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Abstract: Background: Pseudomonas aeruginosa represents, among the nosocomial pathogens, one
of the most serious threats, both for the severity of its clinical manifestations and its ability to de-
velop complex profiles of resistance; Methods: we retrospectively collected the data of 21 patients
admitted to a tertiary-care University Hospital of Rome with infections due to XDR-P. aeruginosa
isolates during the second half of 2020; Results: in our institution, the percentage of XDR-P. aerug-
inosa isolates is 3.1%. None of the patients was admitted to the intensive care unit at the moment
of the infection’s onset. Susceptibility to colistin was preserved in all the tested isolates. Rates
of resistance to ceftolozane/tazobactam and ceftazidime/avibactam in these XDR strains were
consistent; Conclusions: XDR-P. aeruginosa can be a threatening problem even outside the ICUs,
especially in frail patients in wards with features of long-term acute care hospitals. In such a setting,
ceftolozane/tazobactam and ceftazidime/avibactam should be administered with caution taking into
account the microbiological susceptibility results. Colistin, even with its known safety and efficacy
limits, could represent the only available therapeutic option due to its highly preserved susceptibility
against XDR isolates of P. aeruginosa.

Keywords: Pseudomonas aeruginosa; extensively drug resistant (XDR); ceftolozane/tazobactam;
ceftazidime/avibactam; colistin

1. Introduction

Pseudomonas aeruginosa (PA) is a common nosocomial pathogen worldwide and it
represents one of the most challenging microorganisms to face in clinical practice due to its
intrinsic resistance and its extraordinary ability to develop additional resistance through
selection of chromosomal mutations and acquisition of resistance genes [1]. The isolation of
extensively drug-resistant Pseudomonas aeruginosa strains (XDR-PA) seriously compromises
the probability of receiving an appropriate initial antibiotic therapy, possibly leading to
poor outcomes, particularly in the presence of severe infections.

2. Methods

We retrospectively collected, through the daily microbiological report of multidrug-
resistant (MDR) or extensively drug-resistant (XDR) isolates delivered by the Microbiology
Laboratory, data of 21 patients admitted to a tertiary-care at the University Hospital of
Rome (Fondazione Policlinico Universitario Agostino Gemelli IRCCS) with documented
XDR-Pseudomonas aeruginosa isolates from 1 June to 31 December 2020. Patients were
selected if they had documented true infections due to Pseudomonas aeruginosa strains non-
susceptible to at least one agent in all but two or fewer antimicrobial categories according
to the established definition of XDR (anti-pseudomonal cephalosporins, anti-pseudomonal
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penicillin plus β-lactamase inhibitors, monobactams, anti-pseudomonal carbapenems,
aminoglycosides, fluoroquinolones, phosphonic acid and polymyxins) [2]. Each patient
was included only once, at the time of the XDR-PA infection onset. Infections were classified
as XDR-PA bacteremia if blood cultures were positive for XDR-PA strain (with or without
the same XDR-PA isolation from other sites) and there were clinical signs of systemic
inflammatory response syndrome.

Two patients were excluded because they were not classified as infections but colo-
nizations. Colonization was defined as the isolation of PA from any clinical specimens
(except blood) in the absence of signs or symptoms of infections, and the patients had not
received antimicrobial treatment related to the culture results.

Isolates were identified using a MALDI Biotyper (Bruker Daltonik GmbH, Leipzig, Germany).
The minimum inhibitory concentrations (MICs) of ceftazidime, cefepime, ceftazidime/

avibactam, ceftolozane/tazobactam, piperacillin-tazobactam, meropenem, imipenem,
ciprofloxacin, amikacin, gentamicin and tobramycin were determined by a VITEK®2 system
(bioMérieux) and, for colistin, when feasible, by commercial broth-microdilution antimi-
crobial susceptibility testing panels (MERLIN Diagnostica GmbH, Bornheim, Germany)
according to EUCAST guidelines. Results were interpreted according to European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints [3,4]. The
NG-Test Carba 5 immunochromatographic assay (NG Biotech, Guipry, France) was used to
detect the five main carbapenemases, i.e., KPC, OXA-48-like, NDM, VIM, and IMP [5].

Adequate empiric therapy was deemed an appropriate dosage regimen of one or
more antibiotics to which the isolate was sensitive in vitro. An effective definitive therapy
was defined as treatment with at least one effective anti-pseudomonal agent based on
antimicrobial susceptibility testing. The timing to evaluate the appropriate initiation of a
target antibiotic therapy was set at 48 h from the infection onset.

Clinical success was defined as the resolution of signs and symptoms of acute infection.
Absence of recurrent infection was evaluated at 30 days following the onset of infection or
at time of discharge from the hospital.

Microbiological failure was defined as isolation of Pseudomonas aeruginosa with the
same susceptibility profile at the same site ≥7 days after the target therapy initiation.

3. Results

Nineteen patients with XDR-PA infections were included in the study. The median
age was 69 (IQR 64–80). Males comprised 68.4%. No community-acquired infection was
found; 11 (57.9%) of the infections were classified as hospital-acquired infection and were
inpatients belonging to medical wards at the time of the infection onset: 63.6% of the
patients in the Pneumology and the Neurology/Neurological rehabilitation clinic. Eight
(42.1%) of the patients were assumed to have a healthcare-related infection. In five (26.3%)
cases, an admission in an Intensive Care Unit (ICU) in the previous 90 days was reported.
Eight (42.1%) patients had undergone surgical or invasive procedures in the previous
30 days. All the patients had at least one comorbidity, with a median Age-Adjusted
Charlson Comorbidity index of 6.

In 16 (84.2%) patients, a previous bacterial infection was documented. Among these, a
previous PA infection was documented in six (31.6%) patients. Prior isolation of MDR/XDR
bacteria was reported in 11 (57.9%) patients (Methicillin-resistant Staphylococcus aureus,
Vancomycin-resistant Enterococcus, Carbapenem-resistant Enterobacterales, MDR/XDR-PA).
Previous antibiotic therapy was reported in 15 (78.9%) patients. Carbapenems were the
most frequent prior antimicrobials reported (42.1%), together with glycopeptides (42.1%)
and followed by piperacillin/tazobactam (36.8%). In 14 (73.7%) patients, prior antimicrobial
use was as long as seven days or longer. In 12 (63.2%) cases, the antimicrobial therapy
consisted of multiple antibiotics (sequential or used in combinations). One or more invasive
medical devices were present in 17 (89.5%) of the patients: Foley catheter was present in
14 (73.7%), tracheostomy in seven (36.8%) of the patients, central venous catheter in five of
the patients (26.3%).
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True XDR-PA infections included, six (31.6%) UTIs, five (26.3%) BSIs, four (21.1%)
pneumonia (2 HAPs, 2 VAPs), three (15.8%) ABSSSIs and one (5.3%) PJI. Infections due to
XDR-PA were polymicrobial in 6 (31.6%) cases.

Septic shock was reported in 21.1% of the patients in the medical report.
Demographic and clinical characteristics of the patients selected are reported in Table 1.

Table 1. Demographic and clinical characteristics.

Characteristics Value (n = 19)

Age in years, median (IQR) 69 (64–80)

Male, n (%) 13 (68.4)

Context of acquisition, n (%)
Hospital acquired 11 (57.9)
Healthcare-related 8 (42.1)

Underlying diseases, n (%) 19 (100)
Charlson comorbidity index, median (range) 6 (2–8)

Chronic lung disease 6 (31.6)
Solid malignancy 5 (26.3)
Diabetes mellitus 5 (26.3)

Chronic kidney disease 4 (21.1)
Immunosuppression 3 (15.8)

Trauma 3 (15.8)
Hemodyalisis 1 (5.3)

Prior surgery within 30 days, n (%) 3 (15.8)

Prior invasive procedures within 30 days, n (%) 5 (26.3)

Prior ICU stays within 90 days, n (%) 5 (26.3)

Prior bacterial infections, n (%) 16 (84.2)
Prior PA infections within 3 months 5 (26.3)
Prior MDR/XDR pathogens, n (%) 11 (57.9)

Prior antimicrobial use, within 90 days n (%) 15 (78.9)
Carbapenem 8 (42.1)
Glycopeptide 8 (42.1)

Piperacillin/tazobactam 7 (36.8)
Cephalosporin 5 (26.3)

Colistin 3 (15.8)
Fluoroquinolone 3 (15.8)
Aminoglycoside 2 (10.5)

Ceftazidime/avibactam 1 (5.3)
Ceftolozane/tazobactam 1 (5.3)

Other 8 (42.1)
Sequential or combination use, n (%) 12 (63.2)

Length of prior antimicrobial use ≥7 days 14 (73.7)

Indwelling device at infection onset, n (%) 17 (89.5)
Urinary catheter 14 (73.7)

Tracheostomy 7 (36.8)
Central venous catheter 5 (26.3)

Polymicrobial infection, n (%) 6 (31.6)

Infection types, n (%)
UTI 6 (31.6)
BSI 5 (26.3)

ABSSSI 3 (15.8)
HAP 2 (10.5)
VAP 2 (10.5)
PJI 1 (5.3)

Pseudomonas aeruginosa, PA; Multidrug-resistant, MDR; ICU, intensive care unit; urinary tract infection, UTI;
bloodstream infections, BSI; Hospital-Acquired Pneumonia, HAP; Ventilator-Associated Pneumonia, VAP; acute
bacterial skin and skin structure infections, ABSSIs; prosthetic joint infection, PJI.

Antimicrobial susceptibility of the tested isolates is listed in Table 2. Notably, all
the isolates tested for colistin were susceptible. All the isolates were tested for cef-
tazidime/avibactam (C/A) and ceftolozane/tazobactam (C/T). Eight (42.1%) were re-
ported as susceptible to C/A and seven (36.8%) to C/T. Among the aminoglycoside class,
six (42.9%) out of 14 isolates tested for amikacin were susceptible, while none of the
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11 isolates tested for gentamicin was susceptible, three out of eight isolates tested for
tobramycin were susceptible. Two out of 19 (10.5%) tested isolates were susceptible to
piperacillin/tazobactam and six out of 19 (31.6%) to meropenem.

Table 2. Rates of antimicrobials’ susceptibility.

Antibiotics No. Isolates Tested Susceptibility n (%)

Ceftazidime 19 3 (15.8)
Cefepime 19 1 (5.3)

Ceftazidime/avibactam 19 8 (42.1)
Ceftolozane/tazobactam 19 7 (36.8)
Piperacillin/tazobactam 19 2 (10.5)

Meropenem 19 6 (31.6)
Imipenem 11 3 (27.3)

Ciprofloxacin 19 1 (5.3)
Colistin 13 13 (100)

Gentamicin 11 0 (0)
Amikacin 14 6 (42.9)

Tobramicin 8 3 (37.5)

As reported in Table 3, empiric therapy was administered in 14 (73.7%) of the patients,
but it was appropriate only in two (14.3%) cases. The time to start a target antibiotic therapy
exceeded 48 h in 15 (78.9%) cases. A targeted treatment consisted of anti-pseudomonal
monotherapy in 12 (63.2%) of the cases. In six cases, colistin monotherapy was admin-
istered based on antimicrobial susceptibility data, and in two of them, inhaled colistin
was associated with pneumonia. The median duration of therapy was 10 days (IQR 7–14).
Source control was performed in eight (42.1%) of the cases. Clinical success was achieved
in 17 (89.5%) of the patients. Microbiologic failure was evaluated in 13 patients out of 19
through repeated cultures at the same site after at least seven days from the initiation of ef-
fective antibiotic therapy and reported in three patients (23.1%). Two of them experimented
clinical success later on, the other died due to a recurrent infection within 30 days.

One patient died due to a succeeding Candida bloodstream infection.

Table 3. Antibiotic therapies and outcomes.

Antibiotic Therapies and Outcome Value (n = 19)

Empiric therapy, n (%) 14 (73.7)
Appropriate empiric therapy, n (%) 2 (10.5)
Start of a target therapy >48 h, n (%) 15 (78.9)

Target monotherapy, n (%) 12 (63.2)
Colistin 6 (31.2)

Meropenem 3 (15.8)
Piperacillin/tazobactam 1 (5.3)

Amikacin 1 (5.3)
Ceftazidime/avibactam 1 (5.3)

Target Combination therapy, n (%) 7 (36.8)
Ceftazidime/Avibactam + Colistin 2 (15.4)

Colistin + Meropenem 2 (15.4)
Ceftolozane/tazobactam + Amikacin 1 (5.3)
Ceftazidime/avibactam + Amikacin 1 (5.3)
Colistin + Piperacillin/tazobactam 1 (5.3)

Source control, n (%) 8 (42.1)

Length of therapy in days, median (IQR) 10 (7–14)

Death (30 days), n (%) 2 (15.4)

Clinical success, n (%) 17 (89.5)

Microbiological failure, n/patients evaluated (%) 3/13 (23.1)

Recurrent infection, n (%) 1 (5.3)
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4. Discussion

Combined resistance to five antimicrobial groups is reported in PA around 3.4% in
Europe [6]. Fewer data exist on the prevalence of XDR-PA [7,8]. Surprisingly, one Spanish
survey reported that 17% of PA infections was due to XDR strains [1].

In our institution, the percentage of XDR-PA isolates on the total of the Pseudomonas
aeruginosa isolates (n.609) from all sources from 1 June to 31 December 2020 is 3.1%. This
epidemiological result is in line with other previous reports [9].

Risk factors for XDR-PA have been exhaustively investigated in several studies and
mostly addressed in prior hospital stay, previous antibiotic treatment (especially carbapen-
ems and fluoroquinolones), prior ICU stay, previous PA colonization or infection, multiple
comorbidities, and indwelling urinary catheter [10–17].

In our report, the majority of the patients had a median Age-Adjusted Charlson Co-
morbidity Index of 6 with at least one comorbidity, mostly chronic lung disease, diabetes,
solid tumors, and chronic kidney disease. Among five patients with a previous PA infec-
tion/colonization, two were MDR/XDR (1/1, respectively). Previous PA isolation was
consistent in our cohort, suggesting that a PA strain can build up resistance sequentially in
the same patient.

Curiously, no patient was admitted to ICU at the time of the infection onset, even
if 26.3% had reported a previous ICU stay. The infections developed mainly in medical
wards such as Pneumology or high-intensity rehabilitation, where patients were often
exposed to a unique combination of hazardous conditions for infections. A history of prior
use of antibiotics was reported in the majority of the patients (78.9%), with carbapenems
(42.1%) as the most frequent drug prescribed. The previous use of multiple antibiotics (in
combinations or sequential over time) was present in 63.2% of the patients’ history, possibly
reflecting the importance of antimicrobial pressure on the development of resistance in PA.

For XDR-PA, polymyxin B, colistin, C/T, C/A, aztreonam, aminoglycosides and,
recently, cefiderocol are the main therapeutic options depending on resistance profile. Com-
bination therapy is not currently recommended. Treatment-emergent mutations conferring
resistance to the new compounds are already reported [18–23].

In our case series, colistin was the only antibiotic to which 100% of tested isolates
were susceptible. Further, we observed that 26.3% of our isolates were susceptible only to
colistin. These data agree with others already reported in Southern European countries’
literature, suggesting that colistin could represent the only therapeutic option available in
these patients, although with some pharmacological and safety concerns [1,24–27].

Resistance to C/T and/or C/A is significant among the XDR-PA isolates selected. In
literature, resistance is reported mainly due to carbapenemase production and some AmpC
mutants. Other potential resistance mutations include specific large chromosomal deletions
and PBP3 mutations, reduced membrane permeability and efflux pumps [20,28–31].

Even if the overall susceptibility rates of C/T against PA are high (94.1% in Western
Europe and 80.9% in Eastern Europe, respectively), the retained activity of this compound
against meropenem non-susceptible PA isolates drops to 75.2% and 59.2% in Western and
Eastern Europe, respectively. Even lower rates have been reported from Southern Asia
(37.9%) [30,32]. Low susceptibility rates to C/T in the subgroup of XDR-PA isolates have
already been reported in Europe and the Middle East literature [33–35].

In our case series, probably due to the high percentage of resistance, C/T has been
rarely used in target therapy. In four cases, even if susceptibility to C/T was documented,
meropenem was chosen as target therapy or continued if started as empiric therapy due
to clinical improvement without an Infectious Disease specialist’s consultation. In an-
other case due to a strain susceptible to C/T, a UTI, amikacin was preferred to C/T as
target therapy due to the possibility of a single dose administration in a patient with
serious difficulty in having stable venous access. In one case, C/A was adopted as a
target therapy for a polymicrobial infection due to XDR-PA and Klebsiella pneumoniae
carbapenemase-producing K. pneumoniae.
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In all but two cases, C/T resistance was shared with C/A. The cross-resistance between
the two compounds has already been documented [36].

Among the 19 isolates, those belonging to blood cultures (n.5) were resistant to both
C/A and C/T. All these isolates were tested retrospectively for the presence of carbapene-
mase enzymes and two out of five were found to harbor a carbapenemase VIM type. One
respiratory tract sample PA-isolate, resistant to both the new drugs, was also evaluated for
carbapenemases. An IMP-type carbapenemase was found. This finding of the prevalence
of MBL in PA isolates has already been underlined in previous reports [37,38] and high-
lights that production of MBL carbapenemases is one of the main determinants leading to
complex resistance profiles. While the development of resistance to C/T and C/A during
treatment of PA infections is already concerning, in our case series the development of
resistance to C/T and C/A was apparently not related to previous exposure to these drugs
with the exception of one patient who had a recent history of exposure to both drugs at the
time of the infection onset [23].

Consistent with other reports, among aminoglycosides, our data reveal that PA shows
a higher susceptibility for amikacin then for other aminoglycosides (tobramycin and
gentamicin) [39–41].

Even if empiric therapy was prescribed to the majority of the patients with XDR-PA
infections in our case series it was rarely appropriate and a target therapy was usually not
administered in the first 48 h. In case of XDR profile it is highly unlikely that an appropriate
empiric monotherapy can be chosen without knowledge of the isolate susceptibility.

Resistance in PA isolates has already been reported in other studies as an independent
factor for an inappropriate initial antibiotic treatment, resulting in poor outcomes and
increased costs. The antimicrobial susceptibility pattern of the infecting strain is obviously
not available when empirical therapy is prescribed and an XDR profile is not usually taken
into account outside the ICU and in patients who are not critically ill [42–49].

Due to the retrospective design of our study, the very small sample size and the
inclusion of patients with different types of infections, no conclusive results about mortality
can be deduced. However, it is remarkable that three (23.1%) of the patients evaluated for
microbiological failure with control cultures at the same site experienced the re-isolation of
PA with the same resistance profile. Respiratory infections were found in 2/3 of the cases
in which microbiological eradication was not achieved. One of these patients experienced a
recurrent XDR-PA infection with a fatal outcome. The worse outcome of lung infections
has already been underlined, probably due to pharmacokinetic concerns of available drugs,
infeasibility of adequate source control and, sometimes, more critical conditions [50].

5. Conclusions

Our data show that XDR-PA can be a threatening problem even outside the ICUs, es-
pecially in some wards that simulate the picture of long-term acute care hospitals: facilities
specialized in the treatment of patients with serious medical conditions that no longer need
intensive care but require more than they can receive in a rehabilitation center. Such frail
patients can be more prone to acquire XDR-PA due to a combination of risky conditions
(long hospital or previous ICU stay, multiple medical devices, previous multiple antibiotic
treatments, particularly carbapenems, MDR colonization).

Despite their high susceptibility and good activity in PA, even MDR, the use of
C/A and C/T in the contest of some XDR-PA strains could be seriously restricted due to
reduced susceptibility.

Colistin, with highly preserved susceptibility, could often represent the only available
therapeutic option against such isolates, but with significant safety concerns (kidney fail-
ure) and known efficacy limits, especially in some difficult-to-treat sources of infections
(i.e., lung).

Thus, in settings where resistance to C/T or C/A is present, given the well-known col-
istin toxicity concern, cefiderocol could become an interesting perspective in the treatment
of such XDR-PA infections.
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Knowing local resistance rates and geographical variation in new drugs’ susceptibility
due to the distinct local molecular epidemiology is essential in approaching XDR-PA
severe infections.

Further, it seems crucial to have susceptibility testing results for all newer agents
available as soon as possible.
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