
Citation: Fu, Y.; Zhang, L.; Song, H.;

Liao, J.; Lin, L.; Jiang, W.; Wu, X.;

Wang, G. Acetylome and

Succinylome Profiling of Edwardsiella

tarda Reveals Key Roles of Both

Lysine Acylations in Bacterial

Antibiotic Resistance. Antibiotics 2022,

11, 841. https://doi.org/10.3390/

antibiotics11070841

Academic Editor: Anthony Clarke

Received: 26 May 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Acetylome and Succinylome Profiling of Edwardsiella tarda
Reveals Key Roles of Both Lysine Acylations in Bacterial
Antibiotic Resistance
Yuying Fu 1, Lishan Zhang 2,3, Huanhuan Song 2,3, Junyan Liao 1, Li Lin 1, Wenjia Jiang 1, Xiaoyun Wu 1

and Guibin Wang 2,3,4,*

1 School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China;
2021003@fjcpc.edu.cn (Y.F.); Junyanliao@126.com (J.L.); linli37@mail2.sysu.edu.cn (L.L.);
jiangwenjia23@163.com (W.J.); juju0928@163.com (X.W.)

2 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences,
Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2200525002@fafu.edu.cn (L.Z.);
huan2268608512@163.com (H.S.)

3 Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University,
Fuzhou 350002, China

4 State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, China
* Correspondence: wangguibin85@163.com; Tel.: +86-137-184-925-15

Abstract: The antibiotic resistance of Edwardsiella tarda is becoming increasingly prevalent, and thus
novel antimicrobial strategies are being sought. Lysine acylation has been demonstrated to play an
important role in bacterial physiological functions, while its role in bacterial antibiotic resistance
remains largely unclear. In this study, we investigated the lysine acetylation and succinylation profiles
of E. tarda strain EIB202 using affinity antibody purification combined with LC-MS/MS. A total of
1511 lysine-acetylation sites were identified on 589 proteins, and 2346 lysine-succinylation sites were
further identified on 692 proteins of this pathogen. Further bioinformatic analysis showed that both
post-translational modifications (PTMs) were enriched in the tricarboxylic acid (TCA) cycle, pyruvate
metabolism, biosynthesis, and carbon metabolism. In addition, 948 peptides of 437 proteins had over-
lapping associations with multiple metabolic pathways. Moreover, both acetylation and succinylation
were found in many antimicrobial resistance (AMR) proteins, suggesting their potentially vital roles
in antibiotic resistance. In general, our work provides insights into the acetylome and succinylome
features responsible for the antibiotic resistance mechanism of E. tarda, and the results may facilitate
future investigations into the pathogenesis of this bacterium.

Keywords: Edwardsiella tarda; acetylome; succinylome; antibiotic resistance

1. Introduction

It is well-known that protein post-translational modifications (PTMs) play vital roles in
diverse physiological and pathological functions in eukaryotic and prokaryotic cells. PTMs
include phosphorylation, acetylation, glycosylation, and succinylation [1,2]. Among these
PTMs, lysine acetylation (Kac) and succinylation (Ksu) modifications have been reported
to be widely distributed in bacterial cells and have been implicated in biological processes
such as chemotaxis [3], DNA replication, stress response [4], cell signaling transduction [5],
nutrient metabolism [4], and virulence [6,7]. For example, the lysine deacylations YmcA at
the K64 site and GtaB at the K89 and K191 sites dramatically decreased the biofilm formation
in Bacillus subtilis [8]. In another example, the enzymatic activity of acetyl-CoA synthetase
(Acs) was reported to be negatively regulated by the succinylation modification of the K193
and K336 sites on Acs in Mycobacterium tuberculosis [9]. Those lines of evidence confirm
the importance of both lysine acylation modifications for maintaining bacterial survival
when responding to a complex environment. Therefore, it is necessary to determine the
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Kac and Ksu modification profiles of bacterial species as much as possible before further
investigating the biological functions of these PTM proteins.

Aquaculture currently plays an important role in food security and is a major source
of national income in developed and developing countries [10]. However, the high stocking
density employed in intensive aquaculture production has led to high sensitivity of fish to
a variety of bacterial pathogens; approximately 65% of fish fry and fingerlings die due to
bacterial infectious diseases. This has threatened the development of the global economy
and world food security [11,12]. These fish diseases have been caused by aquatic pathogens,
and the overuse of antibiotics in aquaculture has led to the prevalence of multidrug-
resistant strains, thus creating a threat to global human public health [13]. Therefore,
a better understanding of the mechanism of antibiotic resistance is necessary. Recently,
several protein lysine acylation modification profiles were analyzed in aquatic pathogenic
bacteria such as Vibrio alginolyticus, Vibrio parahaemolyticus, and Aeromonas hydrophila, and
these were demonstrated to play important roles in various biological functions [6,14–16].
Moreover, common lysine acylations such as Kac and Ksu modifications were reported to
be involved in bacterial antibiotic resistance, as well. For example, Fang et al. proposed
that the deacetylation of the K413 site of Escherichia coli PykF led to the bacterium becoming
sensitive to ampicillin, polymyxin B, and kanamycin by increasing the enzyme activity [17].
In addition to this, the accumulation of succinyl-CoA in the sucC mutant was reported to
increase the methicillin-resistant Staphylococcus aureus (MRSA) succinylome and thereby
increase the susceptibility to beta-lactam antibiotics [18]. Given the importance of bacterial
antibiotic resistance in aquaculture, it is necessary to carry out large-scale identification
and comparison of Kac and Ksu modification profiles in more aquatic pathogens.

Edwardsiella tarda is a well-known aquatic pathogenic bacterium typically isolated
from animals that inhabit freshwater and marine environments [19]. It can infect a variety
of hosts, including fish, amphibians, reptiles, birds, and mammals (including humans),
and has become an enormous threat to many economically important fish species world-
wide [20,21]. At present, to control infections, approximately 20 kinds of antibiotics are
used. However, unfortunately, the overuse of antibiotics leads to the prevalent resistance to
the pathogen. It was reported that the resistance of E. tarda to ampicillin ranges from 66 to
87.5%, and is 21–75% for oxytetracycline, thus generating interest in the resistance mecha-
nism among those seeking to develop novel antimicrobial strategies [22]. Recent research
reported that outer membrane proteins including the efflux pump, biofilm formation, and
biosynthesis of fatty acids are associated with antibiotic-resistant E. tarda [22,23]. However,
it is still unclear whether lysine acylation in E. tarda affects bacterial resistance to antibiotics.

In this study, we used high-affinity purification combined with LC-MS/MS technolo-
gies to compare the Kac and Ksu profiles of the E. tarda EIB202 strain. Further bioinformatic
analysis showed that both PTMs are enriched in multiple metabolic biological processes
such as the citrate cycle, pyruvate metabolism, biosynthesis of antibiotics, and carbon
metabolism. Moreover, several Kac or Ksu proteins were identified to be involved in bacte-
rial antimicrobial resistance (AMR). Here, we provide novel insights into the relationship
between lysine acylation and the antibiotic resistance of E. tarda; the results may facilitate
future investigations into the pathogenesis of this bacterium.

2. Results and Discussion
2.1. Proteomic Analysis of Lysine Acetylation and Succinylation in E. tarda

In nature, bacteria need to respond rapidly to adapt to changing environmental
stresses such as the local temperature, osmotic pressure, redox potential, pH, nutrient
availability, and host immune responses [24]. Lysine is a residue that can be modified by
a variety of chemical groups via glutarylation, malonylation, propionylation, acetylation,
or succinylation [25]. Among these lysine acylation modifications, lysine acetylation (Kac)
and succinylation (Ksu) are both common PTMs that are well-distributed in prokaryotic
cells [5]. To date, Kac and Ksu proteins have been reported to be involved in diverse
biological processes such as intracellular metabolism, virulence, AMR, quorum sensing,
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and chemotaxis in many bacterial species [15,26–28], whereas their distributions and
characteristics in E. tarda are unknown. In that context, using a combination of Kac and
Ksu affinity enrichment and LC-MS/MS, we provide a comprehensive view of the lysine
acetylome and succinylome in E. tarda EIB 202 in this paper. Through our work, a total of
1511 Kac sites from 589 proteins and 2353 Ksu sites from 692 proteins were identified. As
shown in Figure 1A, the mass error of most acylation-modified peptides followed a normal
distribution, ranging from −5 to 5 ppm with a mean near zero, indicating the expected
error control from the MS dataset. Most of the enriched lysine-acylated peptide lengths
were in the range of 7–23 amino acids, accounting for 94.77% and 93.52% of Kac and Ksu
proteins (Figure 1B), respectively.
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The identified Ksu (692 proteins) and Kac proteins (588 proteins) accounted for 19.3%
and 16.4% of the total proteins (3580) in E. tarda, respectively. When compared to the bacte-
rial acetylome and succinylome of other animal pathogens studied, the percentage of Kac
proteins was lower than those of V. alginolyticus (27.1%) [14] and A. hydrophila (24.6%) [16]
but was higher than in V. parahemolyticus (13.6%) and V. mimicus (15.5%) [29]. The percent-
age of Ksu proteins was lower than in E. coli (23.91%) [30] but was higher than in several
species of bacteria such as A. hydrophila (16.0%) [28], V. parahemolyticus (13.3%) [15], M. tu-
berculosis (17.07%) [31], and Pseudomonas aeruginosa (10.5%) [32]. Of the identified Kac/Ksu
proteins, approximately 40–50% contained a single PTM site, which was a little higher than
the ~40% in A. hydrophila [28], and the number of modified proteins was decreased, with
PTM sites significantly increased. As shown in Figure 1C, 51.1% of the 589 Kac proteins
had one lysine-acetylated site; 20.7, 9, 4.07, 3.73, and 11.37% of the Kac proteins had two,
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three, four, five, or more than five acetylated sites, respectively. For the lysine-succinylation
modification, 41.76% of the 692 Ksu proteins had one lysine-succinylated site; 19.08, 9.54,
8.53, 4.91, and 16.18% of the proteins had two, three, four, five, or more than five succiny-
lated sites, respectively. Most notably, RpoC (D0Z9T3), the DNA-directed RNA polymerase
beta subunit, possessed the highest numbers of succinylated (32) and acetylated (19) sites.
Intriguingly, there were 13 sites on RpoC that were both acetylated and succinylated, in-
dicating that these sites may be involved in crosstalk. RpoC and its homologous proteins
are known to be associated with bacterial multidrug resistance. For example, the rpoC
mutation affects daptomycin resistance in S. aureus, rifampin resistance in M. tuberculosis,
and cefuroxime in B. subtilis [33–35]. In addition, several other proteins exhibited high
abundances of both succinylated and acetylated sites, including the biosynthesis of antibi-
otic proteins D0ZH73 (18 Ksu and 10 Kac sites), D0ZCM8 (16 Ksu and 11 Kac sites), and
D0ZCY4 (20 Ksu and 11 Kac sites). Detailed information concerning the identified peptides
and matched proteins is presented in Table S1 in the Supporting Information.

Furthermore, homologs for at least nine Kac or Ksu E. tarda proteins have been reported
to be related to antibiotic resistance in other bacterial species (Table 1). For example, there
are at least three Kac sites at K76, K413, and K445 of pyruvate kinase PykF in E. coli, and
the deacetylation of Lys413 in PykF was found to contribute to bacterial sensitivity to
antibiotics such as ampicillin and polymyxin B [17]. These proteins were also found to be
lysine acetylated or succinylated in our E. tarda data, though the modification sites might
have differed, suggesting that lysine acylated proteins may have unique characteristics in
E. tarda antibiotic resistance. Taken together, the results indicated that the Kac and Ksu
modifications were well-distributed in E. tarda and that they may play important roles in
bacterial biological functions, including antibiotic resistance.

Table 1. The PTMs of AMR proteins in previous reports and in this study.

Protein Antibiotic Lysine Modified Type Lysine Acylated Sites Reference

PykF

Ampicillin; polymyxin
B; kanamycin Acetylation 413 [17]

Acetylation 68; 56; 382; 319; 173; 434; 13; 286 This study

Succinylation 68; 56; 208; 382; 319; 173; 175; 434; 13; 3; 5; 272;
286; 266; 413 This study

KatG
Isoniazid Succinylation 557; 143; 600; 356; 310; 590; 688; 554; 433 [31]

Succinylation 11 This study

GyrA
Fluoroquinolone Succinylation 325; 49; 319; 224; 245 [36]

Acetylation 465; 76 This study
Succinylation 270; 657; 465; 76; 754 This study

MetRS
Chloramphenicol Succinylation 362; 388 [37]

Acetylation 148; 602; 407 This study
Succinylation 602 This study

The bold value in the table represents the same lysine modification sites in this study and a previous report.

2.2. Identification of Kac and Ksu Motifs in E. tarda

To identify both acylated sequence motifs, we used the Motif-X software, with amino
acid sequences that comprised at least 21 amino acids, from −10 to +10 residues surround-
ing the Kac and Ksu sites. Five conserved motifs were significantly enriched in Kac or Ksu
peptides, including V.K . . . ..K, D . . . ..RK, KH, KL, and EKL. Among these, V.K . . . ..K and
D . . . ..RK were unique for succinylated peptides, and the KH, KL, and EKL motifs were
enriched in both acylated peptides (Figure 2). The highest enrichment of leucine (L) was
observed at the +1 position. The frequency of the KsuL motif was much higher than those
of other motifs, and the KsuH motif was one of the top two enriched motifs. Moreover,
KsuH, KsuL, and EKsuL were significantly overrepresented among acetylation peptides.
The motif analysis revealed that both motifs (Ksu/acH and Ksu/acL) may be functionally
important for acetylation, and all five conserved sites may be functionally important for
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succinylation in E. tarda. Motif KacH has been reported to be conserved and is widespread
in other bacterial species such as Streptococcus mutans [38], S. pneumoniae [39], Mycobac-
terium abscessus [40], Saccharopolyspora erythraea [41], and M. tuberculosis [42]. Motif KsuL
has been reported to be enriched in B. subtilis [43,44], and Motif KacL has been reported
in V. mimicus [29]. However, the other motifs, Ksu H, EKsu L, EKac L, V.Ksu . . . .K, and D
. . . ..R.Ksu, have rarely been identified in other bacteria.
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Figure 2. Motif analysis of acetylated and succinylated peptides in E. tarda. Venn diagram shows the
overlapping peptides between the PTMs.

2.3. Functional Annotation of Kac and Ksu Proteins in E. tarda

To better understand the potential function of the identified proteins that were associ-
ated with both acylation-modified sites, subcellular localization prediction and GO and
KEGG analyses were performed in this study. We first used BUSCA software to predict the
subcellular localization of identified acylation-modified proteins. Both types of proteins pri-
marily belonged to the cytoplasm in E. tarda (521 Kac and 564 Ksu proteins, accounting for
88.46 and 81.5% of the total PTM proteins, respectively). These results were consistent with
previous studies indicating that both PTMs appear to be well-represented in intracellular
metabolic pathways and protein biosynthesis [31]. Our finding of more than 30 ribosomal
PTMs, including 30S and 50S ribosomal subunits in the cytoplasm, further confirmed that
PTM contributed to protein translation. Other PTM proteins may be related to transport
and antibiotic resistance in cell envelope proteins, including 7.47, 3.57, and 0.51% of the
Kac proteins that were distributed in the plasma membrane, extracellular space, and outer
membrane, and 9.54, 8.67, and 0.29% of the Ksu proteins that were dispersed in the plasma
membrane, extracellular space, and outer membrane, respectively (Figure 3A). Interestingly,
several chaperones, including GroEL, DnaK, DnaJ, and SurA, were located in the cytoplasm
and extracellular space. Previous transcriptional and proteomics results have reported
that several chaperones are involved in bacterial drug resistance. For example, GroEL and
DnaK affect the regulation of antibiotic resistance by inhibiting cytosolic protein misfold-
ing to increase the bacterial tolerance to aminoglycoside antibiotics and susceptibility to
fluoroquinolones [45,46]. Although several lines of research have identified the Kac or
Ksu modifications on Dnak or GroEL, the actual roles of both acylation modifications in
affecting chaperones are still elusive [47].
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Figure 3. Subcellular localization prediction and GO annotation analysis of acetylated/succinylated-
lysine proteins in E. tarda strain EIB 202. (A) Subcellular localization of the identified Kac and Ksu
proteins. (B–D) GO annotation analysis of the identified Kac and Ksu proteins in terms of biological
process, cell components, and molecular function.

Gene ontology analysis was also conducted to investigate the functional enrichment
of Kac and Ksu proteins. In the biological process (BP) category, Kac proteins were sig-
nificantly enriched in cellular and primary and organonitrogen compound metabolic
processes, whereas the Ksu proteins tended to be involved in gene expression and primary
and organonitrogen compound metabolic processes (Figure 3B). Similarly, in the cellular
component (CC) category, most of the identified lysine-acetylated and -succinylated pro-
teins were prevalent in the cell, cell part, cytoplasm, intracellular part, and intracellular
categories (Figure 3C). Consistent with previous research, the identified Kac proteins were
enriched in metabolic processes and cell locations similar to BW25113 and V. mimicus [29,48].
When compared to Kac proteins, the significantly enriched categories were quite different
for Ksu proteins in the molecular function (MF) category. Kac proteins were associated
with several substrates, such as in nucleotide, organic cyclic, small-molecule, nucleoside
phosphate, and heterocyclic compound binding, while organic cyclic compound and ion
binding were enriched in Ksu proteins (Figure 3D).

2.4. KEGG Analysis of Cross-Talking Proteins in Kac and Ksu in E. tarda

In our previous study, we demonstrated that some proteins potentially engaged
in crosstalk in lysine acetylation and succinylation modification and that they played
important regulatory roles in A. hydrophila [16]. Hence, it was necessary to assess the
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characteristics of cross-talking proteins in E. tarda. There were 437 proteins comprising
948 peptides that overlapped at the same lysine residues in E. tarda, suggesting that lysine
succinylation and acetylation frequently occurred. Furthermore, KEGG enrichment anal-
ysis showed that many overlapping cross-talking proteins were significantly associated
with carbon metabolism, ribosomes, RNA degradation, pyruvate metabolism, glycoly-
sis/gluconeogenesis, and the TCA cycle. Several metabolic pathways such as pyrimidine
metabolism, oxidative phosphorylation, and lysine degradation were found to be unique
to lysine acetylation, whereas pyruvate metabolism, RNA degradation, and amino sugar
and nucleotide sugar metabolism were unique to succinylation (Figure 4). These results
indicate that the two PTMs may have their own characteristics and that this factor needs to
be further explored.
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2.5. Prediction of Protein-Protein Interaction Networks of Kac and Ksu Proteins in E. tarda

We constructed protein-protein interaction (PPI) networks involving the observed
Kac and Ksu proteins based on the STRING database using Cytoscape enriched by KEGG
pathways. At least five highly metabolic pathways of PTM proteins were enriched in
the global PPI network, including ribosomes, aminoacyl-tRNA biosynthesis, the pentose
phosphate pathway, RNA degradation, and oxidative phosphorylation. The high-ranking
interaction clusters are shown in Figure 5; there were 46 ribosomal subunit proteins from
overlapped proteins between lysine acetylation and succinylation that were highly enriched.
Previous research has documented that ribosome subunits may be involved in antibiotic
resistance. For example, 10 ribosome subunits in A. hydrophila biofilms were significantly
increased in response to chlortetracycline. The increased levels of these ribosomal proteins
may help to relieve the pressure from tetracycline attacks on translation processes [49].
As another example, Klitgaard et al. reported that mutations of the bacterial ribosomal
protein L3 could reduce the susceptibility to tiamulin or linezolid, indicating the important
role of ribosome subunits in bacterial antibiotic resistance [50]. Moreover, 23 acylated
modified proteins, including Kac protein CysS and Ksu proteins GlyQ, ProS, and LeuS,
were found to be associated with aminoacyl-tRNA biosynthesis, which may affect bacterial
antibiotic resistance [51]. As expected, the PPI analysis indicated that lysine acetylation and
succinylation in E. tarda take part in multiple metabolic pathways, including the pentose
phosphate pathway, the TCA cycle, and pyruvate metabolism. Several lines of research
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have demonstrated that central metabolic pathways of bacteria such as the TCA cycle
and glycogenesis/glycolysis, as well as multiple related metabolites, are involved in the
regulation of bacterial antibiotic susceptibility [27,52]. Hence, metabolic reprogramming by
controlling the status of Kac or Ksu modification may be a novel strategy by which E. tarda
regulates bacterial resistance.
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rylation, (D) RNA degradation, (E) pentose phosphate pathway. Different colors display different
modifications; the pink and red cycles represent the proportions of Kac and Ksu modifications in
single proteins, respectively.

2.6. Kac/Ksu AMR Proteins in E. tarda

We then further asked whether the common lysine acylations modify AMR proteins.
By homologous searching of an AMR gene database (CARD), we found that a total of
66 PTM proteins, including 45 Kac and 56 Ksu proteins with 35 common proteins in E. tarda,
belonged to AMR proteins, and that the majority could be used to construct a complicated
protein-protein interaction (PPI) network (Figure 6, Table S2). In the network, we found
that the majority of acylated AMR proteins interacted directly, and approximately 95% of
the proteins were involved in antibiotic resistance through bacterial efflux pump trans-
portation. In addition, other proteins were involved in multiple physiological processes
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to regulate bacterial antibiotic resistance, such as the Sec-dependent secretion system,
the ABC transport pathway, reduced permeability to antibiotics, antibiotic inactivation,
and altered antibiotic targets. For efflux pump transportation, several antibiotic efflux
transporter-related proteins such as AcrA/AcrB, RstA/RstB, OppD, D0Z9L4, and D0Z9I3
were reported to be involved in the efflux pump controlling antibiotic injection into cells
in other bacterial species [53]. For example, the AcrAB-TolC system that belongs to the
RND (resistance-nodulation-cell division)-type transporter is a typical multidrug resis-
tance (MDR) efflux pump in Gram-negative bacteria [54,55]. SecD, which is involved in
protein translocation, has been shown to play a significant role in β-lactam resistance in
S. aureus [56]. Additionally, some MDR-related proteins were also found to be Kac- or
Ksu-modified in this study. Among these, OppD is a major component of the β-lactam
antibiotic resistance of S. agalactiae [57]; ArnA is a bifunctional polymyxin resistance protein
targeted to peptide antibiotics by altering the antibiotic target of the host [58]. Moreover,
the protein EmrA is involved in the regulation of multidrug resistance in various bacterial
species [59,60]. Thus, we speculate that acetylation and succinylation may play critical
roles in regulating bacterial antibiotic resistance in E. tarda. 

2 

 
 
Figure 6 

Figure 6. Analysis of protein-protein interaction networks of 66 AMR proteins in E. tarda. The
pink and red cycles represent the proportions of Kac and Ksu modifications in single AMR
proteins, respectively.

3. Materials and Methods
3.1. Bacterial Strains and Protein Extraction

The E. tarda EIB202 strain was kindly provided by Prof. Xuanxian Peng of Sun Yat-Sen
University (Guangzhou, China). A single clone of the E. tarda strain was cultured overnight
in Luria Bertani (LB) medium and then diluted at a ratio of 1:100 in 100 mL of LB at 30 ◦C.
The cells were harvested until the OD at 600 nm reached 1.0 and then were washed three
times with pre-cooled PBS (pH 7.5). The cell pellets were resuspended in lysis buffer (8 M
urea, 2 mM EDTA, 50 mM Tris-HCl pH 8.5, protease inhibitor) and then ultrasonically



Antibiotics 2022, 11, 841 10 of 14

disrupted by sonication on ice. After sonication, the proteins in the supernatant were
collected through centrifugation at 12,000× g for 10 min at 4 ◦C.

3.2. Protein Digestion and Immunoaffinity Enrichment of Lysine-Acetylated and
-Succinylated Peptides

In this study, protein samples were digested to peptides. The detailed protocol was
as follows: 20 mg protein was reduced with 10 mM dithiothreitol for 2 h at 37 ◦C. Then,
the protein was alkylated under 50 mM iodoacetamide for 30 min in the dark at room
temperature. Five times the volume of ddH2O was added to dilute the urea concentration
to 1 M, and then digested with trypsin at a ratio of 1:20 for 16 h at 37 ◦C. After digestion,
the peptides were desalted using an SPE C18 column and then vacuum-lyophilized. The
lysine-acetylated and succinylated peptides were enriched by immunoaffinity analysis
using agarose-conjugated anti-acetyllysine and anti-succinyllysine antibody (PTM Bio-
labs Inc., Hangzhou, China), respectively, as previously described [28,30]. Briefly, the
digested peptides were incubated with anti-acetyllysine or anti-succinyllysine agarose
beads overnight at 4 ◦C in NETN buffer (100 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl,
and 0.5% NP 40, pH 8.0). After incubation, the beads were washed with NETN buffer four
times and with ddH2O two times. Then, the modified peptides were eluted with 0.1%
formic acid (FA) and desalted with C18 ZipTips (Millipore, Burlington, MA, USA) before
being analyzed with reversed-phase liquid mass RPLC-MS/MS.

3.3. Protein Analysis by LC-MS/MS

Proteins were identified using the Thermo Q Exactive HF mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) as previously described [48]. Digested peptides
were dissolved in water containing 0.1% FA and separated by the RPLC C18 capillary
reversed-phase analytical column (Thermo Fisher Scientific, Waltham, MA, USA) with an
80 min 7–20% acetonitrile (ACN)/water gradient containing 0.1% FA and a 24 min 20–32%
ACN/water gradient containing 0.1% FA at a flow rate of 600 nL/min on the EASY-nLC
1000 system. The eluted peptides were further ionized and sprayed into the nanospray-
ionization source followed by tandem mass spectrometry (MS/MS) in Q Exactive HF. The
raw data files obtained from the MS analysis were processed using Maxquant (v.1.6.3.0)
with the false discovery rate (FDR) <1%; the identified Kac/Ksu sites had a localization
probability >0.75 and a score >35.

3.4. Bioinformatic Analysis

The Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were enriched by KOBAS (http://kobas.cbi.pku.edu.cn, accessed on
2 October 2021) [61]. The protein subcellular localization was predicted with BUSCA
(https://busca.biocomp.unibo.it/, accessed on 2 October 2021), and the motif analysis was
performed by Motif-X using amino acid sequences that were composed of at least 20 amino
acids within ±10 residues of the lysine acylated sites (http://motif-x.med.arvard.edu,
accessed on 3 October 2021) [62,63]. Protein-protein interaction networks were constructed
by STRING version 11.5 online software and visualized with Cytoscape v3.7.1 (http://
string-db.org, accessed on 5 October 2021) [64,65]. The Comprehensive Antibiotic Research
Database (CARD, http://arpcard.mcmaster.ca, accessed on 15 October 2021) was used to
predict antibiotic-resistant modified proteins [66].

4. Conclusions

In this study, we investigated the lysine acetylation and succinylation profiles of
E. tarda strain EIB202 using affinity antibody purification combined with LC-MS/MS.
A total of 1511 lysine-acetylation sites were identified on 589 proteins, and 2346 lysine-
succinylation sites were further identified on 692 proteins of this pathogen. Additionally,
five conserved motifs were found, Kac/sucH(+1), Kac/sucL(+1), E(−1)Kac/sucL(+1), V(−2)Ksu
K(+10), and D(−8)R(−1)Ksu, in Kac and Ksu modifications. Further bioinformatic analysis

http://kobas.cbi.pku.edu.cn
https://busca.biocomp.unibo.it/
http://motif-x.med.arvard.edu
http://string-db.org
http://string-db.org
http://arpcard.mcmaster.ca
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showed that both PTMs were enriched in cellular, primary, and organonitrogen compound
metabolic biological processes. Moreover, at least 45 Kac and 56 Ksu proteins were involved
in bacterial AMR. In comparisons of the obtained lysine acetylome and succinylome,
948 peptides of 437 proteins were found to overlap and to be associated with multiple
metabolic pathways. In summary, our results provide in-depth E. tarda lysine acetylome
and succinylome profiles, and for the first time, reveal the role of crosstalk between lysine
acetylation and succinylation and its potential impact on bacterial antibiotic resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11070841/s1. Table S1: E. tarda EIB202 lysine acetylation
and succinylation; Table S2: E. tarda EIB202 antibiotic resistance analysis.
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