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Abstract: The anti-coccidiosis agent salinomycin is a polyether antibiotic produced by Streptomyces
albus BK3-25 with a remarkable titer of 18 g/L at flask scale, suggesting a highly efficient export
system. It is worth identifying the involved exporter genes for further titer improvement. In this study,
a titer gradient was achieved by varying soybean oil concentrations in a fermentation medium, and
the corresponding transcriptomes were studied. Comparative transcriptomic analysis identified eight
putative transporter genes, whose transcription increased when the oil content was increased and
ranked top among up-regulated genes at higher oil concentrations. All eight genes were proved to be
positively involved in salinomycin export through gene deletion and trans-complementation in the
mutants, and they showed constitutive expression in the early growth stage, whose overexpression in
BK3-25 led to a 7.20–69.75% titer increase in salinomycin. Furthermore, the heterologous expression
of SLNHY_0929 or SLNHY_1893 rendered the host Streptomyces lividans with improved resistance to
salinomycin. Interestingly, SLNHY_0929 was found to be a polyether-specific transporter because
the titers of monensin, lasalocid, and nigericin were also increased by 124.6%, 60.4%, and 77.5%,
respectively, through its overexpression in the corresponding producing strains. In conclusion, a
transcriptome-based strategy was developed to mine genes involved in salinomycin export, which
may pave the way for further salinomycin titer improvement and the identification of transporter
genes involved in the biosynthesis of other antibiotics.

Keywords: Streptomyces; comparative transcriptome; polyether antibiotics; salinomycin; exporter genes

1. Introduction

Polyether antibiotics, also called polyether ionophores, are a broad class of natural
compounds produced by actinomycetes, with the vast majority being derived from the
genera Streptomyces and Actinomadura [1]. In recent years, with the discovery of over
120 novel molecules, these chemicals have received more and more attention. Typical
polyether antibiotics, including salinomycin, nigericin, lasalocid, and monesin (Figure 1),
feature 2–5 ether oxygen atoms and a carboxyl group [2]. This structure enables them to
chelate with metal cations, such as Na+ and K+, and protons to form neutral coordination
compounds, which cross the cell membrane and subsequently change ion gradients and
osmotic pressures, thus resulting in cell death [1]. Salinomycin, a polyether antibiotic
produced by Streptomyces albus DSM41398 and its derived strains [3], is widely applied
in husbandry because it has properties that kill Gram-positive bacteria and coccidia [4].
Recent studies have found that salinomycin also inhibits the growth of leukemia stem
cells [5] and epithelial cancer stem cells [6], indicating that it is a potential anti-tumor
drug [6].
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cluster (BGC), encoding the ATP-binding subunit and transmembrane subunit, respec-
tively [11], were thought to form an ATP-binding cassette (ABC) complex participating in 
salinomycin export. When slnTI and slnTII were deleted in Streptomyces albus XM 211, the 
salinomycin titers of the corresponding mutants declined by only 27.2% and 45.4%, re-
spectively [12], indicating that there are additional genes involved in salinomycin export, 
which may be located beyond the salinomycin BGC regions. 
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cell metabolism, intercellular communication, biosynthesis, and proliferation [13]. The 
ABC superfamily [14] and major facilitator superfamily (MFS) [15] are two well-studied 
classes of transporters. Whole-genome sequencing has illustrated that there are numerous 
ABC and MFS transporter genes in an actinomycetal genome both inside and outside of 
secondary metabolite BGCs [16][13]. Wang et al. analyzed transcriptome expression dif-
ferences with expression profile chips and discovered 13 candidate transporter genes out-
side the natamycin BGC from Streptomyces chattanoogensis L10 [17]. Chu et al. built a step-
by-step workflow based on the TCDB database BLAST, and they included substrate anal-
ysis, transporter classification analysis, and phylogenetic analysis to mine BGC-independ-
ent exporters. Together with a tunable plug-and-play exporter module with replaceable 
promoters and ribosome-binding sites, they realized the titer improvement of macrolide 
biopesticides in different Streptomyces producers [18]. Nevertheless, the current com-
monly used approaches are mainly sequence-dependent or based on known exporters, 
and the methods of BGC-independent exporter mining still need development. 

Soybean oil serves as the main carbon source in salinomycin fermentation, supplying 
energy through primary metabolism and precursors, such as malonyl-CoA, methylmalo-
nyl-CoA, and ethylmalonyl-CoA, for salinomycin biosynthesis. Usually, 15% (w/v) of soy-
bean oil is added to the fermentation medium, which is extremely high compared with 
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The high-titer Streptomyces albus strain BK3-25 produces 18 g/L salinomycin under
lab conditions [7], but the intracellular accumulation of salinomycin poses a threat to cell
growth, which can be released by the strain’s resistance ability [8–10]. However, the mecha-
nism underlying this antibiotic resistance remains elusive. According to our previous work,
SLNHY_261 (slnTII) and SLNHY_262 (slnTI) in a salinomycin biosynthetic gene cluster
(BGC), encoding the ATP-binding subunit and transmembrane subunit, respectively [11],
were thought to form an ATP-binding cassette (ABC) complex participating in salinomycin
export. When slnTI and slnTII were deleted in Streptomyces albus XM 211, the salinomycin
titers of the corresponding mutants declined by only 27.2% and 45.4%, respectively [12],
indicating that there are additional genes involved in salinomycin export, which may be
located beyond the salinomycin BGC regions.

Actinomycetes have large-capacity transporter protein systems, which participate in
cell metabolism, intercellular communication, biosynthesis, and proliferation [13]. The ABC
superfamily [14] and major facilitator superfamily (MFS) [15] are two well-studied classes of
transporters. Whole-genome sequencing has illustrated that there are numerous ABC and
MFS transporter genes in an actinomycetal genome both inside and outside of secondary
metabolite BGCs [13,16]. Wang et al. analyzed transcriptome expression differences with ex-
pression profile chips and discovered 13 candidate transporter genes outside the natamycin
BGC from Streptomyces chattanoogensis L10 [17]. Chu et al. built a step-by-step workflow
based on the TCDB database BLAST, and they included substrate analysis, transporter
classification analysis, and phylogenetic analysis to mine BGC-independent exporters.
Together with a tunable plug-and-play exporter module with replaceable promoters and
ribosome-binding sites, they realized the titer improvement of macrolide biopesticides
in different Streptomyces producers [18]. Nevertheless, the current commonly used ap-
proaches are mainly sequence-dependent or based on known exporters, and the methods
of BGC-independent exporter mining still need development.

Soybean oil serves as the main carbon source in salinomycin fermentation, supplying
energy through primary metabolism and precursors, such as malonyl-CoA, methylmalonyl-
CoA, and ethylmalonyl-CoA, for salinomycin biosynthesis. Usually, 15% (w/v) of soybean
oil is added to the fermentation medium, which is extremely high compared with other
antibiotic fermentations. Our previous work revealed that increased soybean oil addition
resulted in higher salinomycin production [19], and, thus, we hypothesized that higher
concentrations of soybean oil cause a higher transcription of exporter genes.

Herein, a strategy based on comparative transcriptomic analysis under different
concentrations of soybean oil supplementation was developed to identify salinomycin
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exporter genes (Figure S1, Supporting Information). Our work provided universal exporters
for the titer improvement of polyether antibiotics in Streptomyces. Furthermore, our method
might broaden transporter engineering toolkits for the titer improvement of other valuable
products in Streptomyces.

2. Materials and Methods
2.1. Strains, Plasmids, and Culture Conditions

The bacterial strains and plasmids used in this study are listed in Table S1,
Supporting Information.

S. albus BK3-25 (from Zhejiang Shenghua Biok Biology Co., Ltd., Deqing, China)
and its mutants were grown on ISP4 medium (10 g/L soluble starch, 2 g/L (NH4)2SO4,
1 g/L K2HPO4, 2 g/L CaCO3, 1 g/L NaCl, 1 g/L MgSO4, 100 µL of trace element solution
(1% ZnSO4, 1% MnCl2, 1% FeSO4 (w/v)), 20 g/L agar) for 7 days for sporulation. The con-
jugation of Streptomyces with Escherichia coli was carried out on ISP4 plates supplemented
with 20 mM MgCl2. The fermentation procedure was as follows: S. albus BK3-25 and its
mutants were grown in 30 mL of TSBY medium [20] (30 g/L tryptone soya broth, 5 g/L
yeast extract, 103 g/L sucrose) at 30 ◦C and 220 r.p.m. for 48 h. Then, 1 mL of the culture
was transferred into 30 mL of the seed medium (30 g/L soybean meal, 10 g/L yeast extract,
2 g/L CaCO3, 80 mL/L 50% glucose) and cultivated at 33 ◦C and 220 r.p.m. for 16 h. Finally,
5 mL of the seed culture was transferred into 50 mL of the fermentation medium (8 g/L
germ powder, 5 g/L soybean meal, 2.2 g/L KCl, 1 g/L NaCl, 1.6 g/L urea, 2 g/L tartaric
acid, 0.1 g/L MgSO4, 0.1 g/L K2HPO4, 5 g/L CaCO3, pH 6.6–6.9, supplemented with
7.5 g/50 mL soybean oil) and cultured at 33 ◦C and 220 r.p.m. for 9 days [11].

S. lividans TK24, S. cinnamonensis ATCC 15413, S. lasaliensis ATCC 31180, S. hygroscop-
icus XM201-ga32 and their mutants were grown on SFM medium (20 g/L soybean meal,
20 g/L mannitol, 20 g/L agar) for 7 days for sporulation. The conjugation of Streptomyces
with E. coli was carried out on SFM plates supplemented with 20 mM MgCl2.

For fermentation, S. cinnamonensis ATCC 15413 and its mutants were grown in 25 mL
of the seed medium (20 g/L dextrin, 15 g/L soybean meal, 2.5 g/L yeast extract, 5 g/L
glucose, 1 g/L CaCO3, pH 6.7–6.8), and then 2.5 mL of the seed culture was transferred into
25 mL of the fermentation medium (20 g/L soybean oil, 45 g/L glucose, 40 g/L soybean meal,
2.2 g/L NaNO3, 2.2 g/L Na2SO4, 0.07 g/L Al2(SO4)3, 0.1 g/L FeSO4, 0.33 g/L MnCl2, 0.075 g/L
K2HPO4, 2.5 g/L CaCO3, pH 6.7–6.8) and cultured at 32 ◦C and 250 r.p.m. for 10 days.

S. lasaliensis ATCC 31180 and its mutants were grown in 25 mL of the seed medium
(20 g/L sucrose, 20 g/L soybean meal, 5 g/L tryptone, 5 g/L malt extract, 2 g/L NaCl,
4 g/L CaCO3, pH 7.0), and then 2.5 mL of the seed culture was transferred into 25 mL of
the fermentation medium (5 g/L glucose, 40 g/L dextrin, 35 g/L soybean meal, 7.5 g/L
corn starch, 3 g/L NaCl, 4 g/L KH2PO4, 2 g/L MgSO4·7H2O, pH 7.0) and cultured at 28 ◦C
and 200 r.p.m. for 6 days [21].

S. hygroscopicus XM201-ga32 and its mutants were grown in 50 mL of the seed medium
(10 g/L glucose, 10 g/L tryptone, 5 g/L yeast extract), and then 7.5 mL of the seed culture
was transferred into 50 mL of the fermentation medium (30 g/L corn starch, 70 g/L glucose,
40 g/L soybean meal, 3 g/L (NH4)2SO4, 0.01 g/L CoCl2, 10 g/L CaCO3, 1 g/L soybean oil,
pH 6.8–7.0) and cultured at 30 ◦C and 220 r.p.m. for 7 days [22].

E. coli ET12567 (pUZ8002) was used for conjugation. The E. coli cells were cultured in
Luria–Bertani (LB) broth at 37 ◦C.

2.2. Transcriptome Sequencing of BK3-25

For transcriptome sequencing, mycelia were harvested on the third day of fermenta-
tion. The total RNA was extracted using Redzol according to the manufacturer’s instruc-
tions. Transcriptome sequencing was performed by the Shanghai Biotechnology Corpo-
ration, and the expression level of each gene was calculated as fragments per kilobase of
exon per megabase of library size (FPKM).
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2.3. Construction of Plasmids for Deletion and Over-Expression of Eight Candidate Genes

For gene deletion through homologous recombination, left and right flanking regions
of each gene were obtained using PCR amplification, ligated to EcoRV-digested pBluescript
SK, and sequenced (Figure S2A). Then, these plasmids were digested with XbaI/EcoRI or
EcoRI/HindIII and ligated to XbaI/HindIII-digested plasmid pJTU1278. The primers used
for gene deletion are listed in Table S2.

For gene overexpression, eight candidate genes were obtained using PCR amplification, lig-
ated to EcoRV-digested pBluescript SK, and sequenced. Then, these plasmids were digested with
XbaI/NotI (NdeI/EcoRI), and the fragments containing genes were ligated with the XbaI/NotI-
digested plasmid pIB139 or NdeI/EcoRI-digested plasmid pLQ646 (Figure S2B,C). The primers
used for gene over-expression are listed in Table S2.

2.4. Conjugation between Streptomyces and E. coli

All the plasmids were successively introduced into the non-methylating E. coli strain
ET12567 (pUZ8002) and S. albus strains. Spores (~109 CFU) were heat-shocked at 50 ◦C
for 10 min, pregerminated for 2.5 h, and then mixed with E. coli cells. The suspensions
were spread onto non-selective plates containing ISP4 medium supplemented with 20 mM
MgCl2. Apramycin was overlaid on the plates after 17 h of incubation at 30 ◦C, and
exconjugants typically appeared after 3 days.

For gene deletion, the exconjugants were assessed as single-crossover mutants us-
ing PCR amplification with primers SLNHY_X-YZ-F/R (Table S2). After two rounds of
sporulation without antibiotic selection, double-crossover mutants were verified using PCR
with primers SLNHY_X-YZ-F/R (Table S2 and Figure S2A). For gene over-expression, the
exconjugants were verified using PCR with primers pIB139-over-YZ-F (pLQ648-over-YZ-F)
and SLNHY_X-over-YZ-R (Table S2).

2.5. HPLC Analysis of Antibiotics

For the detection of total salinomycin, 1 mL of fermentation broth was mixed with
9 mL of methanol, followed by sonication at 40 kHz for 30 min. Then, 1 mL of the mixture
was taken and centrifuged at 12,000 r.p.m. for 1 min, and the supernatant was filtrated
and subjected to HPLC analysis. For the detection of intracellular salinomycin, 1 mL of
the fermentation broth was centrifuged at 12,000 r.p.m. for 5 min, and the supernatant
was discarded. The mycelia were washed twice with water and mixed with 1 mL of
methanol, followed by sonication at 40 kHz for 30 min. Then, the mixture was centrifuged
at 12,000 r.p.m. for 5 min, and the supernatant was filtrated and subjected to HPLC analysis.
HPLC was performed on Agilent series 1260 (Agilent Technologies, Santa Clara, CA, USA)
with an Agilent TC-18 column (2.1 × 150 mm, 5 µm). In this process, 8% A (water, 2%
acetic acid) and 92% B (acetonitrile) were used as the mobile phase with a flow rate of
1 mL/min, and the detection time was 20 min using UV spectroscopy at 210 nm [11].
The concentrations of salinomycin were calculated according to the standard curve of
salinomycin (Figure S3).

For the detection of lasalocid, 1 mL of fermentation broth was mixed with 1 mL of
methanol, followed by sonication at 40 kHz for 30 min. Then, the mixture was centrifuged
at 12,000 r.p.m. for 1 min, and the supernatant was filtrated and subjected to HPLC analysis.
HPLC was performed on Agilent series 1260 (Agilent Technologies, USA) with an Agilent
TC-18 column (2.1 × 150 mm, 5 µm) at 40 ◦C. In this process, 15% A (water, 0.125 mol/L
ammonium acetate, pH 4.8) and 85% B (acetonitrile) were used as the mobile phase with
a flow rate of 1 mL/min, and the detection time was 20 min using UV spectroscopy
at 305 nm [21]. The concentrations of lasalocid were calculated according to the standard
curve of lasalocid (Figure S4).

For the detection of monensin, 1 mL of fermentation broth was centrifuged at
12,000 r.p.m. for 5 min, and the supernatant was discarded. The mycelia were washed
twice with water and mixed with 1 mL of ethanol, followed by sonication at 40 kHz for 30 min.
Then, the mixture was centrifuged at 12,000 r.p.m. for 5 min, and the supernatant was filtrated
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and subjected to HPLC analysis. HPLC was performed on Agilent series 1260 (Agilent Tech-
nologies, Santa Clara, CA, USA) with an Agilent TC-18 column (2.1 × 150 mm, 5 µm). In this
process, 20 mM ammonium acetate and methanol were used as the mobile phase with a flow
rate of 1 mL/min. For 0–25 min, the ratio of methanol increased from 80% to 100%, and for
25–30 min, it decreased from 100% to 80%. Evaporative light-scattering detection (ELSD) was
conducted for 30 min at 85 ◦C [23]. The concentrations of monensin were calculated according
to the standard curve of monensin (Figure S5).

For the detection of nigericin, 1 mL of fermentation broth was mixed with 9 mL of
methanol, followed by sonication at 40 kHz for 30 min. Then, 1 mL of the mixture was taken
and centrifuged at 12,000 r.p.m. for 1 min, and the supernatant was filtrated and subjected
to HPLC analysis. HPLC was performed on Agilent series 1260 (Agilent Technologies,
USA) with an Agilent TC-18 column (2.1 × 150 mm, 5 µm). A gradient elution (1 mL/min
flow rate) was performed using A (methanol/water, 9:1 ratio, 0.1% TFA from 0 to 25 min)
and B (methanol, 100%, 0.1% TFA, from 25 to 50 min). ELSD detection was conducted
for 50 min at 85 ◦C [24]. The concentrations of nigericin were calculated according to the
standard curve of nigericin (Figure S6).

2.6. RNA Extraction and RT-qPCR Analysis

Mycelia of S. albus BK3-25 were harvested, and the total RNA was extracted using
Redzol according to the manufacturer’s instructions (SBS Genetech, Shanghai, China) [25].
The quality of the RNA was determined using a NanoDrop 2000 spectrophotometer. For RT-
qPCR experiments, total RNA was reversely transcribed into cDNA using RevertAidTM H
Minus First Strand cDNA Synthesis Kit (Thermo Fisher, Waltham, MA USA). The RT-qPCR
experiments were carried out on a 7500 Fast Real-time RCR system (Applied Biosystems,
Waltham, MA USA) using MaximaTM SYBR Green/ROX qPCR Maxter Mix (Thermo Fisher,
Waltham, MA USA) according to the manufacturer’s procedure. The expression values of
the target genes were calculated using 2−∆∆CT methods with the housekeeping gene hrdB
as internal control [26].

2.7. Biomass Determination under Fermentation Condition

Due to the insoluble residues in the liquid medium, total intracellular nucleic acid
rather than dry cell weight was determined to represent the growth of Streptomyces. The
concentration of intracellular nucleic acid was detected as follows: 1 mL fermentation broth
was centrifuged and washed twice to eliminate the interference of the medium. Then, 1 mL
of Solution A (1.5 g diphenylamine, 100 mL acetic acid, 1.5 mL concentrated sulfuric acid,
1 mL 1.6% acetaldehyde) was mixed with the mycelia and put in water bath at 60 ◦C for 1 h.
Then, the mixture was centrifuged, and 150 µL of supernatant was transferred into 96-well
plates and detected at 595 nm (Infinite M200 PRO, TECAN, Männedorf, Switzerland).

3. Results
3.1. Transcriptome-Based Identification of Candidate Exporter Genes

We initially assumed that the higher the salinomycin titer, the higher the transcription
of the involved exporter genes. In order to establish a titer gradient, different concentrations
of soybean oil (5%, 10%, and 15%) were supplemented to the fermentation broth, and the
corresponding salinomycin titers were 5.30 g/L, 12.50 g/L, and 17.40 g/L, respectively. Using
these three samples, transcriptomic data were collected using RNA-seq technology. According
to the hypothetic concurrent relationship between salinomycin titers and the transcription of
exporter genes, eight exporter genes with increasing expression patterns and that topped the
fold-change of transcription at a higher salinomycin titer were selected from 248 ABC trans-
porter genes and 23 MFS genes in the BK3-25 genome. These eight genes include seven ABC
transporter genes, SLNHY_3363, SLNHY_4037, SLNHY_6316, SLNHY_6652, SLNHY_0818,
SLNHY_0199, and SLNHY_1893, and one MFS gene, SLNHY_0929 (Figure 2 and Table S3).
Although the transcriptions of SLNHY_3363 and SLNHY_0199 at 15% oil supplementation
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were lower than those at 10%, both of their transcriptions dramatically rose when the oil
contents were shifted from 5% to 10%.
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In order to verify the transcriptomic data, the transcription levels of the eight candidate
genes were measured using RT-qPCR with cultures collected on the third day of fermenta-
tion supplemented with 5% or 15% soybean oil, and all genes showed higher expressions
with 15% oil supplementation, which was consistent with the transcriptomic data. Among
them, SLNHY_929 demonstrated the highest expression, followed by SLNHY_3363 and
SLNHY_1893 (Table S4).

3.2. All Eight Candidate Genes Were Positively Involved in Salinomycin Export

To investigate whether these eight genes are involved in salinomycin production, they
were knocked out through homologous recombination. As shown in Figure 3A,B, the
total salinomycin titers of all mutants decreased to 11.62–27.36% of that of BK3-25, and the
intracellular concentrations of salinomycin increased to 143.61–237.89% of that of BK3-25,
indicating that these genes were positively related to salinomycin biosynthesis. Moreover,
the deletion of ∆SLNHY_0199 was the most pronounced, with a dramatic decrease in the
salinomycin titer from 13.34 g/L to 1.55 g/L.

Further verification of the above conclusion was conducted through trans-complementation
of each mutant with the corresponding gene cloned under the control of PermE*. All individually
complemented strains returned to 78.77–88.77% of the original titer of salinomycin (Figure 3C),
and the intracellular accumulations of salinomycin synchronically returned to 62.36–105.19% of
the level of BK3-25 (Figure 3D), providing more proof of the involvement of these eight genes in
salinomycin biosynthesis and, most likely, in its export.

In addition, these eight genes were individually over-expressed in BK3-25 to see
whether they played vital roles in salinomycin titer improvement. As expected, compared
with the control strain bearing the empty vector pIB139, the excessive expression of these
genes all increased salinomycin titers by 7.20–69.75%, especially BK3-25::SLNHY_3363 and
BK3-25::SLNHY_0929, which had improved titers of 24.60 g/L and 22.85 g/L, respectively
(Figure 3E). Accordingly, the intracellular salinomycin accumulations of all mutants showed
a marked fall to 24.35–46.23% of the same level of BK3-25 (Figure 3F).

3.3. These Eight Exporter Genes Were Constitutively Expressed

In order to determine whether the expressions of these eight genes were constitutive
or induced by salinomycin, the transcription profiles of each gene were obtained using
RT-qPCR with samples collected each day during the whole fermentation period (Figure 4).
Compared with the house-keeping gene hrdB, these exporter genes were actively tran-
scribed at the very beginning and then gradually decreased along with the fermentation
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process. Since salinomycin obviously accumulated after the first day, as shown in Figure
S7, we can safely draw the conclusion that these genes were constitutively expressed rather
than being induced by salinomycin.
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The total salinomycin titers were calculated based on the fermentation broth volume (A,C,E),
and the intracellular salinomycin concentrations were calculated based on the dry cell weight
(B,D,F). LX01, BK3-25∆SLNHY_0929; LX02, BK3-25∆SLNHY_1893; LX03, BK3-25∆SLNHY_3363;
LX04, BK3-25∆SLNHY_4037; LX05, BK3-25∆SLNHY_0199; LX06, BK3-25∆SLNHY_0818; LX07, BK3-
25∆SLNHY_6316; LX08, BK3-25∆SLNHY_6652.
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angle, SLNHY_0818; pink inverted hollow triangle, SLNHY_6316; dark green rhombus, SLNHY_6652.
Logarithm of transcription data were taken as ordinate; if not, it would be difficult to show their wide
fluctuation scales.

3.4. SLNHY_0929 and SLNHY_1893 Improved Resistance to Salinomycin in Streptomyces lividans

Even though these eight exporter genes were proved to be involved in salinomycin
export, we still needed to determine why they functioned in this way. Streptomyces lividans
TK24 was found to be susceptible to high concentrations of salinomycin, and the minimal
inhibition concentration (MIC) was 0.5 mmol/L for the control strain TK24::pIB139. These
eight genes were individually introduced into S. lividans TK24. Although most mutants
carrying the introduced exporter genes maintained similar susceptibility to salinomycin,
TK24::SLNHY_0929 and TK24::SLNHY_1893 rendered the host with an improved resistance
as high as 1.0 mmol/L (Figure 5A,B). These data strongly suggest the salinomycin export
ability of SLNHY_0929 and SLNHY_1893, which exported the assimilated exogenous
salinomycin out of S. lividans TK24.
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Total intracellular nucleic acid was determined to represent the growth of S. lividans. (A) Green column,
TK24::pIB139; orange column, TK24::SLNHY_3363; gray column, TK24::SLNHY_4037; yellow column,
TK24::SLNHY_0929; blue column, TK24::SLNHY_1893. (B) Green column, TK24::pIB139; orange
column, TK24::SLNHY_0199; gray column, TK24::SLNHY_0818; yellow column, TK24::SLNHY_6316;
blue column, TK24::SLNHY_6652.



Antibiotics 2022, 11, 600 9 of 13

3.5. SLNHY_0929 Was a Universal Exporter for Polyether Antibiotics with Similar Structure
with Salinomycin

Since most polyether antibiotics shared similar hydrophobic structures, we wondered
whether the exporter genes were universal in pumping them out and whether the genes
played roles in improving their titers. Therefore, the three exporter genes with the most
substantial effects on salinomycin titers when over-expressed in BK3-25, i.e., SLNHY_0929,
SLNHY_3363 and, SLNHY_4037, were heterologously expressed in Streptomyces lasaliensis
ATCC 31180 (a lasalocid producer), Streptomyces cinnamonensis ATCC 15413 (a monensin
producer), and Streptomyces hygroscopicus XM201-ga32 (a nigericin producer). Herein, the
previously used PermE* promoter was replaced by a stronger promoter kasOp*, since the
latter was reported to work better in XM201 [22,27].

Interestingly, the heterologous expression of SLNHY_0929 resulted in a significant im-
provement in all three antibiotics, with lasalocid titers from 163.60 mg/L to 262.50 mg/L in
S. lasaliensis (Figure 6A), monensin titers from 572.40 mg/L to 1,286.00 mg/L in S. cinnamo-
nensis (Figure 6B), and nigericin titers from 116.77 mg/L to 207.27 mg/L in S. hygroscopicus
(Figure 6C). Surprisingly, the heterologous expressions of SLNHY_3363 and SLNHY_4037
had no positive effects on the production of these three polyether antibiotics, even with
unexpected, dropped titers, and the reason needed further exploration. Overall, these
results clearly show that SLNHY_0929 is a universal exporter for salinomycin, lasalocid,
monensin, and nigericin, which shared similar molecular structures.
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Transporter engineering has been considered as a promising strategy to maximize
secondary metabolite production in bacterial hosts, such as Streptomyces spp. and Aspergillus
spp. [28,29]. Except for the exporters located in BGCs, BGC-independent exporters caused
by horizontal gene transfer may also contribute to metabolite export [30,31]. To discover
transporter genes located far from BGCs, expression profiling, genome-wide knockout
studies, stress-based selection, and the inhibitor strategy have often been used [32].

Herein, due to Streptomyces albus’ highly efficient utilization of soybean oil, we found
that salinomycin production rose as oil addition rose, and the transcription levels of
the genes involved in salinomycin PKS, β-oxidation, and precursor biosynthesis also
increased [7]. Since transporters are the essential channels of both precursor import and
salinomycin export, they are more necessary with the rise in ionophore product synthesis,
so we decided to focus on the study of transporters. Next, we managed to mine eight
transporter genes outside salinomycin BGC based on comparative transcriptome data
under different salinomycin titers. Furthermore, all eight selected genes proved to be
correlated with salinomycin synthesis by gene deletion and over-expression. Among
the eight genes, only SLNHY_0929 and SLNHY_1893 encoded proteins that could pump
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salinomycin out of the cell and, thus, provide self-resistance to the host, according to the
heterologous expression in the model strain S. lividans and the salinomycin supplement
experiments. Our work constructed a novel method for antibiotic transporter gene mining.
The fermentation characteristics of Streptomyces albus with a soybean oil preference were
focused and combined with transcriptome sequencing technology, which showed a very
successful titer improvement of salinomycin through exporter engineering and might
apply to other antibiotics with oil-derived precursors. Therefore, this study also provides
an application with great potential in promoting the more cost-effective production of
salinomycin and other chemicals.

MFS-type transporters are channels of multiple substrates, such as monose, polysaccha-
rides, amino acids, polypeptides, vitamins, cofactors, secondary metabolites, chromophores,
and bases. They can either function independently or cooperate with ABC transporters in
metabolite efflux [17]. In our work, the MFS family gene, SLNHY_0929, was heterologously
expressed in the producers of other polyether antibiotics, and it showed a broad spectrum
of substrate identification, whose protein pumped out intracellular salinomycin, lasalocid,
monensin, and nigericin, as well as increasing the titers of each. As a matter of fact, S.
cinnamonensis ATCC 15413 possesses a homolog of the exporter gene SLNHY_0929, namely,
orf6552, with 93% coverage and 75.81% identity, while none of the homolog is present in
S. lasaliensis ATCC 31180 or S. hygroscopicus XM201-ga32. Thus, ORF6552 is considered to
be an endogenous MFS transporter, which exports monensin from the host. Whether or
not it served as another universal ionophore pump remains to be explored. Compared
to specific exporters slnTI and slnTII in the gene cluster, SLNHY_0929 contributed more
to salinomycin biosynthesis [12]. Meanwhile, endogenous exporters in lasalocid, mon-
ensin, and nigericin BGCs, which provide self-resistance to producing strains, have been
reported. Lsd5 in S. lasaliensis showed 53% identity with MonT in S. cinnamonensis, and in
S. hygroscopicus, R14/R15 formed an ABC transporter with 71% and 49% identities with
the TMD and NBD of the transporter in S. avermitilis’s BGC, respectively [33–36]. Until
now, there have been no data about these self-exporters’ functions on antibiotic production,
so we could not compare them with the non-specific exporter SLNHY_0929. However,
introducing this MFS transporter improved the polyether antibiotics’ titers by over 60%
and almost doubled monensin’s titer, which demonstrates the efficacy of our method for
transporter mining. Due to the constitutive expression of these exporter genes, we can
safely draw the conclusion that SLNHY_0929 served as a universal and stable pump by
flexibly identifying polyether compounds. Whether or not it could recognize other types of
chemicals remains unknown. SLNHY_1893, SLNHY_3363, SLNHY_4037, SLNHY_0199,
SLNHY_0818, SLNHY_6316, and SLNHY_6652 all belong to ABC transporters; however,
they cannot export salinomycin according to the MIC results implemented in Streptomyces
lividans. Their functions were speculated to be importers of soybean oil or other small
nutrient molecules, or exporters of other secondary metabolites, such as actinopyranone
and elaiophylin, whose BGCs were detected in the S. albus genome. Hence, on the one
hand, in a future study, intracellular acyl-CoA concentrations will be detected to study
whether these proteins pump fatty acids and glycerol derived from soybean oil [37]. On
the other hand, we would like to strengthen or weaken the expression of these pumps and
observe the production of possible metabolites to identify the pumps’ function.

Additionally, since each transporter exported salinomycin and improved its biosynthe-
sis, it would be interesting to examine whether these pumps are competitive or cooperative.
Thus, tandem over-expression of two or more genes will be employed to study their rela-
tionship, which may push the salinomycin titer to a higher level. By means of electronic
microscope observation and molecular dynamics simulation, the conformation change of
transporters during the pumping of salinomycin will be analyzed. Besides export, other
resistance strategies, including the inactivation of antibiotics and the modification of func-
tion targets, are worthy of study with regard to salinomycin. Further bioinformatic and
functional analyses are likely to provide answers to these questions.
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4. Conclusions

In summary, we constructed a novel method for salinomycin exporter mining by
combining soybean oil preference and transcriptome analysis. We identified eight BGC-
independent transporters and verified their functions. Finally, one of them was proved
to be efficient in multiple polyether antibiotic-producing hosts. Our work contributes
new strategies to further the improvement of salinomycin titers, and it paves the way for
increasing the titers of other antibiotics through transporter engineering.
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eight candidate genes; Table S4: RT-qPCR analysis of candidate genes; Figure S1: Flowchart of the
strategy for exporter gene identification; Figure S2: The process of gene deletion and over-expression
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