
Citation: Chen, Q.; Zou, Z.; Cai, C.;

Li, H.; Wang, Y.; Lei, L.; Shao, B.

Characterization of blaNDM-5-and

blaCTX-M-199-Producing ST167

Escherichia coli Isolated from Shared

Bikes. Antibiotics 2022, 11, 1030.

https://doi.org/10.3390/

antibiotics11081030

Academic Editor: William R. Schwan

Received: 15 June 2022

Accepted: 26 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Characterization of blaNDM-5-and blaCTX-M-199-Producing ST167
Escherichia coli Isolated from Shared Bikes
Qiyan Chen 1,2,†, Zhiyu Zou 1,†, Chang Cai 3, Hui Li 2 , Yang Wang 1, Lei Lei 4,* and Bing Shao 1,2,*

1 Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety,
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
qiyanchen@cau.edu.cn (Q.C.); zouzhiyu@cau.edu.cn (Z.Z.); wangyang@cau.edu.cn (Y.W.)

2 Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning,
Beijing Center for Disease Prevention and Control, Beijing 100013, China; lihui@bjcdc.org

3 College of Arts, Business, Law and Social Sciences, Murdoch University, Perth, WA 6150, Australia;
c.cai@murdoch.edu.au

4 Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province,
Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang
International Science and Technology Cooperation Base for Veterinary Medicine and Health Management,
China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and
Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China

* Correspondence: leilei910@zafu.edu.cn (L.L.); shaobingch@sina.com (B.S.)
† These authors contributed equally to this work.

Abstract: Shared bikes as a public transport provide convenience for short-distance travel. Whilst
they also act as a potential vector for antimicrobial resistant (AR) bacteria and antimicrobial resistance
genes (ARGs). However, the understanding of the whole genome sequence of AR strains and ARGs-
carrying plasmids collected from shared bikes is still lacking. Here, we used the HiSeq platform
to sequence and analyze 24 Escherichia coli isolated from shared bikes around Metro Stations in
Beijing. The isolates from shared bikes showed 14 STs and various genotypes. Two blaNDM-5 and
blaCTX-M-199-producing ST167 E. coli have 16 resistance genes, four plasmid types and show >95%
of similarities in core genomes compared with the ST167 E. coli strains from different origins. The
blaNDM-5- or blaCTX-M-199-carrying plasmids sequencing by Nanopore were compared to plasmids
with blaNDM-5- or blaCTX-M-199 originated from humans and animals. These two ST167 E. coli show
high similarities in core genomes and the plasmid profiles with strains from hospital inpatients and
farm animals. Our study indicated that ST167 E. coli is retained in diverse environments and carried
with various plasmids. The analysis of strains such as ST167 can provide useful information for
preventing or controlling the spread of AR bacteria between animals, humans and environments.

Keywords: shared bikes; NDM-5; CTX-M-199; ST167; whole genome analysis

1. Introduction

Shared bikes as a public transport provide more choices and convenience for people’s
travel. They also act as the last-mile connection between means of transport such as light
rail stations or bus stops and people’s destinations such as home or the office. Some studies
suggest that public transportation such as buses, subways, and taxis can act as a trans-
mission media for bacteria or viruses [1,2], which could cause public health emergencies.
Meanwhile, microorganisms on the surface of public transport arouses concern due to the
severity of antimicrobial resistance worldwide [3–5]. Previous studies indicated that antimi-
crobial resistant (AR) Enterobacteriaceae, Staphylococcus spp. and Enterococcus spp. were
already isolated from shared bikes [6–9]. Additionally, various bacteria with antimicrobial
resistance genes (ARGs) were found in buses, subways, and aircrafts [1–4].

Several studies showed that both Gram-positive bacteria and Gram-negative bacteria
could be isolated from shared bikes. Among them, Staphylococci and Enterococci were
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widely distributed in shared bikes around schools, hospitals, metro stations, and from
riders, with detection rates of 2.3–12.9% and 0.08–5.5%, respectively [6]. The multiple
resistant Staphylococci showed diversity in SCCmec and sequence type (ST) [8]. Meanwhile,
the prevalence of Enterobacteriaceae in shared bikes was 19.7%, which suggested that
hospitals might increase the risk of AR Enterobacteriaceae based on the distance from
the hospital to the subway station [9]. Wu et al. reported that Bacillus was the most
abundant bacteria in the shared bicycle bacteria community, and the drug-resistant bacteria
in the shared bicycle bacterial community of metro stations, shopping malls, and hospitals
showed no significant differences [7].

In recent years, the increasing reports of carbapenem resistance genes have increased
the pressure on effective bacterial treatment. ST167 E. coli was often reported to carry
carbapenem resistance genes such as blaKPC-3, blaNDM-5, and blaNDM-1 and was found
in various species such as ducks, cattle, and mussels [10–15]. A study on hospitalized
neonatal sepsis showed that E. coli (34.01%) was one of the main pathogens of neonatal
bacteremia, and ST167 was the most prevalent ST [16]. More importantly, ST167 has been
reported to spread between companion animals and their owners [12]. The spread of
ST167 clones between countries has also been reported [17]. Although characterization
of bacteria from shared bikes has attracted widespread attention in recent years, current
studies have mainly focused on the prevalence and the phenotypes of strain descriptions in
public transportation or the features of isolates themselves. To the best of our knowledge,
the whole genome analysis with strains from different locations or biological sources and
comparisons of their plasmid profiles are still lacking. E. coli is an important representative
of Enterobacteriaceae, which can carry a variety of ARGs and has significance for public
health safety. Herein, we used the E. coli isolates from the shared bikes to investigate the
similarities and differences between strains from the shared bikes and other sources to
find the relationship of the whole genome sequencing between the E. coli isolates from
environmental and clinical samples.

2. Results and Discussion
2.1. E. coli Isolates from Shared Bikes

We identified 14 STs among all 24 E. coli isolates from shared bikes (14 from Metro Sta-
tion nearing secondary/tertiary hospitals and ten from non-hospital stations,
Supplementary material Table S1), and the ST10 clonal complex (n = 7) were the domi-
nant clonal complex (Figure 1). There is no dominant ST or clonal complex related to
hospitals, although ST10, ST48, and ST167 found in this study were the most prevalent STs
in hospitals [18–20].

The phylogenetic tree analysis showed that the 24 E. coli strains from shared bikes had
different profiles. The number of ARGs in each of the strains ranged from one to sixteen, and
plasmid types ranged from zero to five (Table S1). The resistance phenotypes showed that
some strains (such as 770, 776) which have a higher number of resistance genes exhibited
more resistance to antimicrobial agents than other strains. However, the number of strains
exhibiting resistance phenotype mismatch the number of ARGs. Some strains showed high
similarity in one small clade, for instance, 26, 25, 31 and 769, 780. Almost all AR strains
have resistance genes of aminoglycosides, quinolones, sulfonamides, tetracyclines and
beta-lactams. Despite most strains (66.7%) from hospital-related stations have resistance
gene to different kinds of antimicrobial agents, there is no significant difference between
multidrug resistance (MDR) E. coli from hospital-related stations and non-hospital stations
(p > 0.05). The two strains (770 and 776) collected, respectively, from hospital-related
stations and non-hospital stations carried the maximum number of resistance genes and
plasmid types of all strains and showed >95% similarities in core genomes with the same
sequence type ST167 (Figure 2).
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Furthermore, these two strains carried blaNDM-5 and blaCTX-M-199, and another
14 resistance genes including aminoglycoside resistance genes aadA2, aadA5, aph(3′′)-Ib,
aph(6)-Id, rmtB beta-lactam resistance genes blaEC-15 and blaTEM-1, phenicol resistance gene
floR, macrolide resistance gene mph(A), tetracycline resistance gene tet(A), sulfonamide
resistance genes sulI, sulII, trimethoprim resistant genes dfrA12 and dfrA17. In addition, the
comparison of virulence factors between hospital-related and non-hospital stations showed
no significant difference (p > 0.05). ST167 is one of the epidemic STs in E. coli that carried
ARGs, especially β-lactamase genes [21]. Previous studies indicated that ARGs-carrying
ST167 E. coli were isolated from humans, food animals, companion animals and environ-
ments [10,15,22,23]. Until now, ST167 E. coli were found in countries and districts across
five continents, such as China, Tunisia, Switzerland, Italy, Finland, Canada, Brazil, and
Tanzania [22–28]. The ST167 E. coli carrying the blaNDM gene were previously identified in
hospitals, livestock farms, poultry farms, and the environment [10,15,23,25,29]. Growing
evidence indicated that the public environment is of increasing concern as a reservoir for
the transmission of MDR bacteria and genes. However, unlike strains from farm environ-
ments, the AR bacteria strains from public transportation mean that they can be transferred
between individual populations due to personnel movement.

2.2. Comparison of Core Genome with ST167 E. coli from Different Origins

Due to the high prevalence of ST167 E. coli in the world, we would like to compare the
profiles of ST167 E. coli from shared bikes and from other origins (Supplementary material
Table S2). A total of 404 ST167 E. coli from the NCBI database were selected for comparative
analysis with two E. coli from shared bikes. These strains were collected from human
(n = 370), food animals (n = 11), companion animals (n = 15), environment (n = 8) samples
(Figure 3) from 35 countries or districts (Supplementary material Figure S1). More than
half of strains carried blaNDM (n = 288) and blaCTX-M gene (n = 272). blaNDM-5 were the
most prevalent NDM type (n = 254) but blaCTX-M-199 were found on only one strain. The
phylogenetic tree indicated that all ST167 E. coli strains exhibited various characterizations
in the core genome and have 21~11,206 single nucleotide polymorphisms (SNPs) compared
to strains from shared bikes. The two ST167 E. coli from shared bikes show high similarity
(SNPs < 50) with 33 strains (Pink color range in the Figure 3) from samples of human
(n = 18), dogs (n = 12), cats (n = 1), chicken (n = 1) as well as environment (n = 1). The
human samples were identified from Bangladesh (n = 1), the United Kingdom (n = 7),
China (n = 6), Switzerland (n = 1), Italy (n = 2) and the United States (n = 1). The dog strains
were originated from Switzerland (n = 2) and the United States (n = 10). Other strains
were collected from a cat in Italy, a chicken in China and an environmental source from
the United States. All strains were collected from 2015 to 2021, while 32 of these strains
carried blaNDM-5.
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Figure 3. The core genome phylogenetic tree of ST167 E. coli from humans, animals and the envi-
ronment. (The blue branches are the strains from shared bikes, the length of the bar represents the
number of ARGs/Plasmid types/Virulence factors. The circles attached to the leaves represent the
NDM variants).

2.3. Comparison of Plasmid Profiles with ST167 E. coli from Different Origins

Illumina and Nanopore sequencing of blaNDM-5 or blaCTX-M-199-carrying isolates in-
dicated that blaNDM-5 and blaCTX-M-199 were located on a ~98.5 kb IncFII plasmid and a
~113 kb IncFII plasmid, respectively. From the NCBI database, we downloaded nine
plasmids that have the highest coverage and identities in sequences with blaNDM-5- or
blaCTX-M-199-carrying plasmid of shared bikes (Supplementary material Table S3). Nine
blaNDM-5-carrying plasmids belong to strains from patients in China (n = 3), Japan (n = 1),
Tanzania (n = 1), Myanmar (n = 2) and Switzerland (n = 1), and from chicken meat in
Laos (n = 1). Plasmid pNDM-EC16-50 in one E. coli strain from China showed >90% cover-
age and highest identifies with the blaNDM-5-carrying plasmid of shared bikes (Figure 4a).
Nine blaCTX-M-199-carrying plasmids belong to strains from human (n = 3), chicken (n = 1),
goose (n = 1) in China, humans in the United States (n = 1), Japan (n = 1), and Lebanon
(n = 1), and water samples from India (n = 1). The nucleotide sequence of the blaCTX-M-199-
carrying plasmid of shared bikes displayed the highest similarity with E. coli strain L100
plasmid pL100-3 and E. coli plasmid J-8 plasmid pCTX from goose and chicken in China
(Figure 4b). According to the information of NCBI, we download the isolates that carried
these similar plasmids (blaNDM-5 or blaCTX-M-199) and identified the ST of these isolates
(except nine plasmids without the whole genome of isolates upload). The results showed
that three blaNDM-5 plasmids were from ST167 E. coli of human origin, the other three
plasmids were from non-ST167 E. coli, and three blaCTX-M-199 plasmids were from ST10
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E. coli of human origin, ST148, ST156 E. coli of food animal origin. The results of the plasmid
profiles comparison indicated that maybe some bacteria carrying plasmids with ARGs from
patients and farm animals are possible to persist in the environment and further plasmid
conjugative transfer to the bacteria of environments. Moreover, ST167 can acquire plasmids
easily from other STs, which makes plasmids with ARGs commonly available.

a
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Figure 4. The plasmid profiles of (a) blaNDM-5 and (b) blaCTX-M-199. (The reference sequences were
blaNDM-5- or blaCTX-M-199-carrying plasmid of shared bikes. The shade of circles represents the number
of identities, the blank means sequences were not consistent with the reference).
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The plasmid analysis of ST167 E. coli from shared bikes showed that ST167 might be an
important strain for plasmid-borne ARGs across different origins. Furthermore, combined
with the results of the phylogenetic tree, the strains which have good environmental
adaptability can increase the possibility of plasmid transfer between different bacteria
which enhances the dissemination of ARGs among animals, humans and the environment,
and threaten public health. Researchers are also concerned about the AR bacteria and
gene transmission via the environment [30–32]. Furthermore, these strains increased the
difficulty of AR control. However, not only can ST167 act as the vector but also some other
prevalent strains can play the same role as ST167, so the control of prevalent strains requires
substantial concern.

We found a high similarity of strains from the shared bikes and other origins, which
means that some well-adapted isolates can persist in different environments. Many studies
proved that AR bacteria isolated from the same environment are convergence in molecular
profile because the environment has prevalent AR bacteria and genes [33]. However, now
some prevalent STs such as ST131, ST167 and ST 10 E. coli which have good environmental
adaptability with ARGs can be a potential reservoir of ARGs in the environment [13]. More-
over, ST 167 E. coli carried important resistant genes, such as blaNDM, mcr-1, blaCTX-M [33],
which are stable in the environment and pose a threat to public health. The flow of popula-
tion further accelerates ARGs spread to diverse environments or different species, which
adds pressure to control antimicrobial resistance. Therefore, the dominant host of ARGs
like ST 167 in the environment should be concerned and focused on.

3. Materials and Methods
3.1. Bacterial Isolates, Whole Genome Sequencing

A total of 444 Enterobacteriaceae were isolated from shared bikes in the previous study
and E. coli was the species that exhibited more drug resistance than others [9]. Therefore,
E. coli was chosen for further analysis. A total of 28 E. coli strains were isolated from
samples in the previous study, excluding 4 from stations outside the fifth Ring Road of
Beijing; finally, 24 E. coli isolates were collected. Genomic DNA was extracted using a
HiPure Bacterial DNA Kit. DNA libraries were prepared and sequenced with HiSeq PE150.
Two blaNDM-5 and blaCTX-M-199-producing E. coli were sequenced with Nanopore to obtain
the complete plasmids. The sequences were assembled by SPAdes and Unicycler.

3.2. Assembled Data of ST167 E. coli from Different Sources

We searched all E. coli available in the NCBI database which were collected from
January 2014 to December 2021 and downloaded those. We only selected assembled data of
whole genome sequencing. Furthermore, we reorganized the detailed information related
to the assembled data we downloaded and excluded strains without information on the
host. All genomes were confirmed the ST using MLST. Additionally, only E. coli with ST167
were chosen for the following analysis.

3.3. Genomic Analysis of Sequenced and Collected E. coli Strains

ARGs and plasmid incompatibility groups were determined using the database (resfinder,
plasmidfinder) from the Center for Epidemiology (http://www.genomicepidemiology.org/,
accessed on 12 February 2022). According to the mechanism of resistance classified ARGs
in different antibiotic classes. MLST was confirmed using MLST in the Center for Epidemi-
ology and database from public databases for molecular typing and microbial genome
diversity (https://pubmlst.org/, accessed on 23 February 2022 ). The Sankey diagram of
the ST clonal complex was performed using plug-in components of Excel named EasyShu.
Virulence genes were identified using the VFDB database and virulencefinder of Center
for Epidemiology. The criteria of different groups of virulence genes in accordance with
VFDB. The tests were used for the comparison of the number of virulence factors from
hospital-related Stations and non-hospital Stations. Core genomes were extracted using
Snippy [34]. Core genome phylogenetic trees were constructed using Snippy and Fast-

http://www.genomicepidemiology.org/
https://pubmlst.org/
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tree [35]. Phylogenetic tree of the core genomes with ARGs, plasmid types, stations and
phenotypes displayed with iTOL [36]. Genes in the plasmids were annotated using PATRIC
and NCBI. The comparison of plasmid profiles was performed using BLAST and BRIG.
The reference plasmid was annotated using the DNAplotter.

4. Conclusions

ST167 E. coli found on shared bikes showed high similarities with strains from patients
and food-producing animals, and the plasmids also showed high identities with those from
humans and animals in this study. These AR bacteria may originate from hospitals or farms.
Vectors such as shared bikes may contribute to the dissemination of these AR bacteria in
the environment. Furthermore, the persistence of these AR bacteria in the environment
challenges the control of AR bacteria and ARGs. In the future, we need to take measures to
assess the risk of AR bacteria in the environment and cut off transmission.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics11081030/s1, Figure S1. Number of ST 167 E. coli from different
countries or districts. Table S1. The information of E. coli collected from shared bikes. Table S2. The
information of ST167 E. coli of NCBI database. Table S3. The information of plasmids compared with
blaNDM-5 and blaCTX-M-199-carrying plasmids from shared bikes.
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