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Abstract: French guidelines recommend reaching an amikacin concentration of ≥8 × MIC 1 h after
beginning infusion (C1h), with MIC = 8 mg/L for probabilistic therapy. We aimed to elaborate a
nomogram guiding clinicians in choosing the right first amikacin dose for ICU patients in septic
shock. A total of 138 patients with 407 observations were prospectively recruited. A population
pharmacokinetic model was built using a non-parametric, non-linear mixed-effects approach. The
total body weight (TBW) influenced the central compartment volume, and the glomerular filtration
rate (according to the CKD–EPI formula) influenced its clearance. A dosing nomogram was produced
using Monte Carlo simulations of the amikacin amount needed to achieve a C1h ≥ 8 × MIC. The
dosing nomogram recommended amikacin doses from 1700 mg to 4200 mg and from 28 mg/kg to
49 mg/kg depending on the patient’s TBW and renal clearance. However, a Cthrough ≤ 2.5 mg/L
24 h and 48 h after an optimal dose of amikacin was obtained with probabilities of 0.20 and 0.81,
respectively. Doses ≥ 30 mg/kg are required to achieve a C1h ≥ 8 × MIC with MIC = 8 mg/L.
Targeting a MIC = 8 mg/L should depend on local ecology.

Keywords: amikacin; ICU; pharmacokinetics; dosing; nomograms

1. Introduction

Amikacin is commonly used in association with a beta-lactam agent in patients with
septic shock to broaden the spectrum of the initial antimicrobial therapy and to potentiate
bactericidal effects [1,2]. Its use has been associated with better outcomes in patients
with a high risk of death [3,4]. A rapid discontinuation of the combination therapy is
recommended after bacterial documentation [5], and a single infusion of amikacin is
often given to a patient [6]. Clinical success is associated with a ratio of the plasma
concentration one hour after the beginning of a short-infusion (C1h) to a minimal inhibitory
concentration (MIC) higher than eight to ten [7–10]. Nephrotoxicity is associated with a
residual concentration of amikacin ≥2.5 mg/L. French guidelines recommend a 30 mg/kg
of total body weight (TBW) dose with a 30-min infusion for intensive care unit (ICU)
patients in order to achieve an amikacin C1h eight to ten times above the MIC of the
targeted bacteria [11]. For obese patients, the adapted body weight (ABW) is preferred
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over TBW. According to the EUCAST breakpoint for Enterobacterales, a MIC of 8 mg/L
should be targeted for probabilistic treatments [12], resulting in C1h targets from 64 to
80 mg/L. This easy method to calculate the optimal dose of amikacin is widely used, but
the PK–PD C1h target is only achieved in 60 to 82% cases [6,13,14]. This may be explained
by modified pharmacokinetic properties and the broad inter- and intraindividual variability
of aminoglycoside exposure in ICU patients, which justify individualized dosing regimens
and, when possible, model-informed precision dosing approaches [15,16]. There is a need
to develop a pragmatic and individualized dosing strategy to maximize the probability of
target attainment right from the first dose of amikacin in ICU patients.

Many pharmacokinetic models have been elaborated to describe amikacin concentra-
tions [17–19]. However, most of them are combined with Bayesian forecasting and cannot
be easily applied for initial dosing. Dosing nomograms have been used for a long time [20]
and are still developed for various antibiotics [21–24] due to their proven efficacy [25] and
simplicity of use. The aim of this study was to design a pharmacokinetic model based on
easily available patient characteristics and plasma concentrations to predict the amikacin
peak. We then developed a nomogram to determine the optimal first dose of amikacin to
be administered based on a patient’s characteristics.

2. Results
2.1. Patients’ Characteristics and Amikacin Concentrations

A total of 138 patients (91 patients from PICAMI and 47 patients from AMINO2)
corresponding to 407 amikacin measurements were included in the analysis. All patients
presented septic shock. The patients’ characteristics are summarized in Table 1. The
median [quartile 1 (Q1), quartile 3 (Q3)] first dose of amikacin was 2000 [1660–2400] mg,
corresponding to 27.7 [22.6–29.9] mg/kg of TBW. This dose was associated with a median
[Q1, Q3] first C1h of 67.5 [54.6–86.7] mg/L. Only 78 (56.5%) and 44 (31.9%) patients achieved
target C1h values ≥ 64 mg/L and 80 mg/L, respectively.

Table 1. Patient’s characteristics.

Patient’s Characteristics Median [Q1–Q3] or n (%)

Age (years) 62 [49–72]
Sex (male) 90 (65.2)

Total body weight (kg) 76.5 [62.0–88.5]
Height (cm) 170 [163–177]

Body mass index (kg/m2) 25.6 [21.9–31.4]
Body mass index ≥ 30 kg/m2, n (%) 41 (29.7)

Body surface area (m2) 1.89 [1.72–2.03]
SAPS II 41 [31–56]

Total proteinemia (g/L) 55 [48–62]
Albuminemia (g/L) 26.0 [20.6–30.8]

Serum creatinine (µmol/L) 91 [61–171]
eGFR (CKD–EPI formula, mL/min/1.73 m2) 70.0 [41.9–111.5]

Renal replacement therapy 9 (6.5)
Vasopressors use 79 (57.3)

Invasive mechanical ventilation 94 (68.1)
eGFR: estimated glomerular filtration rate; CKD–EPI: Chronic Kidney Disease–Epidemiology Collaboration; SAPS
II: Simplified Acute Physiology Score II.

2.2. Population PK Modeling and Evaluation with Pmetrics

A two-compartment model best described the observed data with first-order elimina-
tion. More complex structural models did not significantly improve the Akaike information
criterion (AIC), population bias or imprecision. The intercompartmental clearance (Q) was
fixed to its mean (5.43 h−1), as this parameter could not be accurately estimated due to a
high variance. Among the studied covariates, two were found to have an influence on the
model parameters (p < 0.05): TBW had an influence on the central compartment volume
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(V) with a linear relationship, and the glomerular filtration rate (GFR) estimated with the
Chronic Kidney Disease–Epidemiology Collaboration (CKD–EPI) formula (eGFR) had an
influence on the central compartment clearance (CL), with a power relationship. A gamma
error model with a starting value of 3 was chosen, and the values for error coefficients C0,
C1, C2, and C3 were 1.25, 0.05, 0, and 0, respectively, for the SD polynomial. The final
value of gamma was 1.5, which indicated good-quality data. The final structural model is
represented in Figure 1. PK parameter estimates are summarized in Table 2.
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Figure 1. Structural model. V: central compartment volume; Q: intercompartmental clearance; Vp: pe-
ripheral compartment volume; CL: central compartment clearance; V1, CL1, and CL2: parameters;
TBW: total body weight; eGFR: estimated glomerular filtration rate.

Table 2. Population parameter estimates.

Parameter 1 Median (95% CI) MAWD (95% CI) Range

CL1 4.41 (3.84–5.27) 1.24 (0.64–1.99) 0.01–15.00
CL2 0.72 (0.57–0.92) 0.29 (0.15–0.56) 0.01–10.00
V1 20.40 (16.58–26.49) 5.45 (2.58–8.88) 0.01–60.00
Vp 16.32 (13.71–23.99) 7.20 (3.94–14.95) 0.10–100.00

CI: confidence interval of the estimates; MAWD: median absolute weighted deviation, used as an estimate
of the variance for a nonparametric distribution; range: interval of values set before the run. 1 In the model,
CL = CL1 × (eGFR/70)CL2, where CL is the elimination rate constant from the central compartment (per hour)
and eGFR/70 is the estimated glomerular filtration rate (milliliters per minute) normalized to the population
median. V = V1 × (TBW/76.5), where V is the volume of the central compartment (liters) and TBW/76.5 is the
total body weight (kilograms) normalized to the population median. Q was fixed to 5.43 h−1.

Diagnostic plots are presented in Figure 2. The bias and imprecision were 0.16 and 5.79,
respectively, for population predictions and −0.04 and 0.80, respectively, for individual
predictions. Residual plots for population predictions showed an even distribution of
weighted residual errors over the concentration range and over time. The VPC revealed
that the prediction was consistent with the observations (Figure 3).
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Figure 3. Visual predictive checks of amikacin concentrations against time. Open circles are observed
amikacin concentrations. Solid lines represent the 5th, 50th, and 95th percentiles for observed
concentrations. Dashed lines represent the 5th, 50th, and 95th percentiles for simulated concentrations.
The vertical lines at the top of the plot are bin separators.

2.3. Monte Carlo Simulations and Dosing Nomograms

The range of the eGFR for the nomogram was fixed from 20 to 135 mL/min/1.73 m2

(10th to 90th percentile of the observed eGFR in the studied population). A dosing nomo-
gram for amikacin is presented in Figure 4 and shows the dose per kg of TBW of amikacin
needed to achieve a C1h ≥ 64 mg/L with a probability of target attainment (PTA) of 0.9 for
a median TBW of 76.5 kg and for the 10th and 90th percentiles of the observed population
TBW (52 and 125 kg, respectively). The optimal dose varied from 1700 mg to 4200 mg and
28.4 mg/kg to 49.0 mg/kg of TBW depending on the TBW and eGFR.

A Cthrough ≤ 2.5 mg/L 24 h and 48 h after the beginning of the amikacin infusion of
an optimal calculated dose was obtained in simulated patients of median TBW and eGFR
with a PTA of 0.20 and 0.81, respectively.
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Figure 4. Nomogram of the median first dose of amikacin to be administered to attain a
C1h ≥ 64 mg/L in 90% of the studied population for a TBW of 76.5 kg (median value of the studied
population, full line), a TBW of 52 kg (10th percentile, top dashed line), and a TBW of 125 kg (90th
percentile, bottom dashed line).

3. Discussion

In ICU patients, immediately choosing an adapted first dose of amikacin is crucial. The
objective of this work was to provide a simple tool to optimize this choice in daily practice.
We conceived a dosing nomogram to choose the ideal dose of amikacin needed to achieve
the defined PK–PD target, depending on two patients’ easily obtained characteristics: TBW
and eGFR.

A non-parametric pharmacokinetic modeling approach was used [26]. The model
showed good performance and adequately described the observed concentrations. Most
blood samples were collected at the same time, 1 h after the beginning of injection, but this
issue was compensated for by the high number of observations and the use of a population
modeling approach. The eGFR and TBW were identified as covariates influencing amikacin
CL and V, respectively.

GFR estimates are included in most amikacin pharmacokinetic models [16,17]. How-
ever, this crucial parameter is not considered for choosing the first dose of amikacin
in official guidelines, probably because its impact on amikacin C1h is deemed to be
minor. However, the C1h of amikacin is not the maximum concentration, as it is mea-
sured 30 min after the end of a 30-min amikacin infusion. At the time of measurement,
clearance has already occurred for one hour. We know that ICU patients can experi-
ence acute kidney injury (AKI) and augmented renal clearance (defined as a creatinine
clearance ≥ 130 mL/min) [27]. In our cohort study, these cases accounted for a quarter
of patients (15.2% of eGFR < 30 mL/min and 11.6% of augmented renal clearance). We
showed that the first dose of amikacin needed to achieve a C1h ≥ 64 mg/L varied from
30 mg/kg to 40 mg/kg in patients of an average weight, depending on the eGFR. This
could explain some of the reported failures to reach PK–PD targets [13,28,29].

In this study, the GFR estimated with the CKD–EPI formula best increased model
precision. The CKD–EPI formula was developed in 2009 [30] and is nowadays commonly
used to estimate the glomerular filtration rate. The precision of the CKD–EPI equation
is consistent for underweight and obese patients [31]. However, its accuracy in ICU
patients has been challenged, especially in patients with AKI [32]. The calculation of exact
creatinine clearance requires urine collection, which was not performed in this study. This
limitation reflects real-life conditions, as urine analysis is often unavailable during the
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initial management of patient with septic shock. Consequently, we produced a dosing
nomogram for patients with a GFR estimated with the CKD–EPI formula as ≥20 mL/min.

French guidelines recommend adjusting the amikacin dose depending on TBW with
a linear relationship, except in obese patients where ABW is used [10]. Pathophysiologic
changes in obesity affect most hydrophilic medications, and many authors recommend
estimating the volume of distribution using ABW in obese patients [33]. In our study, 30%
of patients were obese (body mass index ≥ 30 kg/m2). However, TBW was chosen over
ABW because of its better predictive performance. Elaborating nomograms based on TBW
also presents the advantage to being easy to use for clinicians. The predicted optimal dose
per kg of TBW for obese patients was found to be lower than that for patients of average
weight. The difference was more significant for underweight patients who required a much
higher dose-to-weight ratio. Indeed, the complexity of the relationship between weight
and optimal amikacin dose cannot be reduced to a simple linear relationship without a loss
of efficiency.

We built a nomogram showing the lowest first dose of amikacin to administer to
ICU patients with septic shock to reach a 64 mg/L C1h target with a PTA above 0.9. Our
nomogram showed that the recommended relative dose of 30 mg/kg by French guidelines is
not enough for most patients. For example, a patient with an eGFR of 100 mL/min/1.73 m2

and a TBW of 50 kg would need a 40 mg/kg dose. Moreover, as dose calculation is
based on TBW according to our model rather than ABW according to French guidelines,
overweight patients would receive higher doses. For a patient with a median eGFR of
70 mL/min/1.73 m2 and a TBW of 125 kg, the 30 mg/kg recommended dose amounts to
3750 mg and 2800 mg when dose calculation is based on TBW and ABW, respectively.

These high doses may raise safety concerns, as amikacin can cause nephrotoxicity and
ototoxicity. A study linked amikacin toxicity with C1h [13], but this finding has not been
confirmed by other studies [29]. In the current state of knowledge, no upper limit for C1h has
been defined. Rather, nephrotoxicity is associated with amikacin Cthrough [34]. Its incidence
was shown to dramatically decrease with once-daily regimens [35]. French guidelines
recommend targeting a Cthrough < 2.5 mg/L. According to our simulations, this target
cannot be achieved with our recommended dose 24 h after the last amikacin administration
in most cases. French guidelines recommend decreasing the infusion frequency instead of
reducing the amikacin dose to avoid amikacin accumulation in renal tissues. Indeed, both
nephrotoxicity and ototoxicity have been linked with a total amikacin dose > 9 g [36], and
animal studies have associated nephrotoxicity with amikacin accumulation in tissues [37].
In the ICU, the total amikacin dose is of little concern because clinicians usually give a
single dose of amikacin before switching to another drug. However, more studies, such as
animal safety studies, are needed to determine if nephrotoxicity can occur after a single
high dose of amikacin.

As emphasized in a recent study, the targeted C1h depends on the MIC of the targeted
pathogen [38]. French guidelines recommend considering a MIC of 8 mg/L for probabilistic
therapy targeting Enterobacterales; consequently, the C1h target is 64 mg/L. In order to reach
probabilistic C1h targets, clinicians could use either a high dose of amikacin, as calculated in
our study, or target a lower MIC. Some studies have shown that despite failing to achieve
a priori PK–PD targets, a 30 mg/kg dose enabled the attainment a posteriori PK–PD
targets due to the low MIC of the encountered pathogens [6,28,39]. Aiming pathogens
with a MIC of 4 mg/L rather than 8 mg/L for probabilistic therapy is associated with a
more reachable C1h and consequently Cthrough targets. Most wild-type pathogens have a
MIC ≤ 4 mg/L [40]. However, amikacin-acquired resistance is seen worldwide, especially
in the ICU [41]. The EUCAST defined new clinical breakpoints for amikacin due to the
recent use of once-daily high doses and the acknowledgment of their use in combination
with other active therapy. Enterobacterales and Pseudomonas aeruginosa are now defined as
susceptible to amikacin if they have MIC values ≤ 8 and 16 mg/L, respectively [12]. Our
results question the choice of breakpoint MICs and the definition of amikacin susceptibility.



Antibiotics 2023, 12, 123 8 of 12

The decision to target a lower MIC for probabilistic therapy should be made according to
local epidemiology.

This work suffered from several limitations. First, our nomogram has not yet been
prospectively validated on an external cohort, which limits its safe use for now. A bicentric
prospective cohort study is planned. Second, our predictions were based on our population
characteristics. Despite a multicentric design, this study included patients from a single
country and our results may not be generalized to other populations, especially for patients
with extremely high body weight or renal clearance.

In conclusion, we produced a dosing nomogram to help clinicians choose the optimal
first dose of amikacin in ICU patients. The optimal dose depends on patient eGFR and
TBW. High doses ≥ 30 mg/kg are often required if high MICs are targeted (more or equal
to 8 mg/L). It is therefore necessary to assess one’s local ecology before aiming at this target.
Finally, the use of these high doses needs to be assessed in terms of safety, given that a
single dose is usually administered.

4. Materials and Methods
4.1. Patient Population and Data Collection

Data were obtained from two prospective French cohorts: (i) the AMINO2 study [28],
including patients from the Nîmes University Hospital between October 2014 and February
2015, and (ii) the PICAMI study [6], including patients from the Nantes University Hospital
between July 2014 and November 2016. Both studies were approved by local review boards.
We included patients over 18 years old and treated for sepsis in the ICU with combination
therapy including aminoglycosides at the day of enrolment.

According to French guidelines, patients received a 30-min intravenous infusion of
amikacin diluted in 50 mL of NaCl 0.9%. Plasma concentration sampling was performed
30 (±15) minutes after the end of infusion (C1h).

For all patients at the day of inclusion, the following kinds of data were collected: age,
sex, height, and SAPS II [42]. On every day of amikacin infusion, the following data were
additionally collected: weight, serum creatinine, total proteinemia, albuminemia, renal
replacement therapy, vasopressors use, and invasive mechanical ventilation. Body mass
index and body surface area (BSA) were calculated with the Dubois formula [43], ideal
body weight (IBW) was calculated with the Lorentz formula [44], ABW was calculated
with the Traynor formula [45], estimated GFR was indexed by BSA according to the CKD–
EPI formula [30] (eGFR, mL/min/1.73 m2), and estimated GFR was calculated with the
Cockroft and Gault and the Modification of Diet in Renal Disease (MDRD) formulas.

4.2. Bacterial Susceptibility Testing and Amikacin Quantification

Bacterial antibiotic susceptibilities, including amikacin MICs, were determined using a
VITEK 2 automated system (bioMérieux, Marcy-l’Etoile, France). Amikacin concentrations
were measured using fluorescence polarization automated immunoassays (Cobas 8.000 kit,
Roche, Basel, Switzerland). The limits of quantifications were 0.8 mg/L in the AMINO2
study and 2.5 mg/L in the PICAMI study.

4.3. Population Pharmacokinetics Analysis

The population PK model was built using the non-parametric adaptive grid algorithm
with the Pmetrics package for R (version 4.0.4, Laboratory of Applied Pharmacokinetics,
Los Angeles, CA, USA) [46,47].

4.3.1. Base Model

One-compartment, two-compartment and three-compartment structural models were
initially tested without covariates to determine the best-fitting structural model. The selec-
tion of the most appropriate model was based on the AIC (an estimate of the likelihood
penalized by the number of parameters in the model), population bias and imprecision cal-
culations (the mean weighted error of predictions minus observations and the bias-adjusted
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mean weighted squared error of predictions minus observations, respectively), and diagnos-
tic plots of observed concentrations versus population-predicted and individually predicted
concentrations and of weighted residual error versus time or individual predictions.

An additive gamma:
error = SD × γ

and multiplicative lambda:

error = (SD2 + λ2)
0.5

error models, where SD is the standard deviation of each observation and γ and λ represent
process noise (such as model misspecification and sampling time uncertainty), were tested.
SD was modelled by a polynomial equation:

C0 + C1 × [obs] + C2 × [obs]2 + C3 × [obs]3

where [obs] is the observed concentration.

4.3.2. Covariate Model

The relationship between the model parameters and the different covariates was
evaluated using stepwise linear regression, AIC, and the visual assessment of plots of the
model parameters against covariates. The covariates were then selected using forward
and backward stepwise selection on the Chi2 test of the objective function. Continuous
covariates were integrated into the structural model using either a linear

P = P1 × P2 ×
(

COV
COVmedian

)
,

exponential

P = P1 × eP2×( COV
COVmedian

)
,

power

P = P1 ×
(

COV
COVmedian

)P2
,

or allometric for weight only

P = P1 ×
(

COV
COVmedian

)P2

relationship, where P, P1, and P2 are parameters; COV is the covariate value; and
COVmedian is the covariate median in the dataset. Binary covariates were integrated into
the structural model using either a linear

P = P1 + P2 × COV,

or exponential
P = P1 × P2COV

relationship. Covariates that improved the model according to the AIC, bias, and impre-
cision were integrated into the final model. Parameter ranges were initially set wide and
then narrowed to increase the density of support points in the pertinent range. The process
was iterated until no further improvement to the model was observed.

4.3.3. Model Evaluation

The evaluation of the final model was conducted using graphical methods. Visual
predictive checks (VPCs) were performed using the vpc package for R. For each patient
in the dataset, 1000 Monte Carlo simulations were performed. Medians, 5th percentile,
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and 95th percentile of the observed and simulated concentrations were visually compared.
Concordance was visually checked, and bias and imprecision were calculated.

4.4. PTA and Dosing Nomogram

Monte Carlo simulations (n = 1000), based on the parameters of the structural model,
were generated from patient profiles with a large panel of covariate values (eGFR and TBW)
between the 10th and 90th percentiles of the population. For each of these profiles, exposure
to amikacin was assessed for doses ranging from 1300 mg to 5800 mg administered in a
30-min intravenous infusion.

Targeted amikacin concentrations were defined as C1h > 8 × MIC when MIC =
8 mg/L (64 mg/L) according to French guidelines [11] and EUCAST breakpoints [12].
Optimal doses to achieve this PK–PD target were determined for various eGFR values and
for TBW values equal to the 10th, median, and 90th percentiles of the observed weight
in the dataset. Exploratory simulations were conducted to determine the PTA of Cthrough
target ≤ 2.5 mg/L 24 h and 48 h from the beginning of the infusion of optimal doses.

To conceive the dosing nomogram, the lowest dose required to achieve a PTA of
0.9 1 h after beginning the infusion was reported (GraphPad Prism version 8.0.2, San Diego,
CA, USA).
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