warrant dose
modifications to attain therapeutic targets and avoid toxicity [151,152]. Causes of child-
hood kidney disease in developing countries are diverse and mainly relate to antecedent
post streptococcal glomerulonephritis, dehydration, malaria, use of herbal medicines and
lead to various syndromes like hemolytic uremic syndrome, acute tubular necrosis and
glomerulonephritis. A full understanding of the spectrum of etiologies is hampered by
limited diagnostics [153,154]. A reduced creatinine clearance was also observed in chil-
dren living with HIV in a population pharmacokinetic study of levofloxacin among South
African children receiving treatment for multi-drug resistant tuberculosis [155]. Renal
dysfunction associated with HIV infection is driven by direct renal parenchymal infection
and immune-complex deposition [156].

6.2. Altered Polymorphisms

Besides disease related alterations, polymorphisms in drug metabolizing enzymes may
further affect the pharmacokinetics of antimicrobials in affected patients. As an example,
isoniazid is included in both prophylactic and therapeutic regimens against tuberculosis
while it is widely appreciated that this has potential severe side effects. Its metabolism is
highly dependent on the individual acetylation profile of the N-acetyltransferase (NAT2)
gene. There is robust evidence that NAT-related polymorphisms already impact isoniazid
clearance from neonatal life onwards, as the metabolic activity increases steadily from
4 months until 17 years of age (r = 0.53, age range 4 months to 17 years, 25/88 cases were
4–23 months) [157]. Slow genotypes (no alleles) had a much lower metabolic ratio com-
pared to rapid (two alleles) genotypes (2-fold difference). Schaaf et al. estimated the first
order elimination rate constant in 64 children [158], which related both to age and NAT-2
allele frequency (SS = 0.254; FS = 0.51; FF = 0653 h−1). Finally, Zhu et al. quantified the
pharmacogenetic specific NAT2 enzyme maturation in perinatal HIV exposed infants re-
ceiving isoniazid [159]. Consecutive plasma concentration-time measurements of isoniazid
from 151 infants (starting at 3–4 months of age) receiving isoniazid 10 to 20 mg/kg/day
orally during the 24-month study were incorporated in a population analysis along with
NAT2 genotype, body weight, age, and sex. For fast (FF) and intermediate (SF) acetylators,
clearance increased from 14.25 L/h. 70 kg and 10.88 L/h. 70 kg at 3 months to 22.84 L/h.
70 kg and 15.58 L/h. 70 kg at 24 months, while slow (SS) acetylators displayed no changes
over age (7.35 L/h). Comparing slow to fast acetylators, there is a 2-fold difference at
3 months, to further increase to a 3-fold difference at 24 months. How to implement such
information to attain a ‘precision approach’ within a LMIC remains an issue, but perhaps
awareness and considering concentration guided dosing shortly after initiation could be a
way forward.

6.3. Challenges with Healthcare Administration

Administrative challenges in hospitals in LMIC include work over-load on behalf of
pediatric nurses, who often work in crowded wards, which potentially leads to errors in
dosing. Furthermore, skipped doses are often-unnoticed [160]. Under-dosing or inappro-
priate frequency of antimicrobial dosing will inevitably promote AMR [161]. Limitations in
therapeutic drug monitoring in many low-income nations need to be overcome to combat
in particular resistance to glycopeptide and aminoglycoside antibiotics [162,163]. LMIC
face many challenges due to limited resources and the cost associated with effectively
running such facilities. Due to the rural settings of most clinics and hospitals, samples need
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to be transported over vast distances to reach therapeutic drug monitoring laboratories
if one is available, adequate storage of samples are impeded by lack of equipment and
conveying of results may be delayed due to the lack of network signal. Addressing these
issues would require larger stakeholder engagement with governmental involvement to
set up infrastructure, adequately train staff in conducting and interpretation of therapeutic
drug monitoring, and devise ways to minimize high-cost burden such as monitoring in
selected patients with limited sampling and the use of model-based precision dosing. In
the long term, adequate monitoring practices could off-set the cost associated with lack of
drug efficacy and/or drug toxicity in the absence of adequate monitoring.

Overall, the practice of infectious diseases and clinical microbiology is hampered by
limited clinical bacteriology laboratories, shortage of pharmacokinetic and pharmacody-
namics studies as well as lack of access to therapeutic drug monitoring [162,164].

7. Conclusions

A thorough understanding of developmental pharmacokinetics is pivotal for adequate
dosing in children. In this review, we outlined the effects of growth and maturation on
pharmacokinetics in children. Subsequently, we elaborated how common comorbidities,
such as malnourishment, co-morbidities such as tuberculosis, augmented renal clearance,
HIV and tuberculosis, in LMIC may further affect the pharmacokinetics of antimicrobials
in children. Limited resources for therapeutic drug monitoring restrict the abilities to
individualize doses based on measured concentrations. Further pharmacokinetic studies of
antimicrobials in children in LMIC are urgently needed to optimize dosing, and hence to
attain PK/PD targets and combat antimicrobial resistance.
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