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Abstract: Outer membrane (OM) drug impermeability typically associated with a molecular weight
above 600 Da and high hydrophobicity prevents accumulation of many antibiotics in Gram-negative
bacteria (GNB). Previous studies have shown that ultrashort tetrabasic lipopeptides (UTBLPs) contain-
ing multiple lysine residues potentiate Gram-positive bacteria (GPB)-selective antibiotics in GNB by
enhancing OM permeability. However, there is no available information on how N-substitution at the
ζ-position of lysine in UTBLPs affects antibiotic potentiation in GNB. To study these effects, we pre-
pared a series of branched and linear UTBLPs that differ in the degree of N-ζ-methylation and studied
their potentiating effects with GPB-selective antibiotics including rifampicin, novobiocin, niclosamide,
and chloramphenicol against wild-type and multidrug-resistant GNB isolates. Our results show that
increasing N-ζ-methylation reduces or abolishes the potentiating effects of UTBLPs with rifampicin,
novobiocin, and niclosamide against GNB. No trend was observed with chloramphenicol that is
largely affected by efflux. We were unable to observe a correlation between the strength of the
antibiotic potentiating effect to the increase in fluorescence in the 1-N-phenylnaphthylamine (NPN)
OM permeability assay suggesting that other factors besides OM permeability of NPN play a role in
antibiotic potentiation. In conclusion, our study has elucidated crucial structure–activity relationships
for the optimization of polybasic antibiotic potentiators in GNB.

Keywords: outer membrane permeabilizer; antibiotic potentiator; antibiotic adjuvant; novobiocin;
rifampicin; niclosamide; Pseudomonas aeruginosa; Acinetobacter baumannii; Escherichia coli

1. Introduction

Bacterial resistance to antibiotics is a major global health problem [1]. Currently,
carbapenem-resistant Pseudomonas aeruginosa (CRPA), carbapenem-resistant Acinetobacter
baumannii (CRAB), and carbapenem-resistant Enterobacteriaceae (CRE) are among the pri-
ority pathogens that pose the greatest threat to human health [2,3]. These Gram-negative
bacteria (GNB) are frequently multidrug-resistant (MDR) and have become resistant to
most antibiotics. Despite large investments into antibiotic discovery, no new drug class
with novel modes of action against GNB has been approved in 50 years [4,5]. This failure
is caused by intrinsic resistance mechanisms that prevent antibiotics from achieving the
necessary intracellular concentration required to induce cell death [6]. Two major resistance
mechanisms, low outer membrane (OM) permeability and efflux, control the intra-bacterial
concentration of antibiotics in GNB [6,7]. In contrast to Gram-positive bacteria (GPB), GNB
possess two membranes with orthogonal permeability [7]. The OM, characterized by the
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presence of a highly polar hydrophilic coat of lipopolysaccharides (LPS) in the outer leaflet
and polar porin channels, permits the passage of only polar and low molecular weight com-
pounds below 600 Da. In contrast, the inner membrane, devoid of LPS, typically requires
non-polar and hydrophobic molecules for efficient lipid bilayer permeation [7]. Moreover,
the passage of molecules through the OM is a rather slow process that when combined
with elevated expression of multidrug efflux pumps, the intracellular concentration of
antibiotics becomes synergistically reduced [6,7]. Recently, predictive compound accumu-
lation rules for antibiotics have emerged for GNB like Escherichia coli [8]. Computational
analysis of results revealed that compounds are most likely to accumulate within the cell
containing one or more (primary) amino functions, and which are amphiphilic and rigid
(low globularity) [8]. Unfortunately, these accumulation rules do not apply to intrinsically
resistant organisms and bacteria with elevated expression of multidrug efflux pumps [8].

The OM permeability constraints of GNB prevent many hydrophobic antibiotics with
a molecular weight above 600 Da from accumulating in the cell effectively. GPB-selective
antibiotics such as rifampicin (RIF), novobiocin (NOV), niclosamide (NIC), and others are
inactive against GNB for this reason [6,7]. However, the apparent OM impermeability of
many GPB-selective antibiotics can be overcome with the use of helper molecules termed
OM permeabilizers (OMPs) [9]. Ideal OMPs typically possess low antibacterial activity
that is hypothesized to prevent rapid resistance development [6]. An interesting feature of
OMPs is its synergistic relationship with GPB-selective antibiotics. It is theorized that OMPs
destabilize the OM, resulting in an increase of the intra-bacterial concentration of antibiotics,
thereby potentiating the antibacterial effect of the GPB-selective antibiotic. However, the
synergistic effect of the GPB-selective antibiotic on the OMP is not understood. Over
the years, several OMPs have been described, which sensitize GPB-selective antibiotics
against GNB [9]. Most of the known OMPs are amphiphilic polybasic molecules that
contain hydrophobic functions, and two or more basic amino or guanidino functions.
Examples include peptidic OMPs derived from the polymyxin family [9,10], antimicrobial
peptides [11], antimicrobial peptidomimetics [12], and amphiphilic aminoglycosides [13,14].
Recently, we have shown that ultrashort tetrabasic lipopeptides (UTBLPs) sensitize GPB-
selective antibiotics against GNB [15]. For instance, it was possible to reduce the minimal
inhibitory concentration (MIC) of RIF and NOV in combination with UTBLPs against CRPA,
CRAB, and CRE to concentration levels that can be achieved in human blood, indicating
that antibiotic + OMP combinations may possess therapeutic potential [15]. Moreover,
preclinical and clinical investigations are in support for further validation of the antibiotic +
OMP combination strategy [16,17]. For example, the human safety and pharmacokinetics of
polymyxin-derived tribasic lipopeptide SPR741 were demonstrated in a Phase 1 study [18].
Perhaps the best-known OMP is PMBN, a polymyxin-based pentabasic nonapeptide devoid
of the acyl chain present in polymyxins. PMBN has very weak antibacterial activity, but
sensitizes many classes of antibiotics in GNB [19].

The amphiphilic character of OMPs is essential to its activity. Hydrophobicity is
generally imparted by residues such as alanine, leucine, and phenylalanine among others.
Incorporation of fatty acids has also been shown to enhance membrane permeabiliza-
tion [20–22]. The acyl chain likely helps anchor the peptide into the OM by interacting with
the lipid chains of the LPS [22]. Indeed, the presence of an acyl chain improves the activity
of several antimicrobial peptides such as daptomycin, dalbavancin, and polymyxins [21,22].
Majority of polybasic OMPs contain primary amino and unsubstituted guanidino functions
that impart polarity to the molecule. Peptidic polyamine-based OMPs can be rapidly
generated by incorporation of diaminobutyric acid, ornithine, and lysine building blocks
into peptides using solid or solution phase chemistry. Bivalent positively charged metal
ions (Mg2+ or Ca2+) in the outer leaflet of GNB are presumably displaced by the positively
charged amino groups in polyamine-based OMPs, resulting in a transient destabilization
of the LPS packing of the OM, and subsequent facilitation of antibiotics into the periplasm
of GNB [23].
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The effect of substituted amino functions on antibacterial activity, hemolytic activity,
and enzymatic degradation in polymers and peptides have been previously studied [24–26].
It was shown that compounds containing secondary or tertiary amines were less hemolytic
than their primary amino counterparts [24–26]. Likewise, alkylation of the amino groups of
Lys resulted in improved resistance to proteolysis [25,26]. However, it is currently unknown
how the nature of the amino function (primary, secondary, tertiary, and quaternary) in
peptidic OMPs affects the permeability and potentiation of GPB-selective antibiotics in
GNB. To study these effects, we prepared a series of lysine-N-ζ-methylated ultrashort
tetrabasic lipopeptides (UTBLPs) and studied their synergistic relationship with RIF, NOV,
and NIC. Our data demonstrate that an increase in N-ζ-methylation of lysine reduces the
potentiating effects of UTBLPs with GPB-selective antibiotics in GNB. These results provide
critical information for the design and optimization of polyamine-based OMPs.

2. Results
2.1. Synthesis of UTBLPs 1–8

To study how N-ζ-substitution of lysine affects the potentiation of GPB-selective
antibiotics, two classes of UTBLPs were prepared (Figure 1).
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Figure 1. Structures of (a) branched and (b) linear UTBLPs.

Class A (compounds 1–4) consists of a branched peptide backbone, while class B
(compounds 5–8) contains a linear peptide backbone. The branched peptide backbone was
generated by incorporation of bis(3-aminopropyl)glycine into the growing peptide chain.
Note that bis(3-aminopropyl) glycine also contains a tertiary amine, providing an additional
protonizable group. Previous studies have shown that incorporation of bis(3-aminopropyl)
glycine into UTBLP enhances the proteolytic stability of UTBLPs [15]. Lysine was selected
as the parent amino acid due to the commercial availability of various N-ζ-methylated
amino acid building blocks. A tetrabasic peptide scaffold containing two hydrophobic
octanoyl residues was selected as this scaffold showed optimal potentiation of GPB-selective
antibiotics and minimal cytotoxicity in previous studies [15]. The peptides were assembled
using solid phase peptide synthesis (SPPS) on a Rink amide 4-methylbenzyhdrylamine
(MBHA) resin following a fluorenylmethyloxycarbonyl (Fmoc) strategy [27].

2.2. Antibacterial Activity of UTBLPs

The standalone antibacterial activity of UTBLPs 1–8 was determined against a series
of wild-type GNB and GPB (Table 1).
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Table 1. Antibacterial activity of UTBLPs 1–8 against wild-type GNB and wild-type GPB.

Organism
MIC (µg/mL)

1 2 3 4 5 6 7 8

P. aeruginosa PAO1 >128 >128 >128 >128 >128 >128 >128 >128

A. baumannii ATCC 17978 >128 >128 >128 >128 64 64 128 >128

E. coli ATCC 25922 >128 >128 >128 >128 64 32 64 >128

S. aureus ATCC 29213 64 128 >128 >128 64 128 >128 >128

MRSA ATCC 33592 128 >128 >128 >128 64 >128 >128 >128

E. faecalis ATCC 29212 128 >128 >128 >128 32 32 64 128

E. faecium ATCC 27270 64 >128 >128 >128 32 64 128 128

Our results demonstrate that UTBLPs 1–8 possess low antibacterial activity against
wild-type GNB including P. aeruginosa PAO1, A. baumannii ATCC 17978, and E. coli ATCC
25922 (MIC ≥ 32 µg/mL). Slightly improved antibacterial activity (MIC ≥ 16 µg/mL) was
seen against wild-type GPB including Staphylococcus aureus, Enterococcus faecalis, and Entero-
coccus faecium. Overall, the linear UTBLP 5 and 6 showed slightly improved antibacterial
activity when compared to their branched counterparts 1 and 2 (Table 1). We also tested
the antibacterial activity of the peptides against MDR GPB clinical isolates of Staphylococcus
epidermidis and MDR GNB clinical isolates of P. aeruginosa, A. baumannii, E. coli, Enterobacter
cloacae, and Klebsiella pneumoniae. Overall, these studies show that UTBLPs 1–8 display com-
parable MIC activities against MDR GNB (MIC ≥ 32 µg/mL) and GPB (MIC ≥ 8 µg/mL)
when compared to wild-type organisms (Table S1).

2.3. Synergistic Effects of UTBLPs with RIF, NOV, NIC, and CHL against GNB

The low antibacterial activity of UTBLPs 1–8 prompted us to explore the potentiating
effects of the compounds in combination with GPB-selective antibiotics against wild-
type GNB. RIF and NOV were selected as examples of GPB-selective antibiotics as both
antibiotics are inactive against GNB [15]. NIC was selected because it has been shown to
synergize with polymyxins and overcome polymyxin resistance in polymyxin-resistant
GNB [28]. Chloramphenicol (CHL) was selected as an antibiotic that is greatly affected
by efflux [29]. The combination studies were performed by fixing the concentration of
the UTBLPs to 6 µM, which is below 1

4 MIC required for synergistic activity. Our results
demonstrate a clear trend in the potentiating power of the various UTBLPs in combination
with GPB-selective antibiotics (Figure 2). Independent of the organism and antibiotic
used, the order of potentiation follows the order 1 > 2 >3 > 4 for branched peptides and
5 > 6 > 7 > 8 for linear peptides for the antibiotics RIF and NOV (Figure 2a,b). A similar
trend is seen for NIC except for P. aeruginosa PAO1, where no potentiation is seen for
peptides 1–4 (Figure 2c). No clear trend can be observed with CHL except for P. aeruginosa
PAO1 (Figure 2d). Overall, this study indicates that increasing N-ζ-methylation of lysine
in UTBLPs decreases the potentiation of RIF, NOV, and NIC in wild-type GNB. Next, we
explored whether the effects observed in wild-type GNB can be extrapolated to clinical
MDR and carbapenem-resistant GNB isolates including CRPA, CRAB, and CRE. As shown
in Figure 3a,b, we were able to confirm the same trend in MDR GNB isolates as previously
observed for wild-type organisms. In general, the N-ζ-unmethylated UTBLPs displayed
higher potentiation when compared to mono- and di-methylated compounds. The lowest
potentiation was consistently observed with the tri-N-ζ-methylated analogs 4 and 8. We
also determined the fractional inhibitory concentration index (FICI) of compounds 1–8 with
RIF, NOV, NIC, and CHL against wild-type and MDR GNB isolates (Tables S2 and S3) and
the FICI with CHL against MDR GPB isolates (Table S4) to evaluate interactions between
the two agents. FICI of ≤ 0.5, 0.5 < x ≤ 4, and > 4 were interpreted as synergy, additive,
and antagonistic, respectively [30]. These results confirm that the lowest FICI (highest
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synergy) was consistently observed with unmethylated and mono-methylated UTBLPs
when compared to the di- and tri-methylated analogs. None of the UTBLPs were able to
synergize (FICI > 0.5) CHL against GPB (Table S4) confirming that UTBLPs act selectively
on the OM of GNB. Moreover, the data in Table S4 indicate that UTBLPs 1–8 do not possess
efflux pump inhibitory effects in GPB.
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Figure 2. Potentiation of (a) RIF, (b) NOV, (c) NIC, and (d) CHL by 6 µM UTBLP against wild-type
GNB.
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Figure 3. Potentiation of (a) RIF and (b) NOV by 6 µM UTBLP against a panel of MDR and
carbapenem-resistant GNB isolates.
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2.4. Outer Membrane Permeabilization by UTBLPs 1–8

To determine whether UTBLPs 1–8 increase the intracellular concentration of RIF,
NOV, and NIC by permeabilizing the OM, the ability of the peptides to increase the uptake
of the nonpolar membrane-impermeable fluorescent probe 1-N-phenylnaphthylamine
(NPN) was measured in wild-type A. baumannii ATCC 17978 and E. coli ATCC 25922. NPN
uptake is normally prevented when the OM is intact [14]. Moreover, NPN fluoresces
strongly and weakly in phospholipid and aqueous environments, respectively [14]. For
example, exposure of A. baumannii ATCC 17978 to various concentrations of UTBLPs 1–4
or PMBN (control) resulted in a dose-dependent increase in NPN fluorescence (Figure 4).
This suggests that UTBLPs 1–4 enhance OM permeability of the probe. Comparable dose-
dependent increase in NPN fluorescence was observed with UTBLPs 1–4 in E. coli ATCC
25922 (Figure S1), as well as with UTBLPs 5–8 in A. baumannii ATCC 17978 (Figure S2)
and E. coli ATCC 25922 (Figure S3) indicating that all UTBLPs enhance OM permeability
of the probe in a dose-dependent manner. However, we were unable to correlate the
antibiotic potentiation effects of UTBLPs 1–8 with RIF, NOV, and NIC to the increase in
NPN fluorescence. For instance, the strongest antibiotic potentiators UTBLPs 1, 2, 5, and 6
did not consistently produce the highest NPN fluorescence at equimolar concentrations
(7 µM) (Figure S4). Moreover, the weakest potentiators 4 and 8, which do not or only weakly
potentiate GPB-selective antibiotics, displayed comparable increases in NPN fluorescence
when compared to potentiators 1, 2, 5, and 6.
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Figure 4. Dose-dependent increase in fluorescence of NPN in the presence of (a) UTBLP 1, (b) UTBLP
2, (c) UTBLP 3, (d) UTBLP 4, and PMBN (control) in A. baumannii ATCC 17978.
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3. Discussion

The development of OMPs to potentiate GPB-selective antibiotics against clinically rel-
evant GNB is a promising combination strategy to overcome bacterial resistance [6,9,10,16].
Majority of known OMPs are polycationic amphiphiles with two or more positive charges
where the cationic character is derived from protonation of amino or guanidino functions.
Polyamine-based OMPs occur as antimicrobial peptides, antimicrobial peptidomimet-
ics, aminoglycoside-based amphiphiles, cationic lipids, and detergents [6,9,10,12–16].
Polyamine-based OMPs are believed to destabilize the OM by displacing bivalent cations
(Mg2+ or Ca2+), which are stabilizing counterions for the phosphate groups of lipid A and
the phosphorylated core sugars that prevent repulsion between and among individual
LPS molecules. This leads to a localized disruption of LPS in the OM allowing non-porin
mediated passage of antibiotics into the periplasm [19,23,31,32]. Prior to this study, there
was no information available on how N-alkylation of polyamine-based OMPs affects the po-
tentiation of GPB-selective antibiotics. We studied this effect for the first time in a systematic
fashion by preparing a series of UTBLPs via incorporation of various N-ζ-methylated lysine
analogs into branched and linear peptide backbone scaffolds. Our results demonstrate that
an increase in N-ζ-methylation in UTBLPs reduces the potentiation of RIF, NOV, and NIC
in clinically relevant wild-type and MDR GNB. Hydrophobicity and a molecular weight
above 600 Da, such as in the antibiotics RIF and NOV, reduce or prevent porin-mediated
permeation through the OM. In contrast, NIC is a hydrophobic GPB-selective antibiotic
with a molecular weight below 600 Da [28]. Previous studies have shown that OMPs,
including PMBN and polymyxin-based antibiotics, strongly potentiate NIC against GNB
indicating that the low activity of NIC against GNB is caused by low OM permeability [28].
Interestingly, none of the branched UTBLPs 1–4 potentiate NIC in P. aeruginosa PAO1. This
suggests different requirements for UTBLPs to potentiate NIC against P. aeruginosa PAO1
when compared to other wild-type GNB. In contrast to RIF, NOV, and NIC, no potentiation
trend can be observed with UTBLPs 1–8 in combination with CHL against A. baumannii
ATCC 17978 and E. coli ATCC 25922. This likely reflects that OM permeability of CHL is
less important for these organisms when compared to P. aeruginosa PAO1. The fact that
CHL is potentiated in P. aeruginosa PAO1 by UTBLPs in the order 1 > 2 > 3 > 4 and 5 > 6 > 7
> 8 reflects the greatly reduced OM permeability of P. aeruginosa when compared to other
GNB [24,25]. Moreover, we were unable to correlate the antibiotic potentiation effects of
equimolar UTBLPs 1–8 with RIF, NOV, and NIC to an increase in NPN fluorescence in the
OM permeability assay. This indicates that other factors besides OM permeability control
the potentiation effects of RIF, NOV, and NIC in GNB. Our study shows that the nature
of the peptide backbone can influence the potentiation effect of RIF, NOV, and NIC. For
instance, we typically observed a two- to four-fold increase in potentiation of antibiotics in
the linear UTBLPs 5–8 when compared to the branched UTBLPs 1–4. Whether the reduced
potentiating effects of the branched UTBLPs 1 and 2 reflects different peptide backbone
topology or reflects a reduced number of primary or secondary amino groups in UTBLPs
1 and 2 when compared to 5 and 6 needs to be further explored. In summary, our results
indicate that the most effective antibiotic potentiator molecules to potentiate RIF, NOV, and
NIC against GNB are UTBLPs with three or more primary amino functions.

4. Materials and Methods
4.1. Materials

The Rink amide MBHA resin, Fmoc-L-Lys(Me)3-OH, and Fmoc-L-Lys(Fmoc)-OH were
purchased from Sigma-Aldrich (St Louis, MO, USA). Fmoc-L-Lys(Boc)-OH was purchased
from AK Scientific (Union City, CA, USA), Fmoc-L-Lys(Me,Boc)-OH from Biosynth Car-
bosynth (Newbury, UK), Fmoc-L-Lys(Me)2-OH from Bachem (Bubendorf, Switzerland),
and N,N-bis(N′-Fmoc-3-aminopropyl)glycine potassium hemisulfate from Chem-Impex
(Wood Dale, IL, USA). All other reagents and solvents were obtained from commercial
sources and used without further purification.
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4.2. Preparation of UTBLPs 1-8

All UTBLPs were prepared by Fmoc SPPS [27] and as previously described [15,33].
The N-terminus of the amino acids was protected with Fmoc. The-N-ζ-amino function
in unmethylated or N-ζ-monomethylated Lys were protected with tert-butyloxycarbonyl
(Boc), while no side chain protecting group was necessary for N-ζ-dimethylated and
N-ζ-trimethylated Lys building blocks. The Rink amide MBHA resin was loaded on
the peptide synthesis vessel and was subjected to 20% piperidine to remove Fmoc. The
first protected amino acid (3 mol. eq.) was mixed with O-(benzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium tetrafluoroborate (3 mol. eq.), and N-methylmorpholine (8 mol. eq.)
in DMF for 5 min. Once the Fmoc-amino acid was activated, the solution was transferred to
the resin and gently agitated with nitrogen gas for 45 min. The Fmoc removal and coupling
steps were repeated for the addition of the succeeding amino acids and fatty acids. The
chloranil test (2% chloranil in DMF) was performed on a small amount of resin to determine
whether the reactions reached completion. Deprotection of sidechain protecting groups
and peptide cleavage was achieved using 95% trifluoroacetic acid (TFA) affording solid
compounds as TFA salts.

The crude was purified via reverse-phase flash chromatography using a solvent
system of 55% methanol spiked with 0.1% TFA. Chemical characterization and purity
of the compounds were assessed with nuclear magnetic resonance (NMR) spectroscopy
on a Bruker AMX-500 (Germany), and matrix-assisted laser desorption ionization mass
spectrometry on a Bruker Ultraflextreme (Germany) or by electrospray ionization mass
spectrometry on a Bruker Compact (Germany). The NMR spectra are provided in the
Supplementary Material.

4.2.1. Chemical Characterization of UTBLP 1
1H NMR (500 MHz, MeOD) δ 4.38–4.29 (m, 1H, Lys1-α), 4.23–4.12 (m, 2H, Lys2,3-α),

4.10–3.98 (m, 2H, Linker-1), 3.43–3.31 (m, 2H, Linker-2,4), 3.29–3.15 (m, 6H, Linker-2,4),
3.02–2.85 (m, 6H, Lys1,2,3-ε), 2.34–2.18 (m, 4H, Aliphatic-a), 1.99–1.88 (m, 4H, Linker-3),
1.88–1.76 (m, 3H, Lys1,2,3-β), 1.76–1.63 (m, 9H, Lys1,2,3-β + Lys1,2,3-δ), 1.63–1.56 (m, 4H,
Aliphatic-b), 1.54–1.38 (m, 6H, Lys1,2,3-γ), 1.37–1.21 (m, 16H, Aliphatic-c), 0.94–0.83 (m, 6H,
Aliphatic-d).

13C NMR (126 MHz, MeOD) δ 175.25, 174.67, 173.89, 164.82 (carbonyl), 53.75 (Lys2,3-α),
53.53 (Linker-1), 53.45 (Lys1-α), 53.05 (Linker-2,4), 39.01 (Lys2,3-ε), 38.99 (Lys1-ε), 35.53
(Linker-2,4), 35.48 (Aliphatic-a), 31.47 (Aliphatic-c), 31.02, 30.78 (Lys1,2,3-β + Lys1,2,3-δ),
28.95, 28.71 (Aliphatic-c), 26.75, 26.70 (Lys1,2,3-β + Lys1,2,3-δ), 25.47 (Aliphatic-b), 23.95
(Linker-3), 22.59 (Lys2,3-γ), 22.39 (Lys1-γ), 22.24 (Aliphatic-c), 12.98 (Aliphatic-d).

MS (+TOF) m/z: calculated for C42H84N10O6 [M+H]+: 825.665, found: 825.766;
[M+Na]+: 847.647, found: 847.762.

4.2.2. Chemical Characterization of UTBLP 2
1H NMR (500 MHz, MeOD) δ 4.35–4.31 (m, 1H, Lys1-α), 4.22–4.15 (m, 2H, Lys2,3-α),

4.08–3.99 (m, 2H, Linker-1), 3.48–3.31 (m, 2H, Linker-2 + Linker-4), 3.27–3.09 (m, 6H, Linker-
2 + Linker-4), 3.02–2.95 (m, 6H, Lys1,2,3-ε), 2.70–2.65 (m, 9H, methyl), 2.28–2.21 (m, 4H,
Aliphatic-a), 1.91 (m, 4H, Linker-3), 1.85–1.64 (m, 12H, Lys1,2,3-β + Lys1,2,3-δ), 1.62–1.55 (m,
4H, Aliphatic-b), 1.53–1.39 (m, 6H, Lys1,2,3-γ), 1.35–1.27 (m, 16H, Aliphatic-c), 0.92–0.86 (m,
6H, Aliphatic-d).

13C NMR (126 MHz, MeOD) δ 175.24, 174.58, 173.84, 164.80 (carbonyl), 53.68 (Lys2,3-α),
53.54 (Linker-1), 53.39 (Lys1-α), 53.06 (Linker-2,4), 48.64 (Lys2,3-ε), 48.60 (Lys1-ε), 35.53
(Linker-2,4), 35.39 (Aliphatic-a), 32.12 (methyl), 31.47 (Aliphatic-c), 31.03, 30.77 (Lys1,2,3-β +
Lys1,2,3-δ), 28.96, 28.72 (Aliphatic-c), 25.48 (Aliphatic-b), 25.32, 25.26 (Lys1,2,3-β + Lys1,2,3-δ),
23.96 (Linker-3), 22.59 (Lys2,3-γ), 22.39 (Lys1-γ), 22.24 (Aliphatic-c), 12.98 (Aliphatic-d).

MS (+TOF) m/z: calculated for C45H90N10O6 [M+H]+: 867.712, found: 867.800;
[M+Na]+: 889.694, found: 889.797; [M+K]+: 905.803, found: 905.793.



Antibiotics 2022, 11, 335 10 of 14

4.2.3. Chemical Characterization of UTBLP 3
1H NMR (500 MHz, MeOD) δ 4.36–4.31 (m, 1H, Lys1-α), 4.23–4.16 (m, 2H, Lys2,3-α),

4.12–3.94 (m, 2H, Linker-1), 3.38–3.30 (m, 2H, Linker-2 + Linker-4), 3.29–3.16 (m, 6H, Linker-
2 + Linker-4), 3.15–3.08 (m, 6H, Lys1,2,3-ε), 2.88–2.85 (m, 18H, methyl), 2.31–2.22 (m, 4H,
Aliphatic-a), 1.96–1.88 (m, 4H, Linker-3), 1.87–1.65 (m, 12H, Lys1,2,3-β + Lys1,2,3-δ), 1.63–1.56
(m, 4H, Aliphatic-b), 1.52–1.38 (m, 6H, Lys1,2,3-γ), 1.35–1.25 (m, 16H, Aliphatic-c), 0.96–0.84
(m, 6H, Aliphatic-d).

13C NMR (126 MHz, MeOD) δ 175.22, 174.58, 173.79, 164.80 (carbonyl), 57.24 (Lys2,3-
ε), 57.20 (Lys1-ε), 53.61 (Lys2,3-α), 53.54 (Linker-1), 53.37 (Lys1-α), 53.08 (Linker-2,4), 41.97
(methyl), 35.54 (Linker-2,4), 35.40 (Aliphatic-a), 31.47 (Aliphatic-c), 31.01, 30.76 (Lys1,2,3-β +
Lys1,2,3-δ), 28.97, 28.72 (Aliphatic-c), 25.48 (Aliphatic-b), 23.94 (Linker-3), 23.72, 23.63 (Lys1,2,3-β
+ Lys1,2,3-δ), 22.53 (Lys2,3-γ), 22.35 (Lys1-γ), 22.24 (Aliphatic-c), 12.98 (Aliphatic-d).

MS (+TOF) m/z: calculated for C48H96N10O6 [M+H]+: 909.759, found: 909.849;
[M+Na]+: 931.503, found: 931.837; [M+K]+: 947.850, found: 947.809.

4.2.4. Chemical Characterization of UTBLP 4
1H NMR (500 MHz, MeOD) δ 4.36–4.32 (m, 1H, Lys1-α), 4.23–4.16 (m, 2H, Lys2,3-

α), 4.09–3.99 (m, 2H, Linker-1), 3.46–3.32 (m, 6H, Lys1,2,3-ε), 3.32–3.31 (m, 1H, Linker-2 +
Linker-4), 3.29–3.19 (m, 7H, Linker-2 + Linker-4), 3.15–3.08 (m, 27H, methyl), 2.30–2.21
(m, 4H, Aliphatic-a), 1.96–1.90 (m, 4H, Linker-3), 1.89–1.67 (m, 12H, Lys1,2,3-β + Lys1,2,3-δ),
1.64–1.56 (m, 4H, Aliphatic-b), 1.51–1.37 (m, 6H, Lys1,2,3-γ), 1.35–1.25 (m, 16H, Aliphatic-c),
0.93–0.84 (m, 6H, Aliphatic-d).

13C NMR (126 MHz, MeOD) δ 175.21, 174.48, 173.72, 164.80 (carbonyl), 66.06 (Lys2,3-
ε), 66.01 (Lys1-ε), 53.58 (Lys2,3-α), 53.51 (Linker-1), 53.39 (Lys1-α), 53.10 (Linker-2,4),
52.13 (methyl), 52.11 (methyl), 52.07 (methyl), 35.56 (Linker-2,4), 35.42 (Aliphatic-a), 31.48
(Aliphatic-c), 31.07, 30.79 (Lys1,2,3-β + Lys1,2,3-δ), 28.98, 28.73 (Aliphatic-c), 25.50 (Aliphatic-
b), 23.96 (Linker-3), 22.44, 22.25 (Lys1,2,3-β + Lys1,2,3-δ), 22.18 (Lys2,3-γ), 22.13 (Lys1-γ), 22.07
(Aliphatic-c), 12.98 (Aliphatic-d).

MS (+TOF) m/z: calculated for C51H105N10O6
3+ [M+TFA]2+: 533.403, found: 533.398.

4.2.5. Chemical Characterization of UTBLP 5
1H NMR (500 MHz, MeOD) δ 4.34–4.24 (m, 4H, Lys1,2,3,4-α), 4.17–4.12 (m, 1H, Lys5-α),

3.17–3.12 (m, 2H, Lys5-ε), 2.98–2.89 (m, 8H, Lys1,2,3,4-ε), 2.29–2.21 (m, 2H, Aliphatic1-a),
2.16 (m, 2H, Aliphatic2-a), 1.90–1.81 (m, 4H, Lys2,3,4,5-β), 1.79–1.72 (m, 4H, Lys2,3,4,5-β),
1.71–1.62 (m, 10H, Lys1-β + Lys1,2,3,4-δ), 1.62–1.55 (m, 4H, Aliphatic1,2-b), 1.54–1.35 (m, 12H,
Lys1,2,3,4,5-γ + Lys5-δ), 1.34–1.25 (m, 16H, Aliphatic1,2-c), 0.93–0.85 (m, 6H, Aliphatic1,2-d).

13C NMR (126 MHz, MeOD) δ 175.48, 175.12, 174.92, 173.84, 172.96, 172.91, 172.58
(carbonyl), 54.22 (Lys5-α), 53.47, 53.42, 53.37, 52.78 (Lys1,2,3,4-α), 39.17, 39.12, 39.07, 39.02
(Lys1,2,3,4-ε), 38.51 (Lys5-ε), 35.77 (Aliphatic2-a), 35.31 (Aliphatic1-a), 31.48, 31.45 (Aliphatic1,2-
c), 31.07, 30.70, 30.68, 30.65, 30.42 (Lys1,2,3,4,5-β), 28.92, 28.87, 28.71, 28.69, 28.65 (Lys5-δ + 4
Aliphatic1,2-c), 26.59, 26.54, 26.51, 26.43 (Lys1,2,3,4-δ), 25.69, 25.49 (Aliphatic1,2-b), 22.87, 22.54,
22.41, 22.32, 22.30, 22.23, 22.22 (Lys1,2,3,4,5-γ + 2 Aliphatic-c), 12.98, 12.97 (Aliphatic1,2-d).

MS (+TOF) m/z: calculated for C46H91N11O7 [M+H]+: 910.718, found: 910.718;
[M+Na]+: 933.700, found: 932.700; [M+2H]2+: 455.862, found: 455.867.

4.2.6. Chemical Characterization of UTBLP 6
1H NMR (500 MHz, MeOD) δ 4.35–4.20 (m, 4H, Lys1,2,3,4-α), 4.18–4.12 (m, 1H, Lys5-α),

3.18–3.11 (m, 2H, Lys5-ε), 3.07–2.88 (m, 8H, Lys1,2,3,4-ε), 2.81–2.55 (m, 12H, methyl), 2.30–
2.20 (m, 2H, Aliphatic1-a), 2.19–2.13 (m, 2H, Aliphatic2-a), 1.95–1.82 (m, 4H, Lys2,3,4,5-β),
1.82–1.73 (m, 4H, Lys2,3,4,5-β), 1.73–1.64 (m, 10H, Lys1-β + Lys1,2,3,4-δ), 1.62–1.55 (m, 4H,
Aliphatic1,2-b), 1.55–1.35 (m, 12H, Lys1,2,3,4,5-γ + Lys5-δ), 1.35–1.22 (m, 16H, Aliphatic1,2-c),
0.99–0.75 (m, 6H, Aliphatic1,2-d).

13C NMR (126 MHz, MeOD) δ 175.38, 175.05, 174.89, 173.73, 172.83, 172.77, 172.51
(carbonyl), 54.12 (Lys5-α), 53.25, 53.23, 53.20, 52.77 (Lys1,2,3,4-α), 48.69, 48.66, 48.64, 48.59
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(Lys1,2,3,4-ε), 38.51 (Lys5-ε), 35.78 (Aliphatic2-a), 35.34 (Aliphatic1-a), 32.21, 32.19, 32.17,
32.15 (methyl), 31.48, 31.46 (Aliphatic1,2-c), 31.09, 30.75, 30.70, 30.48, 30.31, 28.93, 28.88,
28.73, 28.70 (Lys1,2,3,4,5-β + 4 Aliphatic1,2-c), 25.70, 25.57, 25.53, 25.49, 25.16, 25.12, 25.09
(Lys1,2,3,4,5-δ + 2 Aliphatic1,2-b), 22.89, 22.49, 22.41, 22.37, 22.29, 22.24, 22.23 (Lys1,2,3,4,5-γ +
2 Aliphatic1,2-c), 12.98, 12.97 (Aliphatic1,2-d).

MS (+TOF) m/z: calculated for C50H99N11O7 [M+H]+: 966.780, found: 966.781;
[M+2H]2+: 483.894, found: 483.897.

4.2.7. Chemical Characterization of UTBLP 7
1H NMR (500 MHz, MeOD) δ 4.33–4.25 (m, 4H, Lys1,2,3,4-α), 4.19–4.13 (m, 1H, Lys5-α),

3.16–3.09 (m, 10H, Lys1,2,3,4,5-ε), 2.88–2.86 (m, 24H, methyl), 2.30–2.22 (m, 2H, Aliphatic1-a),
2.19–2.14 (m, 2H, Aliphatic2-a), 1.91–1.84 (m, 4H, Lys2,3,4,5-β), 1.82–1.76 (m, 4H, Lys2,3,4,5-β),
1.75–1.64 (m, 10H, Lys1-β + Lys1,2,3,4-δ), 1.62–1.56 (m, 4H, Aliphatic1,2-b), 1.53–1.39 (m, 12H,
Lys1,2,3,4,5-γ + Lys5-δ), 1.34–1.27 (m, 16H, Aliphatic1,2-c), 0.91–0.87 (m, 6H, Aliphatic1,2-d).

13C NMR (126 MHz, MeOD) δ 175.31, 174.97, 174.87, 173.66, 172.76, 172.68, 172.44
(carbonyl), 57.37, 57.35, 57.27, 57.17 (Lys1,2,3,4-ε), 57.16 (Lys5-α), 54.04, 53.14, 53.11, 52.73
(Lys1,2,3,4-α), 42.15, 42.12, 42.03, 41.99, 41.90, 41.88, 41.84, 41.81, 38.52 (Lys5-ε), 35.79 (Aliphatic2-
a), 35.38 (Aliphatic1-a), 31.48, 31.46, 31.12, 30.85, 30.81, 30.76, 30.56, 28.94, 28.88, 28.74, 28.70
(Lys1,2,3,4,5-β + 4 Aliphatic1,2-c), 25.70, 25.55 (Lys1,2,3,4,5-δ + 2 Aliphatic1,2-b), 23.67, 23.63, 23.59,
23.57, 23.53, 22.92, 22.40, 22.36, 22.33, 22.25, 22.23, 22.21 (Lys1,2,3,4,5-γ + 2 Aliphatic1,2-c), 12.99,
12.97 (Aliphatic1,2-d).

MS (+TOF) m/z: calculated for C54H107N11O7 [M+H]+: 1022.843, found: 1022.828;
[M+Na]+: 1044.825, found: 1044.810; [M+2H]2+: 511.925, found: 511.919; [M+2Na]2+:
533.908, found: 533.397.

4.2.8. Chemical characterization of UTBLP 8
1H NMR (500 MHz, MeOD) δ 4.38–4.28 (m, 4H, Lys1,2,3,4-α), 4.21–4.15 (m, 1H, Lys5-α),

3.38–3.30 (m, 8H, Lys1,2,3,4-ε), 3.18–3.15 (m, 2H, Lys5-ε), 3.14–3.05 (m, 36H, methyl), 2.31–2.20
(m, 2H, Aliphatic1-a), 2.19–2.13 (m, 2H, Aliphatic2-a), 1.97–1.87 (m, 4H, Lys2,3,4,5-β), 1.87–1.82
(m, 4H, Lys2,3,4,5-β), 1.81–1.67 (m, 10H, Lys1-β + Lys1,2,3,4-δ), 1.62–1.55 (m, 4H, Aliphatic1,2-b),
1.54–1.37 (m, 12H, Lys1,2,3,4,5-γ + Lys5-δ), 1.34–1.24 (m, 16H, Aliphatic1,2-c), 0.94–0.82 (m, 6H,
Aliphatic1,2-d).

13C NMR (126 MHz, MeOD) δ 175.23, 174.89, 174.85, 173.61, 172.69, 172.62, 172.39
(carbonyl), 66.20, 66.13, 66.12, 66.02 (Lys1,2,3,4-ε), 53.97 (Lys5-α), 53.16, 53.07, 53.04, 52.69
(Lys1,2,3,4-α), 52.15 (methyl), 38.53 (Lys5-ε), 35.79 (Aliphatic2-a), 35.41 (Aliphatic1-a), 31.48,
31.45, 31.17, 30.90, 30.81, 30.77, 30.61, 28.94, 28.88, 28.73, 28.69 (Lys1,2,3,4,5-β + 4 Aliphatic1,2-
c), 25.71, 25.56 (Lys1,2,3,4,5-δ + 2 Aliphatic1,2-b), 23.01, 22.94, 22.38, 22.30, 22.24, 22.22, 22.13,
21.99, 21.95, 21.93, 21.91, 21.84 (Lys1,2,3,4,5-γ + 2 Aliphatic1,2-c), 12.98, 12.97 (Aliphatic1,2-d).

MS (+TOF) m/z: calculated for C58H119N11O7
4+ [M+2TFA]2+: 653.949, found: 653.942.

4.3. Bacterial Strains

Bacterial strains from the American Type Culture Collection (ATCC) include A. bauman-
nii ATCC 17978, E. coli ATCC 25922, Staphylococcus aureus ATCC 29213, methicillin-resistant
S. aureus (MRSA) ATCC 33592, Enterococcus faecalis ATCC 29212, and Enterococcus faecium
ATCC. Methicillin-resistant Staphylococcus epidermidis (MRSE) 61589 was acquired from
the Canadian National Intensive Care Unit (CAN-ICU) surveillance study [34]. Clinical
isolates A. baumannii AB027, E. coli 94393, E. coli 94474, and methicillin-susceptible Staphy-
lococcus epidermidis (MSSE) 81388 were obtained from the Canadian Ward (CAN-WARD)
surveillance study [35].

4.4. Antimicrobial Susceptibility Assay

The in vitro antibacterial activity of the UTBLPs was assessed against wild-type and
clinically isolated bacterial strains. To obtain the MIC of the compounds, the microbroth
dilution susceptibility assay was performed according to the Clinical and Laboratory Stan-
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dards Institute (CLSI, Wayne, PA, USA) guidelines [36] and as previously described [15,33].
Briefly, the compounds at varying concentrations were incubated with bacterial inoculum
(5 × 105 CFU/mL final concentration) at 37 ◦C for 18 h. Growth in the form of turbidity was
confirmed using an EMax Plus microplate reader (Molecular Devices, San Jose, CA, USA) at
590 nm.

4.5. Checkerboard Assay

The synergy of the UTBLPs with various antibiotics was assessed using checkerboard
assay as previously described [15,33]. Briefly, the combination of antibiotic and OMP at
varying concentrations were incubated with bacterial inoculum (5 × 105 CFU/mL final
concentration) at 37 ◦C for 18 h. Growth in the form of turbidity was confirmed using an
EMax Plus microplate reader (Molecular Devices, Union City, CA, USA) at 590 nm. Frac-
tional inhibitory concentration index (FICI) was used to evaluate the interaction between
the antibiotic and the OMP. FICI is the sum of the FIC of the antibiotic and the FIC of the
OMP. The FIC value is calculated by dividing the MIC of the agents in combination by
the MIC of the agent alone. FICI ≤ 0.5 is synergistic, 0.5 < x ≤ 4 is additive, and >4 is
antagonistic [30].

4.6. OM Permeabilization Assay

The ability of UTBLPs to permeabilize the OM was assessed using NPN as previously
described with minor modifications [13,15,33,37]. In brief, NPN (10 µM final concentration)
was incubated with the cell suspension (OD600 = 0.4–0.6) in buffer (5 mM HEPES, 5 mM
glucose, 5 µM carbonyl cyanide 3-chlorophenylhydrazone, pH 7.2) at room temperature for
30 min in darkness. Varying concentrations of compound diluted in the same buffer were
subsequently added to the plate, and the fluorescence (λEx = 350 nm, λEm = 420 nm) was
monitored every 30 s on a SpectraMax M2 microplate reader (Molecular Devices, Union
City, CA, USA). Measurements were done in triplicates.

5. Conclusions

This study demonstrates that an increase in N-ζ-methylation of lysine in UTBLPs
reduces or abolishes the potentiating effects in these compounds to synergize with OM-
impermeable antibiotics like rifampicin, novobiocin, and niclosamide. Our structure–
activity relationship results are of interest for the optimization of OMPs that are currently
undergoing clinical and preclinical testing as well as for the design of the next generation
of OMPs. It is expected that our results can be applied to other classes of related polyba-
sic OMPs including antimicrobial peptides, antimicrobial peptidomimetics, amphiphilic
aminoglycosides, and cationic lipids.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11030335/s1, Table S1: Antibacterial activity of UTBLPs
1–8 against MDR GNB and clinically relevant GPB. Table S2: Synergy evaluation of UTBLPs 1–8
combined with RIF, NOV, NIC, or CHL against wild-type GNB; Table S3: Synergy evaluation of
UTBLPs 1–8 combined with RIF or NOV against MDR GNB; Table S4: Synergy evaluation of UTBLPs
1–8 combined with CHL against GPB; Figure S1: Dose-dependent increase in fluorescence of NPN
in the presence of (A) UTBLP 1, (B) UTBLP 2, (C) UTBLP 3, (D) UTBLP 4, and PMBN (control) in
E. coli ATCC 25922; Figure S2: Dose-dependent increase in fluorescence of NPN in the presence of
(A) UTBLP 5, (B) UTBLP 6, (C) UTBLP 7, (D) UTBLP 8, and PMBN (control) in A. baumannii ATCC
17978; Figure S3: Dose-dependent increase in fluorescence of NPN in the presence of (A) UTBLP
5, (B) UTBLP 6, (C) UTBLP 7, (D) UTBLP 8, and PMBN (control) in E. coli ATCC 25922; Figure S4:
Comparison of UTBLP-induced fluorescence of NPN at 7 µM of (A) UTBLPs 1–4 and (B) UTBLPs
5–8 in A. baumannii ATCC 17978, and 7 µM of (C) UTBLPs 1–4 and (D) UTBLPs 5–8 in E. coli ATCC
25922; NMR spectra (1H, 13C, COSY, HSQC and HMBC) of UTBLPs 1–8; Table S5: MICs (in µg/mL)
of various antibiotics against MDR GNB used in the study.
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