
Citation: Aldeyab, M.A.; Bond, S.E.;

Conway, B.R.; Lee-Milner, J.; Sarma,

J.B.; Lattyak, W.J. Identifying

Antibiotic Use Targets for the

Management of Antibiotic Resistance

Using an Extended-Spectrum

β-Lactamase-Producing Escherichia

coli Case: A Threshold Logistic

Modeling Approach. Antibiotics 2022,

11, 1116. https://doi.org/10.3390/

antibiotics11081116

Academic Editors: Rita Murri and

Masafumi Seki

Received: 11 July 2022

Accepted: 16 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Identifying Antibiotic Use Targets for the Management of
Antibiotic Resistance Using an Extended-Spectrum
β-Lactamase-Producing Escherichia coli Case: A Threshold
Logistic Modeling Approach
Mamoon A. Aldeyab 1,* , Stuart E. Bond 1,2 , Barbara R. Conway 1,3 , Jade Lee-Milner 2 , Jayanta B. Sarma 4

and William J. Lattyak 5

1 Department of Pharmacy, School of Applied Sciences, University of Huddersfield,
Huddersfield HD1 3DH, UK

2 Pharmacy Department, Mid Yorkshire Hospitals NHS Trust, Wakefield WF1 4DG, UK
3 Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK
4 Department of Microbiology, Mid Yorkshire Hospitals NHS Trust, Wakefield WF1 4DG, UK
5 Scientific Computing Associates Corp., River Forest, IL 60305, USA
* Correspondence: m.aldeyab@hud.ac.uk

Abstract: The aim of this study was to develop a logistic modeling concept to improve understanding
of the relationship between antibiotic use thresholds and the incidence of resistant pathogens. A
combined approach of nonlinear modeling and logistic regression, named threshold logistic, was
used to identify thresholds and risk scores in hospital-level antibiotic use associated with hospital-
level incidence rates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli).
Threshold logistic models identified thresholds for fluoroquinolones (61.1 DDD/1000 occupied bed
days (OBD)) and third-generation cephalosporins (9.2 DDD/1000 OBD) to control hospital ESBL-
producing E. coli incidence. The 60th percentile of ESBL-producing E. coli was determined as the
cutoff for defining high incidence rates. Threshold logistic analysis showed that for every one-unit
increase in fluoroquinolones and third-generation cephalosporins above 61.1 and 9.2 DDD/1000
OBD levels, the average odds of the ESBL-producing E. coli incidence rate being ≥60th percentile
of historical levels increased by 4.5% and 12%, respectively. Threshold logistic models estimated
the risk scores of exceeding the 60th percentile of a historical ESBL-producing E. coli incidence rate.
Threshold logistic models can help hospitals in defining critical levels of antibiotic use and resistant
pathogen incidence and provide targets for antibiotic consumption and a near real-time performance
monitoring feedback system.

Keywords: antibiotic use; antibiotic resistance; antibiotic prescribing; antibiotic stewardship; threshold
logistic modeling; thresholds; ESBL-producing E. coli; epidemiology; clinical practice

1. Introduction

The emergence and spread of multidrug-resistant bacteria pose a significant threat
to public health and incur significant costs to healthcare systems and to society [1–5].
Studies have reported on the inappropriate use of antibiotics [6–9] and demonstrated
a link between antibiotic use and the emergence and spread of antimicrobial resistance
(AMR) globally [10–19]. Whereas antimicrobial stewardship informs the appropriateness of
antibiotic use [7,9,20], balancing access to effective antimicrobials with the need to control
AMR is challenging [12,13,19,21]. This requires a better understanding of the relationships
between population antibiotic use and resistance [10–13,19]. Time series analysis using
linear methods has been applied to measure the relationship between antibiotic use and
resistance in ecological population studies [11,22–27]. However, nonlinear relationships
between antibiotic use and resistance are suggested to be more likely by theoretical and
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mathematical models [10,12,13,19,28–30]. Studies suggest that there is a “threshold” level
of a drug, above which the persistent selection of the antibiotic will lead to the development
and spread of AMR [12,13]. These identified thresholds can be translated into targets for
antibiotic use, thus, balancing access to therapy while controlling resistance [12,13].

While nonlinear time series analysis and other value segmentation modeling tech-
niques have shown promise in identifying thresholds in antibiotic use associated with
resistant pathogens, studies are needed to explore how increased antibiotic use above the
identified thresholds relates to observed levels of resistance versus predicted levels. This
study aims to develop a logistic modeling concept to improve understanding of the effect of
antibiotic use on antibiotic resistance when usage exceeds recommended threshold levels,
with the utility of providing targets for antibiotic consumption and providing a near real-
time performance monitoring feedback system. For this study, considering data availability
for analysis, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) was
selected to demonstrate the utility of the modeling concept. In addition, ESBL-producing
E. coli is listed as an antibiotic-resistant pathogen for which new treatment regimens are
urgently required [31].

2. Results

Over the study period, 462 nonduplicated ESBL-producing E. coli cases were identified.
The average monthly ESBL-producing E. coli incidence rate was 0.273 cases/1000 OBD (range:
0.051–0.543). Average fluoroquinolone use was 67.2 DDD/1000 OBD (range: 37.4–123.0),
and average third-generation cephalosporin use was 12.3 DDD/1000 OBD (range: 3.4–31.3).
A plot of the identified antibiotics and incidence of ESBL-producing E. coli cases is shown
in Figure 1.
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Figure 1. Monthly ESBL-producing E. coli incidence versus use of selected antibiotic classes (thick
line, ESBL-producing E. coli, no. of cases/1000 OBD, 5-month moving averages, left-hand y-axis; thin
line, antimicrobial use, DDD/1000 OBD, 5-month moving averages, right-hand y-axis): (a) fluoro-
quinolones; (b) third-generation cephalosporins.

2.1. Defining a Critical Level of Pathogen Incidence Rates

Using continuous ESBL-producing E. coli incidence rates as the response variable, fluo-
roquinolones were found to have a 1-month lag relationship to ESBL-producing E. coli and
a threshold of 71.0 DDD/1000 ODB (coefficient (95% CI) = 0.003 (0.001 to 0.006); p = 0.01).
Third-generation cephalosporins were found to have a 4-month lag relationship to ESBL-
producing E. coli and a threshold of 9.2 DDD/1000 ODB (coefficient (95% CI) = 0.005 (0.000
to 0.010); p = 0.04). The contour chart (Figure 2) shows the results of triangulating antibiotic
unit changes above the identified threshold levels with the predicted ESBL-producing
E. coli incidence rate. As the levels of antibiotic use increased, we observed increases in
the predicted ESBL-producing E. coli incidence rate mapped by the transition of colors on
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the legend scale. There are sparse instances of fluoroquinolones above 40 DDD/1000 OBD
above its threshold and no instances of both fluoroquinolones above 40 DDD/1000 OBD
coinciding with third-generation cephalosporins above 12 DDD/1000 OBD above its thresh-
old. The x-axis is the threshold-adjusted fluoroquinolone use at lag 1, and the y-axis is the
threshold-adjusted third-generation cephalosporin use at lag 4. The lower-left corner of
the plot is the point at which both antibiotic series are equal to their identified threshold
levels; third-generation cephalosporins (t − 4) = 9.2 DDD/1000 OBD and fluoroquinolones
(t − 1) = 71.0 DDD/1000 OBD, which translates into 0 values for the model components or
basis functions.
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Figure 2. Illustrations of associations between antibiotic use above their identified thresholds and
predicted ESBL-producing E. coli incidence rates.

The basis functions are:

Threshold and lag adjusted third generation cephalosporin = max
(

Third generation cephalosporin (t−4) − 9.2, 0
)

Threshold and lag adjusted f luoroquinolone = max
(

f luoroquinolone(t−1) − 71.0, 0
)

The information gained from the above threshold model on the continuous ESBL-
producing E. coli incidence rates, such as lag relationships and candidate antibiotic threshold
values, was then exported into a threshold logistic regression search algorithm to identify
the cutoff percentile value of ESBL-producing E. coli that we established as a high incidence
rate or critical level. The Akaike information criterion (AIC) was used to select the 60th
percentile of ESBL-producing E. coli as the critical level to define the binary dependent vari-
able for logistic modeling. It is this cutoff percentile that resulted in the greatest separation
of the binary class (1 = exceeding cutoff; 0 = below cutoff) and best classification accuracy.

2.2. Threshold Logistic Method

The empirical cumulative distribution function for ESBL-producing E. coli historical
data is presented in Figure 3. The 60th percentile (0.288 cases/1000 OBD) of the ESBL-
producing E. coli incidence rate was selected as the cutoff in defining the dichotomous
binary classification variable (Figure 3) based on the search results.
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A summary of the final threshold logistic model is provided in Table 1.

Table 1. Threshold logistic result in modeling ESBL-producing E. coli incidence rates at 60th percentile,
January 2014 to December 2021.

Predictor Variable Lag Median Use
(IQR)

Threshold (95%
Confidence

Limit) *

Relation to
Threshold

Coefficient
(95% CI) p-Value Odds Ratio

(95% CI)

Constant NA NA NA NA −1.177
(−1.902 to −0.451) 0.0034 0.279

(0.119 to 0.656)

Fluoroquinolone use
(DDD/1000 OBD) 1 64.55

(53.58–76.39)
61.142

(55.96 to 68.27) Above 0.045
(0.005 to 0.085) 0.0293 1.045

(1.004 to 1.088)

Third-generation
cephalosporin use
(DDD/1000 OBD)

4 10.76
(7.90–14.9)

9.159
(8.75 to 11.40) Above 0.108

(0.004 to 0.211) 0.0414 1.119
(1.007 to 1.244)

* 95% confidence limit around the optimized threshold value, which was derived using a one-at-a-time (OAT)
approach; IQR, interquartile range; NA, not applicable.

The introduced variable representing the COVID-19 period was not found to be
significant (coefficient (95% CI) = 0.252 (−0.810 to 1.314); p = 0.642) and was removed from
the models to maintain parsimony. The threshold logistic model showed that for every
one-unit increase in fluoroquinolones and third-generation cephalosporins above 61.14
and 9.16 DDD/1000 OBD, the average odds of the ESBL-producing E. coli incidence rate
being ≥60th percentile of historical levels increased by 4.5% and 11.9%, respectively. The
model produced a 70% classification accuracy and an AUC measure of 71% for the ROC
curve (Figure 4). Figure 5 displays the cumulative ESBL-producing E. coli incidence rates
relative to fluoroquinolones and third-generation cephalosporins being above or below
their respective thresholds. ESBL-producing E. coli incidence rates were consistently higher
when the antibiotic thresholds were exceeded and consistently lower when the antibiotic
thresholds were kept below their defined thresholds.
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Figure 5. The cumulative ESBL-producing E. coli incidence rates relative to fluoroquinolone and
third-generation cephalosporin use being above or below their respective thresholds.

As a means of comparison to the threshold model based on the continuous ESBL-
producing E. coli incidence series, a contour plot was produced using the threshold logistic
model (presented in Table 1) but now shows the predicted probability of exceeding the 60th
percentile of the historical ESBL-producing E. coli incidence rate (Figure 6). Probabilities
ranged from near zero when antibiotics were close to their thresholds to approaching
near certain probability (≥99%) as antibiotic use increased above their thresholds. The
x-axis is threshold-adjusted fluoroquinolone use at lag 1, and the y-axis is threshold-
adjusted third-generation cephalosporin use at lag 4. The lower-left corner of the plot
is the point at which both antibiotic series are equal to their identified threshold levels:
third-generation cephalosporins (t − 4) = 9.16 DDD/1000 OBD and fluoroquinolones
(t − 1) = 61.14 DDD/1000 OBD. It is the point at which the basis functions evaluate to 0.
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identified threshold logistic model.

The basis functions are:

Threshold and lag adjusted third generation cephalosporin = max
(

Third generation cephalosporin (t−4) − 9.16, 0
)

Threshold and lag adjusted f luoroquinolone = max
(

f luoroquinolone(t−1) − 61.14, 0
)

As the combined levels of antibiotic use increased, we observed increases in the
probabilities of reaching the established high incidence rate of ESBL-producing E. coli.

2.3. Risk Scores

The risk scores produced from the threshold logistic model for ESBL-producing E. coli
incidence rates exceeding the 60th percentile (0.288 cases/1000 OBD) are shown in Table 2.
The probability risk scores were then coded into three alert signal levels (low–medium–
high), which are also summarized in Table 2.

As a guide to understanding the table, we observe the row of information for January
2021. The ESBL-producing E. coli incidence rate was below 0.288 (60th percentile) in
January 2021. Fluoroquinolone use (DDD/1000 OBD) was below 61.14 in the previous
month, which recodes the basis function for fluoroquinolone use to 0. Third-generation
cephalosporin use (DDD/1000 OBD) was above 9.16 4 months previous, which recodes the
basis function for third-generation cephalosporin use to 5.07. Applying these values to the
threshold logistic model, a predicted probability of 0.3472 is produced, which translates into
a medium alert signal. The predicted ESBL-producing E. coli rate (0.2595) was produced
using the threshold model identified for the continuous ESBL-producing E. coli rate along
with one standard deviation above the predicted value (0.2799), both of which are below
the 0.288 (60th percentile).



Antibiotics 2022, 11, 1116 7 of 14

Table 2. Risk scores for ESBL-producing E. coli incidence rate exceeding the 60th percentile for 2021.
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January Below 0.00 5.07 0.2595 0.2799 0.3472 Medium
February Below 0.00 5.52 0.2620 0.2823 0.3585 Medium

March Below 0.00 1.11 0.2386 0.2589 0.2578 Medium
April Above 32.22 1.12 0.3142 0.3346 0.5949 High
May Above 7.70 2.24 0.2446 0.2649 0.3563 Medium
June Below 0.00 0.00 0.2327 0.2530 0.2356 Low
July Below 0.00 0.82 0.2370 0.2574 0.2519 Medium

August Above 10.07 1.71 0.2424 0.2627 0.3675 Medium
September Above 0.00 0.57 0.2357 0.2561 0.2469 Medium

October Below 0.00 2.65 0.2467 0.2671 0.2908 Medium
November Below 12.62 1.54 0.2501 0.2705 0.3900 Medium
December Below 5.26 2.23 0.2445 0.2649 0.3316 Medium

* Prediction was produced using the threshold model identified for the continuous ESBL-producing E. coli rate.

Table 3 summarizes the overall classification accuracy based on the coded alert signals
that stem from the threshold logistic model. We found that a low alert signal was correct
14 out of 19 times to identify the ESBL-producing E. coli incidence rate below the 60th
percentile (a 2.8 to 1 accuracy ratio). A high alert signal was correct 17 out of 25 times in
identifying the ESBL-producing E. coli incidence rate above the 60th percentile (a 2.1 to 1
accuracy ratio). For the medium alert signal, we were twice as likely to be below the 60th
percentile of the ESBL-producing E. coli incidence rate.

Table 3. Summary of numbers of coded alert signals when ESBL-producing E. coli observed above
and below the 60th percentile (January 2015–December 2021).

ESBL-Producing E. coli Incidence Rate
Observed above and below the 60th Percentile

Above Below

Coded Alert Signal

Low (<0.24) 5 14 (2.8:1)

Medium 12 24

High (>0.70) 17 (2.1:1) 8

2.4. What-If Scenarios

In addition to being able to report on ongoing performance, if the predictive model
possessed a lag structure, the model could be used to perform a “what-if” scenario by
adjusting expected antibiotic levels that influence future ESBL-producing E. coli incidence
rates. In the model presented here, third-generation cephalosporins enter the model
4 months prior to the current month, and fluoroquinolones enter the model 1 month
prior to the current month. Consequently, what-if scenarios could be used to predict the
probability of ESBL-producing E. coli incidence rates above the 60th percentile 3 months
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ahead based on the observed levels of third-generation cephalosporins and testing values
for fluoroquinolones, as shown in Table 4.

Table 4. What-if threshold logistic model exploration.
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January 2022 75.15 ↑ 5.82 ↓ 0.2467 0.2670 0.3658 Medium
February 2022 0.00 10.28 ↑ 0.2386 0.2589 0.2580 Medium

March 2022 0.00 6.43 ↓ 0.2327 0.2530 0.2356 Low
April 2022 0.00 12.83 ↑ 0.2521 0.2725 0.3140 Medium

↑ Above threshold; ↓ below threshold; * The predicted levels and probabilities for February-April months were
based on undefined fluoroquinolone use and, thus, equivalent to being below its 61.14 DDD/1000 OBD threshold;
** Prediction was produced using the threshold model identified for the continuous ESBL-producing E. coli rate.

The last three rows of the table are future months in which we can obtain third-
generation cephalosporin use. The predicted levels and probabilities for these future
months were based on undefined fluoroquinolone use and, thus, equivalent to being
below its 61.14 DDD/1000 OBD threshold. By substituting a range of possible fluoro-
quinolone values in the gray highlighted cells, the resulting predicted levels and prob-
abilities for the ESBL-producing E. coli incidence rate can be examined. It would be
advantageous to ensure fluoroquinolone use is constrained as much as possible and kept
below 61.14 DDD/1000 OBD, especially for February 2022 and April 2022, so as not to
elevate the alert above medium (Table 4).

3. Discussion

This study demonstrated the development and utility of an innovative modeling con-
cept called threshold logistic modeling, which employs a combined approach of MARS and
logistic regression. Using the threshold logistic approach, we addressed the following: de-
termining the cutoff percentile value of ESBL-producing E. coli that defines a high incidence
rate, identifying thresholds for fluoroquinolones and third-generation cephalosporins to
control ESBL-producing E. coli incidence rates in hospitals, improving our understanding of
the effect of antibiotic use on the probability of reaching a specified critical level of pathogen
incidence when antibiotic usage exceeds recommended threshold levels, providing risk
scores of an event exceeding critical levels, and providing a near real-time performance
monitoring feedback system through a scorecard approach.

Threshold modeling (e.g., MARS) has been exclusively employed on a continuous
response variable such as the incidence rate of a specific pathogen in hospitalized pa-
tients [12,13]. A key aspect of threshold modeling for antimicrobial resistance concentrates
on the threshold values since antibiotic policy attempts to curtail antibiotic use from exceed-
ing those identified thresholds in a given period [12,13]. The threshold value is the start
of a measurable difference in the response function when compared with the remaining
segment of the explanatory variable. While the threshold value is the start of an observed
increase in the incidence rate of a specific pathogen, it is not indicative of the start of the
incidence rate that is outside normal variation. However, increased levels of antibiotic use
that are progressively above the threshold are associated with an increased probability of
incidence rates outside normal variation. This was shown in the contour plots (Figure 2),
which illustrated an increase in predicted ESBL-producing E. coli incidence rates as levels
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of antibiotic use increased. Consideration of the full model helped to provide more infor-
mation on the expected magnitude of the impact of using antibiotics on the incidence of
hospital pathogen rates. These observations highlighted the need to define a critical level
of pathogen incidence rates along with predicting the probability of reaching it. Using
the threshold logistic approach, we identified and confirmed the 60th percentile in ESBL-
producing E. coli as the cutoff level that defines a high incidence rate, and we produced
a predicted probability of exceeding the 60th percentile of a historical ESBL-producing
E. coli incidence rate (Figure 6). The threshold logistic model identified thresholds for fluo-
roquinolones and third-generation cephalosporins that would accelerate ESBL-producing
E. coli incidence rates and increase the probability of reaching critical levels.

Maintaining antibiotic use within small tolerances of the thresholds will control ESBL-
producing E. coli incidence rates and maintain rates below critical levels. Over time,
average ESBL-producing E. coli incidence rates should naturally fall as future months of
pathogen incidence are realized below the ESBL-producing E. coli 60th percentile. With an
understanding that we are using modeling techniques to affect future pathogen incidence
rates, threshold models should be retrained on a periodic basis to adjust to the evolutionary
changes of the data. The contour plot provided a valuable tool to understand the risk of
antibiotic use above the stated thresholds and the reward of maintaining a specific policy.

The utility of logistic regression is in its ability to provide a risk score or probability of
an occurring event in terms of a set of covariates taken together. Because the probability
score is theoretically bounded by a minimum probability value of 0 and a maximum
probability value of 1, it is a measure that can be used across all policy implementations
without regard to the scale of the pathogen incidence rate. Whereas the basic idea remains
valuable—to provide guidance to hospitals on keeping individual antibiotics usage below
certain threshold levels—it is essential to also consider the overall model(s) from which the
individual thresholds were derived to monitor predictive performance and to be alert to
potential increases in pathogen incidence rates for the coming month through the predicted
values of the overall model, which may include both the predicted level of the pathogen
incidence rate as well as a risk score or probability of the pathogen incidence rate exceeding
a critical level. In this study, a sample scorecard was created to blend these ideas together
and offered (a) an ability to obtain near real-time feedback for policy assessment and for
keeping antibiotic use below identified thresholds, (b) an ability to identify breakdowns
in model performance due to changes in the environment or relationship of antibiotic
usage levels to antimicrobial resistance of the pathogen, and (c) an opportunity to perform
“what-if scenarios” using varied levels of antibiotic use to assess the expected impact on
risk scores and predicted pathogen incidence rate for upcoming months.

This study has the strength of employing rigorous analysis methods and utilizing rou-
tinely collected data for all hospitalized adult patients; therefore, selection and information
bias are unlikely. However, since the study was at the hospital population level, it was not
possible to adjust for potential changes in the patient population, and the case mix and
present model could have been improved via the inclusion of further explanatory variables
if this were possible. Examples of further explanatory variables data include infection
prevention and control activities and proxy measures for changes in the patient population
and case mix [32,33]. Finally, this work represented a single-center assessment; therefore,
the study would benefit from a multi-center assessment.

In conclusion, using routinely generated data, threshold logistic models determined
the thresholds for fluoroquinolones and third-generation cephalosporins in relationship
to ESBL-producing E. coli incidence rates in hospitalized patients. These thresholds can
inform better hospital antibiotic stewardship, avoiding the challenge of implementing a
complete restriction of antibiotics in clinical practice [21] and maintaining the diversity
of prescribing. Threshold logistic models can help hospitals in defining a critical level of
pathogen incidence rates and provide risk scores of an event reaching critical levels. The
latter estimated risk scores can be utilized to create an alert signal and provide performance
monitoring feedback. We also look to this new method as complementary to the standard
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methods that are currently in place for antimicrobial stewardship [12,13]. As such, both
modeling concepts provide different ways to investigate the data and, combined, produce
a robust set of metrics that can be used to develop a systematic approach to control
antimicrobial resistance. Further work is needed to test the impact of this approach in
informing antimicrobial stewardship and controlling resistance rates in hospitals.

4. Methods
4.1. Study Design and Population

The study was undertaken at Pinderfields Hospital (700 beds), Mid Yorkshire Hospi-
tals NHS Trust in West Yorkshire, England. The Trust cares for 500,000 people, providing
medical and surgical services, intensive care, hematology/oncology, regional burns, re-
gional spinal injuries, and community services. This study included collecting retrospective
data from January 2015 to December 2021. The study population included all adult inpa-
tients admitted to Pinderfields Hospital. For this analysis, the minimum requirement was
5 years of monthly antibiotic use and microbiology data (60 monthly observations) [12,13].
This study used 7 years of data and was determined based on the availability of the longest
period of consistent explanatory (antibiotic use) and outcome (ESBL-producing E. coli)
variables data.

For the purpose of this study, it was hypothesized that the use of fluoroquinolones
and third-generation cephalosporins could explain variations in the incidence of ESBL-
producing E. coli. These antibiotics were identified a priori based on their resistance profiles
obtained from the hospital microbiology department (which showed that ESBL-producing
E. coli isolates were resistant to cefpodoxime and ciprofloxacin in 100% and 76.8% of
the cases, respectively) and published evidence of their role as risk factors for driving
ESBL-producing E. coli incidence rates in hospitals [12,15,25].

4.2. Microbiology and Pharmacy Data

Infection control software (ICNET) was interrogated for blood and urine cultures.
Adult inpatients (≥18 years) who had a positive ESBL-producing E. coli result while
admitted to Pinderfields Hospital between 01/01/2015 and 31/12/2021 were defined as an
ESBL-producing E. coli case. Any duplicates were excluded if they were within 30 days
of hospital readmittance. The isolates were screened firstly using a cefpodoxime disk. If
resistant, they were tested for ESBL using a “double-disk synergy test.” ESBL-producing
E. coli were identified according to standard microbiological procedures in line with the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines [34].
Monthly antibiotic use data were obtained from the hospital pharmacy information systems
(JAC). These data were then converted into defined daily doses (DDD) and expressed
as DDD per 1000 occupied bed days (OBD). The DDD was calculated according to the
classification of antimicrobials for systemic use (J01) in the WHO/ATC index [35]. We
calculated the number of DDD for each antibiotic substance by dividing the used amount in
grams of the antibiotic substance by the assigned DDD value to that substance (i.e., number
of DDDs = grams of active substance/substance-specific DDD) [35,36].

4.3. Modeling and Statistical Analysis

Analysis started with producing descriptive statistics and plotting the antibiotic series
alongside the ESBL-producing E. coli incidence rates. This was followed by examining
the cross-correlation functions of the series to better understand the lag structure and
relationship. We then considered that nonlinear relationships might be present in the data
and explored the possibility that thresholds could exist in antibiotic use that altered ESBL-
producing E. coli incidence rates. We initially applied general additive models (GAMs),
but we used multivariate adaptive regression spline (MARS) methods and other value-
segmenting models to detect threshold values and lagged relationships [37–40]. In order
to use a logistic approach, the continuous pathogen rate must be converted into a binary
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event [41]. The binary event was defined as a critical level of pathogen incidence rate that
is set by clinical mandate and (or) through exploratory numerical methods.

4.3.1. Defining a Critical Level of Pathogen Incidence Rate

MARS and nonlinear value segmentation threshold methods were initially used to
model the continuous pathogen incidence rates relative to the antibiotic variables. We also
included a binary indicator variable to evaluate any shift that might have occurred due
to COVID-19 beginning in March 2020. The structure of the threshold model that best
described the relationship between antibiotic use and the continuous pathogen incidence
rate was used to identify the initial critical level of incidence rate that produced the highest
classification accuracy using a search algorithm. The search algorithm used the increas-
ing percentile values of pathogen incidence rates to transform the continuous pathogen
incidence rate into a binary event. The binary event took the value of 1 if the pathogen
incidence rate exceeded the evaluated percentile; 0 otherwise. The search algorithm esti-
mated the threshold logistic model at each iteration to measure both goodness of fit and
classification accuracy. The search was constrained between the 50th and 85th percentile of
pathogen incidence rates, as it is a target that is in the upper 50% of the historical data and
includes enough observations in the target range so as not to be a rare event. In our study,
the 60th percentile (0.288) was identified as the cutoff, rendering the binary event as:

Event = Ifelse (ESBL-producing E. coli incidence rate ≥ 0.288, 1, 0) (1)

4.3.2. Threshold Logistic Method

We refined the threshold model that was identified on the continuous pathogen inci-
dence rate. MARS methods were applied by substituting the continuous ESBL-producing
E. coli incidence rate with the binary event, as described above, for the dependent vari-
able. The MARS coefficients were converted into logistic form in order to obtain predicted
probabilities and odds ratios.

We also applied an alternative logistic search algorithm that jointly optimized the
critical level, antibiotic threshold values, and lag structure of the antibiotic series in relation
to the binary event. Although both the MARS algorithm and the threshold logistic search
algorithm produced feasible models, the model produced from the threshold logistic search
algorithm was best suited to policy adoption in that antibiotic thresholds were both left-
truncated (i.e., the threshold-adjusted antibiotic series was coded to 0 if less than the
threshold). The MARS model produced a right-truncated threshold in which the threshold-
adjusted third-generation cephalosporin use had a declining slope for values continually
less than the threshold.

The optimization algorithm applied robust logistic regression estimation [42,43].
Model selection was based on classification accuracy using a probability cutoff that max-
imized the sum of sensitivity and specificity to address class imbalance. The computed
area under the curve (AUC) from the receiver operator characteristic (ROC) curve was
also used as a confirmatory measure of classification power [44,45]. Upon optimizing the
threshold breakpoints, a sensitivity analysis was conducted on the lower and upper limit
around the threshold value using a one-at-a-time (OAT) approach. We note that antibiotic
thresholds were refined using the threshold logistic search algorithm. The overall lag
structure remained consistent with the continuous approach, and the critical level was
confirmed to be of the highest accuracy between the 55th and 60th percentile, with the 60th
percentile being dominant and optimal.

Predicted probabilities of the threshold logistic regression model were produced,
which are synonymous with the risk scores. We also created a coded alert signal (high–
medium–low risk) that was based on the MinMax transformation of the predicted probabil-
ities (risk score) coming from the threshold logistic model.

z =
prob−min(prob)

max(prob)−min(prob)
(2)
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The cutoff ranks were computed using a linear programming (LP) technique to maxi-
mize the overall distribution accuracy of a low signal classifying an infection rate below
the 60th percentile and a high signal classifying an infection rate greater than the 60th
percentile. The cutoff ranks optimized through LP were 0.0 to ≤0.24, >0.24 to <0.70, and
≥0.70 to 1.0 to define low–medium–high coded alert signals, respectively.

Analysis was performed using the SCA Statistical System version 8.2 (Scientific Com-
puting Associates Corp., River Forest, IL, USA) and R software (R Foundation for Statistical
Computing, Vienna, Austria).
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