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Abstract: Chemical agents including chlorine and antibiotics are used extensively to control infectious
microorganisms. While antibiotics are mainly used to treat bacterial infections, chlorine is widely used
for microbial inactivation in the post-secondary disinfection steps of water treatment. The extensive
use of these agents has been acknowledged as a driving force for the expansion of antimicrobial
resistance (AMR) and has prompted discourse on their roles in the evolution and proliferation
of resistant pathogens in the aquatic milieus. We live in a possible “post-antibiotic” era when
resistant microbes spread at startling levels with dire predictions relating to a potential lack of
effective therapeutic antibacterial drugs. There have been reports of enhancement of resistance
among some waterborne pathogens due to chlorination. In this context, it is pertinent to investigate
the various factors and mechanisms underlying the emergence and spread of resistance and the
possible association between chlorination and AMR. We, therefore, reflect on the specifics of bacterial
resistance development, the mechanisms of intrinsic and acquired resistance with emphasis on
their environmental and public health implications, the co-selection for antibiotic resistance due
to chlorination, biofilm microbiology, and multidrug efflux activity. In-depth knowledge of the
molecular basis of resistance development in bacteria will significantly contribute to the more rational
utilization of these biocidal agents and aid in filling identified knowledge gap toward curbing
resistance expansion.

Keywords: waterborne pathogens; antimicrobial resistance (AMR); chlorination; mutant selection
window (MSW); resistance mechanisms; public health

1. Introduction

Antimicrobial-resistant waterborne pathogens are a major global health concern. There
are rising reports of resistance selection in microorganisms due to inappropriate use of
antimicrobial agents [1,2]. Upon antibiotic usage, a small portion of the microbial cells,
even <10−9 within a susceptible wild-type population, is not affected by the antimicrobial
agent. This subgroup retains antimicrobial impeding mutations, which favor their selection
during treatment. Thus, antibiotic resistance is known to emerge during the frame of a
selective compartment described as a mutant selection window (MSW) [3].

The MSW hypothesis was initially proposed based on a study investigating resistance
to quinolones in Gram-negative bacteria in the 1990s [4]. The study noted the existence
of a “dangerous” concentration range where mutant selection occurs most frequently
and suggested that resistance prevention against norfloxacin in strains carrying a “first
mutation” should employ older quinolones and emphasizes the need for early detection
of such strains [5]. Accordingly, the MSW postulates that, for every antimicrobial drug-
microorganisms combination, there exists a drug concentration range where resistant-
mutants selective amplification occurs in a single step, leading to reduced susceptibility [6].
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This range extends from the minimum inhibitory concentration of the drug, which prevents
colony growth by 99% (MIC99), to the mutant prevention concentration (MPC), at which
the least-susceptible single-step mutant subpopulation is inhibited. Within these limits,
selective enrichment of resistant mutants frequently occurs [7]. Upon mutation acquisition,
the MIC99 and the MPC increase, shifting up the MSW of an antimicrobial and making it
more challenging to prevent the emergence of new mutant strains [8].

Some reports have documented correlations between antibiotics and chlorine resis-
tance from aquatic environments [9,10], while other studies have reported the co-selection
for antibiotic resistance among bacteria due to chlorination [11,12]. Although chlorination
has proved efficient in reducing waterborne diseases, little effort has been devoted to
exploring the potential impacts of chlorine disinfection in enhancing antibiotic resistance
genes (ARGs). The apprehension about the contribution of chlorination to an upsurge
of AMR in waterborne pathogens presents a potential threat to human health and the
aquatic ecosystem. Albeit, the reasons for this phenomenon and the factors triggering AMR
expansion during chlorination remain poorly understood [13].

To this end, this review describes the implications of intrinsic and acquired bacterial
resistance with emphasis on aquatic and human health, connections between antibiotics and
chlorine resistance, the roles of microbial biofilms and multidrug efflux activity in AMR,
and identifies knowledge gap in the existing literature on the molecular biology of AMR. A
comprehensive understanding of the molecular basis of resistance development in bacteria
will significantly contribute to these agents’ more rational selection and utilization toward
curbing AMR proliferation and advancing the global antimicrobial stewardship effort.

2. Water Quality and Human Health

Easy access to improved water sources is vital to human health and development.
Contaminated water predisposes individuals to hazards and has been linked to disease
outbreaks. Despite progress in global access to improved water quality in recent years,
over two billion people still lack access to safely managed water sources [14]. Climate
change, rising human population and urbanization pose challenge for water supplies and
important strategies such as wastewater recycling is becoming vital in water reclamation.
Inadequately treated recycled wastewater poses an unacceptable risk of infectious disease
and a threat to public health [15].

Concerns about the microbiological quality of water have previously focused on the
occurrence of pathogens. However, the prevalence of antimicrobial-resistant bacteria (ARB)
and resistance genes in water sources is an emerging issue of public health globally [16].
Different studies have presented varying opinions on the selection or enrichment of resistant
strains during chlorination [10,13]. Jin et al. [13] reported that chlorination promotes the
emergence and exchange of resistance genes across bacterial genera. Murray [17] observed
a significant increase in the level of multiple drug-resistant (MDR) bacteria in sewage,
after treatment with chlorine, and during a laboratory-scale chlorination investigation.
Contrarily, other studies have suggested that disinfection does not contribute to resistant
strain selection but rather induces the development of antimicrobial resistance [18,19].
Another study yet has noted that the selection of stress-tolerant strains by chlorination
might lead to more antimicrobial resistance [9].

3. Fundamentals of Chlorine Disinfection

Public water supply chlorination is one of the most significant advancements of the last
century. Chlorine-based disinfectants have proven highly effective, safe, economical and
widely accepted. Water hydrolysis, upon the addition of chorine, produces hypochlorous
acid (HOCl), which dissociates yielding hydrogen and hypochlorite ions (Equations (1)
and (2)).

Chlorine disinfection chemistry:

Cl2 + H2O 
 HOCl + H+ + Cl− (1)
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HOCl 
 H+ + OCl− (2)

Chlorine first reacts with organic and inorganic matters before pathogens inactivation.
The amount of chlorine consumed in this process is termed chlorine demand. The combined
chlorine that forms together with any free available chlorine in the water is called the
chlorine residual (Figure 1). This is the component of the added chlorine that disinfects the
water. Free available chlorine is formed by differences in the concentrations of hypochlorous
and hypochlorite ions, a process that depends on the pH of the water [20]. Even though
the chlorination procedure is well-researched, establishing an appropriate chlorine dose
remains a difficult task for many field applications. Nevertheless, the effective chlorine
dose should be sufficient to destroy pathogens and oxidize the organic contaminants as
well as maintain sufficient free available chlorine in the water distribution system, post-
chlorination [21].
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3.1. Breakpoint Chlorination and Factors Influencing Disinfection

Breakpoint chlorination is the continuous addition of chlorine until the chlorine de-
mand is satisfied, combined chlorine compounds are oxidized and only free chlorine
remains. The four phases involved in breakpoint chlorination is depicted in Figure 2.
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demand. Combined chlorine residual is formed between Cl− and NH4

+ in the second
phase. The concentration of the added chlorine in this phase is proportional to the total
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concentration of chlorine residual. Continuous addition of chlorine in the third phase
causes oxidation of the combined residues causing a reduced concentration of the residual
chlorine up to “dip” or “breakpoint”. Beyond this point, the concentration of the residual
chlorine increases [22].

Temperature, pH, contact time, density and the inherent nature of microorganisms
present determine the efficacy of the chlorination. Keeping all other factors constant, higher
microbial load will demand higher chlorine dose and contact time. The physiological
state of the microbes plays an important role in their chlorine sensitivity [13]. Generally,
autochthonous microbes in natural water environments are more resistant to chlorination
than laboratory-grown strains.

3.2. Mechanisms of Chlorine Disinfection

The biocidal mechanism of chlorination remains poorly understood. Some investiga-
tors opined that HOCl and OCl− formed when chlorine is added to water destroy microbial
macromolecules. Further work on this supposition led to the “multiple hit” concept, which
asserts that bacterial kill by chlorination is probably due to the attack and damage of
microbial biomolecules [23]. Venkobachar et al. [24] and Haas [25] reported leakage of
cellular macromolecules when bacteria were treated with chlorine. Venkobachar [24] also
observed that chlorine significantly inhibits oxidative phosphorylation and the uptake
of oxygen, and that, the inhibition of respiratory enzyme was responsible for the phos-
phorylation inhibition phenomenon, rather than a deficiency in phosphate uptake. In
a different study, Chang [26] suggested that the extensive destruction of bacterial enzy-
matic systems is responsible for the rapid destruction of pathogens during chlorination.
Various other investigators have also recognized that chlorine destroys microorganisms
through changes in membrane permeability, nucleic acid damage and leakage of intracellu-
lar biomolecules [27,28]. Generally, it appears that chlorination causes physiological and
morphological changes to the bacterial cell wall, altering its permeability. The chlorine
molecules subsequently enter the cytoplasm, interfering with different enzymatic reactions,
in a possible event cascade depicted in Figure 3.
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3.3. Incidences of Chlorine Tolerant Microorganisms from Treated Water Sources

Various international and local authorities have regulations to ensure the protection of
water sources from chemical and microbiological contaminants. At a global level, for instance,
the WHO recommends chlorine residual of 0.2 to 0.5 mg/L in water supplies [29], while the
South African Department of Water and Sanitation stipulates chlorine residual of 0.25 mg/L
for discharged wastewater effluents released into surface water environment [30,31]. Al-
though some concerns have emerged in recent years about the limitations of chlorine usage in
water treatments, there is no doubt, however, that chlorination remains one of the most signif-
icant advances in water purification and public health protection [32]. Reports on chlorine
surviving microorganisms from chlorinated water sources continue to emanate [33–35].
Various investigators have proposed different mechanisms by which microorganisms may
develop tolerance to disinfectants. These include (i) cell surface modifications or encapsu-
lation [36], (ii) attachment to surfaces or suspended particulate matter [37], (iii) microbial
aggregation in biofilms [38], (iv) expression of multidrug efflux pump activity [9] and
(v) spore formation [39]. These mechanisms conceivably favor the survival of opportunistic
waterborne pathogens, thereby contributing to their persistence in water [40]. Table 1 lists
some published studies on chlorine-resistant microorganisms from different sources and
their reported mechanism of resistance.

Table 1. Summary of some reports of disinfectant-resistant microbes isolated from diverse
aquatic sources.

Source Microorganism Disinfectant
Concentration/Time Mechanism(s) of Resistance Reference

Drinking water P. aeruginosa ≤0.5 mg/L Cl−
Natural resistance due to the

permeability barrier caused by outer
membrane lipopolysaccharides;

biofilm formation

[41]

Experimental isolates Acinetobacter
baumannii 0.2–4 mg/L Increased expression of efflux pumps

other antibiotic resistance genes [42]

Drinking water reservoir Acinetobater species,
Serratia species 2 mg/L Not determined [35]

Sewage Bacillus species 0.1 mg/L NaOCl Probable spore formation [43]

Secondary effluent Citrobacter species 0.5 mg/L Ca(OCl)2 for
30 min Not determined [44]

Drinking water Bacillus species, Actinomycete 10 mg/L NaOCl for
2 min

Cellular aggregation or adhesion to
suspended particulate. Production of

extracellular slime or capsular material
[45]

Drinking water and
experimental isolates

Heterotrophic bacteria,
faecal coliforms, E. coli,
Salmonella typhimurium,

Yersinia enterocolitica,
Shigella sonnie

2.0 mg/L free chlorine
for 1 h

Bacterial attachment to surface and
production of extracellular slime layer [46]

Chlorine-demand–free
buffer solution

Coliform isolated from
drinking water systems and

Enteric bacterial from culture
collections cocultured with

protozoa (Ciliates
and amoebae).

2–4 mg/L free chlorine
for 1–2 h

Shielding of bacteria from chlorine by
ingesting protozoans (cysts) and, thus,

enhancing resistance
[47]

Treated drinking water S. aureus, Micrococcus varians,
Aeromonas hydrophila

1–100 mg/L Ca(OCl)2
solution for 30 min

Possible synthesis of unique proteins
or aggregation of bacteria or

encapsulation
[33]

Environmental isolates
(Wastewater clarifier

effluent) suspended in
phosphate buffer saline

Enterococcus species 0.5 mg/L Ca(OCl)2 for
30 min Not determined [48]
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Table 1. Cont.

Source Microorganism Disinfectant
Concentration/Time Mechanism(s) of Resistance Reference

Environmental strains
cultured in sterile

phosphate buffer solution

Legionella pneumophila from
environmental water

cocultured with
Acanthamoeba species

2–3 mg/L Cl2 for 1 h
with a residual Cl2 of

1 mg/L after 1 h

Possible phenotypic modification of
Legionella pneumophila due to

intra-cellular growth with
Acanthamoeba sp.

[49]

Environmental isolates
from wastewater
treatment plants

suspended in saline

Bacillus species, Citrobacter
freundii, Enterobacter species,

Kluyvera cryocrescens,
Kluyvera intermedia

0.5 mg/L NaOCl for
30 min

Authors suggested the possible
expression of certain stress factor genes

which may reduce bacterial
metabolism or change the permeability

of cell membranes

[50]

Environmental isolates
(Wastewater clarifier

effluent) suspended in
phosphate buffer saline

E. coli 0.5 mg/L NaOCl for
30 min Not determined [34]

4. Major Drivers of Antimicrobial Resistance (AMR) in Aquatic Environments

The prevalence of resistance genes in the aquatic environments is the result of a
complex interplay of numerous factors propelling evolution by natural selections and
variations, through cascades of mutational events. The buildup of chemical pollutants
including antimicrobials, disinfectants, heavy metals, detergents, pharmaceuticals and
xenobiotics contribute to the evolution and spread of resistance in the aquatic environment.
Huge selective pressure resulting from anthropogenic activities escalates and enriches
resistance determinants in microbial populations [51,52]. Efforts to reduce resistance
development would include limiting the amount of resistant microbial loads as well as
optimization of disinfection protocols in water treatment. It has been argued that AMR
action plans may not achieve their anticipated objectives if all AMR drivers and pathways
in the environment are not appropriately appraised.

4.1. Stepwise Accumulation of Drug Resistance Mutations

During antimicrobial administration, the application of doses within an MSW can
allow the enrichment of a mutant fraction of the microbial population resulting in increased
genetic and phenotypic resistance [53]. Genetic resistance is generally classified as acquired
or de novo. Acquired resistance often occurs in a single step through the incorporation
of resistance determinants frequently borne on mobile genetic elements from an external
source. De novo resistance, on the other hand, arises either as a single step or as an
accumulation of a series of mutations that discretely reduce susceptibility by a modest
increment in a step-by-step manner (e.g., intermediate susceptibility). Usually, the next
mutational step is more readily achieved with the occurrence of a previous mutation in a
strain, since numerous alleles can accumulate [54]. In the stepwise process, a microbial cell
is only considered resistant due to the presence of more than one genetic mutation [55].
This typical example is seen in Streptococcus pneumonia in the development of resistance
against fluoroquinolones, where at least seven different alleles are identified [56].

4.2. Contribution of Chlorination to AMR Expansion via Horizontal Gene Transfer

Although chlorination is a vital step in water treatment, its contribution to the ex-
pansion and dissemination of AMR has been noted. Increased natural transformation
rates were observed across different bacterial genera through the transfer of antimicrobial
resistance genes (ARGs) and other mobile genetic elements (MGEs), leading to the enrich-
ment of ARG after chlorine treatment [13]. The study also noted that the release of naked
DNA (including plasmids, ARGs and integrons) from “killed” donor bacteria during the
chlorination process contributed to an increased natural transformation of chlorine-injured-
but-culturable strains at a rate >550 folds in comparison to untreated bacteria. In a related
study, Guo and colleagues [57] reported that low chlorine doses ranging between 5 and
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40 mg Cl min/L enhanced the rate of conjugative transfer of ARGs by factors between
2 and 5 due to increased induction of pilus on the surface of conjugative bacterial cells,
facilitating the exchange of genetic materials. They, however, noted that high chlorine doses
(>80 mg Cl min/L) significantly suppressed the rate of ARG transfer. In another study, a
retrieval of chlorination-driven enrichment of ARGs between 18.1 and 102% was observed
through metagenomics binning strategies [58]. In general, horizontal gene transfer plays a
significant role in AMR expansion during water chlorination.

5. Association between AMR and Disinfectant Resistance in Microorganisms

Putative resistance factors are thought to have existed in the natural environment,
primarily for other functions apart from resistance conferment. However, the versatility
of microbial pathogens has benefitted by recruiting and incorporating those genes into
their own genome to evade the biocide effect of antimicrobials [59]. It should be noted that
AMR genes are concurrently found with other genes that promote resistance to varieties
of potentially harmful chemicals, including disinfectants in bacterial strains. The unfortu-
nate historical convention, however, is the labelling of all these AMR genes; whereas, in
actual fact, they can potentially promote resistance against different classes of chemicals,
a phenomenon known as co-selection [60]. Co-selection of resistance has serious health
implications and occurs either as co-resistance or cross-resistance. Cross-resistance allows
a single resistance gene to foster protection against multiple biocides while co-resistance
allows one gene to promote the maintenance of another resistance gene. Co-resistance
phenomenon is exemplified as a “toolbox” in which one might only need one or two tools;
however, the availability of many tools in the same box makes it easier to select any other
tool for use should the need arise. Genomic architecture such as plasmids and transposons
are the toolbox while the tools are the resistance genes co-existing on them [61]. The survival
of some waterborne pathogens in chlorinated water and the co-selection for AMR raises
concerns. Although there are conflicting reports on the role of chlorination in promoting
AMR [9,62], it is noteworthy that a huge evidence-based gap still exists in substantiating
the precise links between chlorination and antibiotic resistance in waterborne pathogens.

6. Proteome Mediated Chlorine Tolerance

During water treatment, the interactions of reactive chlorine with microbial biomolecules
trigger several adaptive responses, which serve to prevent severe cellular damage, promoting
resistance. Some of these include the release of detoxifying enzymes, chaperones activation,
protein and DNA repair mechanisms, and changes in membrane conformation, among
others. The activation of chaperone (heat-shock proteins, e.g., Hsp33, CnoX and RidA)
for instance, prevents the misfolding of other proteins and the formation of lethal protein
aggregation in response to the accumulation of protein unfolding intermediates caused by
chlorine disinfection [63]. Hsp33 is the most studied chaperone, which is specifically activated
as a response to the production of unfolding proteins by chlorination, although initiated
to a lesser degree by other oxidizing agents [64,65]. Similarly, a number of transcriptional
regulators, including HypT, NemR and RclR, which are crucial for microbial survival, are
activated by oxidizing agents [66]. However, the specific roles of the genes regulated by these
factors remain unclear. Overall, chlorine resistance is believed to be mediated by oxidative
stress regulons, universal stress response rpoS-regulon and heat shock proteins. Wang and
colleagues [67] noted that there is overlap between the putative mechanisms of heat resistance
and chlorine resistance in E. coli, although the extent to which this overlap occurs has not been
confirmed experimentally.

7. Biofilm and Pathogen Survival in Water Treatment

Biofilm is an adaptive mechanism of disinfection tolerance and has a long history in
water treatment. The cells in a biofilm constantly interact and coordinate their activities
efficiently by cell-to-cell contact or indirectly, via the release of signaling molecules, a
process known as quorum sensing (QS) [68]. The biofilm microbial consortia are shielded



Antibiotics 2022, 11, 564 8 of 14

by the extracellular polymeric substances (EPSs), thereby protecting them from chlorine,
antimicrobials, increased temperatures and other stressful conditions. Upon maturation,
portions of the biofilm can detach and be delivered to the end-users, which may permit
a possible outbreak of waterborne disease [69]. Unfortunately, it is almost impossible to
totally eradicate biofilm formation in water treatment and distribution systems; therefore,
a number of factors to control their growth should be carefully considered. Some of
these factors include nutrient availability in water, surface topography and pipe materials,
hydrodynamics of the distribution network, pH, temperature, and disinfectant residual [70].
Figure 4 illustrates the various stages involved in the biofilm microbiological buildup.
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Resistance and Pathogen Protection in Biofilms

Microbial biofilm resistance has numerous health, environmental and economic impli-
cations, such as water distribution system clogging, biofouling, food-processing disruptions,
oil recovery, decay of water pipes and clinical implants, among others [71]. Microbial cells
embedded in biofilms often show varying phenotypic characteristics, such as increased
resistance to biocidal agents compared to planktonic cells. The exact mechanism of biofilm
resistance remains unclear. The process, however, has been described as multifactorial
involving the spatial distribution and organization of the biofilm architecture [38]. While
numerous studies have concentrated on biofilm resistance to antibiotics [72–74], very mini-
mal information exists on biofilm resistance to other biocides including disinfectants such
as chlorine. Generally, resistance to biocides may be phenotypic (tolerance), genotypic or
intrinsic in nature. For instance, the multilayered EPSs and microbial cells in a biofilm
may constitute a very complex and compact barrier, making it difficult for the biocide
to penetrate and reach the inner cells, thereby hampering its efficacy [75]. Additionally,
glycocalyx or capsule, found in both Gram-positive and Gram-negative bacteria, can accu-
mulate biocide molecules up to 25% of its weight [74], and can provide protection against
antimicrobials in a biofilm [73].

Apart from the physical and structural barriers which biofilm provides, the preferential
expression of some specific genes within biofilms can contribute to resistance. The upregulation
of the ndvB gene that codes for a glucosyltransferase, an enzyme that catalyzes the production
of periplasmic β-(1→3)-cyclic glucans, for example, is specifically noted in biofilms [76]. The
glucans presumably sequester antibiotics away from their cellular target in the periplasm [77].
Moreover, ndvB upregulation is involved in the expression of some biofilm-specific genes
associated with ethanol oxidation, and these genes may additionally play specific roles in
biofilm resistance. Even though the upregulation of the ndvB gene is associated with biofilm,
the mechanisms involved in its control and regulations are not known [78]. Understanding the
genetic and physiological requirements for this biofilm-specific gene expression may serve as a
potential tool in reducing biocide and antimicrobial resistance.
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8. Multidrug Efflux Pumps Induction and Biocide Resistance

Some efflux pumps are expressed constitutively at low levels, thereby contributing to
intrinsic resistance in microbial cells. Active efflux pumps may also contribute to high levels
of resistance due to their overexpression in the presence of an effector molecule. Overex-
pression of multidrug efflux pumps may, however, be transient in nature [79]. While efflux
pumps have mostly been associated with antibiotic resistance in pathogens, it is worthy
to note that they can non-selectively extrude diverse compounds, including heavy metals,
antiseptics, disinfectants, dyes, toxins, organic pollutants, metabolites, quorum sensing
signaling molecules, neurotransmitters and quaternary ammonium compounds [80,81].
Structurally, an efflux pump is made up of four major components of an outer membrane
protein, a middle periplasmic protein, an inner membrane protein and a transmembrane
duct. As depicted in Figure 5, the outer and the inner membranes stabilize the channel (duct)
in a closed state through their interaction with the periplasmic membrane protein [82]. The
system is activated when a substance is transported, e.g., drug binds to the inner membrane
protein, which then activates a cascade of biochemical events leading to the opening of
the channel and eventual expulsion of the drug molecules. The protein-protein interaction
generates the required energy by exchanging the molecule for a hydrogen ion (H+) [83].
Depending on the secondary structure, energy source, homology of amino acids and size,
active efflux systems are classified into five different families (Figure 5). These include
the ATP-binding cassette (ABC), the major facilitator superfamily (MFS), the resistance-
nodulation division superfamily (RND), the small multidrug resistance family (SMR) and
the multi antimicrobial and toxic compound extrusion protein family (MATE) [84].
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The MFS transporters are also referred to as uniporter-symporter-antiporter (USA)
family and represent the largest efflux family with an extraordinary broad-spectrum sub-
strate affinity [85]. The SMR proteins are one of the smallest efflux systems with lengths
ranging from about 100 to 140 amino acids. They are often inherited chromosomally but
have also been found encoded by prophages, conjugative plasmids as well as Class I and
Class III integrons. E. coli ethidium multidrug resistance protein E (EmrE) is one of the most
characterized members of this protein family [80]. The most intensively characterized RND
protein efflux system is the AcrAB-TolC, described in Gram-negative bacteria, including
E. coli K-12 and Salmonella enterica serovar Typhimurium SH5014. It is made up of a periplas-
mic protein, AcrA, anchored to the inner membrane, twelve transmembrane α-helices and
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two large hydrophilic loops AcrB transporters, and the TolC outer membrane protein, which
forms a channel allowing substrates to diffuse across the outer membrane. Most members
of the RND family contain large polypeptides with 700–1300 amino acid residues [86]. The
MATE proteins were initially identified in Vibrio parahaemolyticus and, subsequently, in
many other cells, including humans [87]. MATE majorly transports cationic substrates,
including clinically important drugs. The ABC transporters are energy-dependent and are
found in all life forms. Seven distinct subfamilies of these transporters have been classified
phylogenetically from ABCA to ABCG [88]. The proteins can transport a wide range of
substrates and are characterized by two nucleotide-binding domains and two transmem-
brane domains. Overexpression of the ABC transporter proteins has been associated with
increased extrusion of chemotherapeutic agents and multidrug resistance cases [89].

The expression of efflux is tightly regulated, and its induction can be achieved ei-
ther in the presence of a right inducer molecule transiently or by mutations of the genes
which downregulate their expression constitutively [90]. While a single efflux system is
capable of conferring resistance to multiple biocidal agents, simultaneous induction of
multiple efflux pumps has been identified in bacteria strains such as P. aeruginosa and
Stenotrophomonas maltophilia strains, thus conferring both unique and overlapping bio-
cide and drug selectivity [91,92]. Efflux systems are a growing clinical concern due to
the possible co-existence of an assortment of diverse pump systems in clinically relevant
microbial pathogens. The systems can also be easily spread on conjugative plasmids and
other mobile genetic elements further underlining their importance in resistance biology.
The redundant (overlapping) substrate recognition and drug polyspecificity nature of the
efflux pump systems, coupled with their cross-resistance activities to varieties of biocides
and antimicrobials are particularly prominent in Gram-negative pathogens such as the
Enterobacteriaceae family. These group of enteric bacteria can survive and persist in soil,
and aquatic environments, and are able to acquire biocide adaptation through chronic sub-
lethal concentration exposure [80]. Due to the important role active efflux mechanisms play
in resistance, the development of antimicrobials that target efflux systems and effectively
inhibit their activities has been considered a potential control strategy to tackle the problem
of resistance in microorganisms.

9. Conclusions and Future Directives

The endless problem of resistance proliferation among clinically relevant waterborne
pathogens is a worrisome topic that necessitates the improvement of contemporary and
next-generation treatment procedures. Since the turn of the century, large-scale chlorination
has helped in maintaining the microbiological quality of public water supplies. Even
though this has recorded many gains, conflicting reports continue to emanate on the role
chlorination plays in the enhancement of AMR genes and resistant microorganisms in
aquatic environments. While chlorine has been effective in reducing outbreaks of water-
borne diseases, the molecular mechanisms underlining its roles in promoting the evolution
and spread of resistance remain a grey area, with its attendant ecological and public health
implications. Cross-resistance and co-resistance are important phenomena in the associ-
ations between chlorine and AMR. Similarly, proteome-mediated chlorine resistance has
been described in some bacterial species while non-specific expression of multidrug efflux
mechanisms and biofilm formation are other processes identified in waterborne pathogen
resistance. Despite the various efforts toward understanding disinfection resistance among
waterborne pathogens, a huge evidence-based gap at substantiating the exact links between
chlorine disinfection and AMR spread exists. Unfortunately, there is still no standardized
method to evaluate microbial chlorine resistance making the comparison of chlorine re-
sistance challenging. In light of the above and the widespread observation of reduced
disinfection efficacy of chlorine at the recommended dose, further investigation is crucial
to more accurately explicate chlorine resistance mechanisms and the relationship between
AR and chlorine resistance/tolerance for more rational water disinfection approaches with
a view to improve its efficacy or develop novel strategies.
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