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B. Antibacterial and Anti-Biofilm

Activities of Essential Oil

Compounds against New Delhi

Metallo-β-Lactamase-1-Producing

Uropathogenic Klebsiella pneumoniae

Strains. Antibiotics 2022, 11, 147.

https://doi.org/10.3390/

antibiotics11020147

Academic Editor: William R. Schwan

Received: 30 December 2021

Accepted: 21 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Antibacterial and Anti-Biofilm Activities of Essential Oil
Compounds against New Delhi Metallo-β-Lactamase-1-Producing
Uropathogenic Klebsiella pneumoniae Strains
Paweł Kwiatkowski 1 , Monika Sienkiewicz 2,* , Agata Pruss 3, Łukasz Łopusiewicz 4 , Nikola Arszyńska 1,
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Abstract: The World Health Organization points out that the opportunistic pathogen Klebsiella
pneumoniae that causes various infections among others, urinary tract infections (UTIs), is one of the
high-priority species due to a global problem of antimicrobial resistance. The aim of this study was
to investigate antibacterial and anti-biofilm activities of chosen constituents of essential oils against
NDM-1-producing, uropathogenic K. pneumoniae strains. The genes encoding lipopolysaccharide
(uge, wabG), adhesin gene fimH (type I fimbriae) and gene encoding carbapenemase (blaNDM-1) for
all tested strains were detected by PCR amplification. The K. pneumoniae ATCC BAA-2473 reference
strain was uge- and blaNDM-1-positive. The effectiveness of fifteen essential oil compounds (EOCs)
(linalool, β-citronellol, linalyl acetate, menthone, (−)-menthol, (+)-menthol, geraniol, eugenol, thymol,
trans-anethole, farnesol, β-caryophyllene, (R)-(+)-limonene, 1,8-cineole, and carvacrol) was assessed
by determining the MIC, MBC, MBC/MIC ratio against K. pneumoniae strains by the microdilution
method. Anti-biofilm properties of these compounds were also investigated. Thymol, carvacrol and
geraniol exhibited the best antibacterial and anti-biofilm activities against uropathogenic NDM-1-
producing K. pneumoniae isolates. Results of our investigations provide a basis for more detailed
studies of these phytochemicals on their application against uropathogenic K. pneumoniae.

Keywords: uropathogenes; essential oil compounds; biofilm biomass reduction; Klebsiella pneumoniae NDM

1. Introduction

Klebsiella pneumoniae is an opportunistic pathogen that causes various infections, mainly
respiratory, wound, bloodstream and urinary tract infections (UTIs) [1]. K. pneumoniae is
considered an important uropathogen in both hospital and ambulatory patients. Although
UTIs are not associated with high mortality, they increase the cost of treatment. It is esti-
mated that approximately 70–95% and 5–10% of UTIs are caused by Escherichia coli and
K. pneumoniae, respectively [2]. Nevertheless, according to the World Health Organization
(WHO) K. pneumoniae is one of the high-priority species due to a growing global problem
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of antimicrobial resistance [3]. New Delhi metallo-β-lactamase-1 (NDM-1) is the most
recently discovered carbapenemase capable of hydrolyzing almost all β-lactams present in
Gram-negative pathogens produced mainly by K. pneumoniae, and responsible for hospital
and acquired infections in community. Uropathogenic bacteria are equipped with special
virulence factors that promote colonization of epithelial cells, such as production of ad-
hesins, siderophores, and toxins [4]. In the same way, these bacteria can adhere to medical
devices to form biofilm structures. This enables them to avoid immune system responses,
thereby rendering antimicrobial therapy unsuccessful.

Since bacteria are becoming constantly more resistant to drugs, more and more re-
searchers all around the world are looking for new and effective methods to combat
pathogens and related diseases. Due to antibacterial drugs, we can overcome many infec-
tions. However, strains that have developed resistance mechanisms to common antibiotics
still pose a significant burden [5]. The idea of using essential oils (EOs) and their compounds
(EOCs) to fight bacteria has been increasingly successful, and work on their implementation
into treatment has accelerated significantly over the past decade.

Multidirectional activity of EOs and EOCs is widely described in literature: among
them antioxidants, antimutagenic, anticarcinogenic, anti-inflammatory, allelopathic, repel-
lent, insecticidal, antiviral, antifungal and antibacterial properties are highlighted. EOs and
EOCs are widely used in food, cosmetic, and pharmaceutical industries. Nowadays, they
are often found in dietary supplements, herbal medicinal products, syrups, herbs for brew-
ing, and oral liquids [6]. EOs or EOCs have been proved to be able to directly penetrate the
bacterial membrane as well as exhibit anti-biofilm effects [7–9]. For instance, Kachur and
Suntres [10] described that phenolic isomers, carvacrol and thymol, known as very effective
antibacterial agents, worked through disruption of the bacterial membrane, which lead to
bacterial lysis and leakage of intracellular contents e.g., adenosine triphosphate (ATP). They
can also prevent formation of biofilms, inhibit efflux pumps, and bacterial motility. Besides,
they may also exhibit additive or synergistic effects in combination with antibiotics.

A very serious problem consisting of the spread of drug-resistant micro-organisms
makes us look for new, active compounds that will both have antimicrobial properties
and prevent drug resistance. Trifan et al. [11] in their review report presented EOs as
ingredients that can be applicable in combinatorial and nano-based strategies in the fight
against multi-drug resistant pathogens, also called “ESKAPE” organisms (Enterococcus spp.,
Staphylococcus aureus, Klebsiella spp., Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter spp.). In our previous study, we analysed the antibacterial activity of se-
lected EOs against extended-spectrum β-lactamase-producing and NDM-1-producing
K. pneumoniae strains [12]. However, in the current study, we decided to take selected
EOCs, including linalool, β-citronellol, linalyl acetate, menthone, (−)-menthol, (+)-menthol,
geraniol, eugenol, thymol, trans-anethole, farnesol, β-caryophyllene, (R)-(+)-limonene,
1,8-cineole, and carvacrol into consideration. Thus, the aim of this study is to investigate
antibacterial and anti-biofilm activities of the above mentioned EOCs against NDM-1-
producing uropathogenic K. pneumoniae strains.

2. Results
2.1. Gene Analysis

The PCR method enabled detection of all uropathogenic K. pneumoniae strains’ genes
encoding lipopolysaccharide (uge, wabG), adhesin gene fimH (type I fimbriae) and gene
encoding carbapenemase (blaNDM-1). The K. pneumoniae ATCC BAA-2473 reference strain
appeared to be uge- and blaNDM-1-positive (Figure 1).
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Figure 1. Electrophoresis in 1.5% agarose gel PCR products obtained by using specific primers for
uge gene (a); wabG gene (b); fimH (c); and blaNDM-1 (d) gene.

2.2. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC),
MBC/MIC Ratio and the Effectiveness of Investigated Substances against K. pneumoniae Strains

The results showed that the most potent inhibiting activity against all K. pneumoniae
strains was observed for thymol (MIC: 0.78 ± 0.00 mg/mL; MBC: 1.56 ± 0.00 mg/mL;
bactericidal effectiveness). In contrast, the least potent antibacterial activity was observed
for menthol (MIC: 224.00 ± 0.00–448.00 ± 0.00 0.0 mg/mL; MBC: >448 mg/mL). Further-
more, it was also shown that all strains were resistant to gentamicin with MIC ranging
from 1.25 ± 0.00 to 20.00 ± 0.00 mg/mL. Detailed results of the MICs, MBCs, MIC/MBC
ratio and the effectiveness of the investigated substances against K. pneumoniae strains are
summarized in Table 1. Due to a lack of MBC values for some EOCs and gentamicin, their
effectiveness was not determined.

Furthermore, it was also revealed that the Mueller–Hinton broth (MHB) supplemented
with 1% (v/v) Tween 80 or 2% (v/v) dimethyl sulfoxide (DMSO) did not affect the growth
of bacteria.
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Table 1. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC),
MBC/MIC ratio and effectiveness of the investigated substances against Klebsiella pneumoniae strains.

Bacteria Chemicals MIC
(mg/mL)

MBC
(mg/mL) MBC/MIC Effectiveness

Reference strain
(K. pneumoniae

ATCC BAA-2473)

Linalool 6.48 ± 0.00 51.88 ± 0.00 8 bacteriostatic
β-Citronellol 6.70 ± 0.00 107.13 ± 0.00 16 bacteriostatic

Menthone 224.00 ± 0.00 >448 ND ND
Geraniol 1.74 ± 0.00 6.95 ± 0.00 4 bactericidal
Eugenol 4.14 ± 0.00 >530 ND ND
Thymol 0.78 ± 0.00 1.56 ± 0.00 2 bactericidal

1,8-Cineole 57.63 ± 0.00 461.00 ± 0.00 8 bacteriostatic
Carvacrol 1.91 ± 0.00 1.91 ± 0.00 1 bactericidal

Gentamicin 1.25 ± 0.00 >40 ND ND

Isolate no. 1

Linalool 3.24 ± 0.00 25.94 ± 0.00 8 bacteriostatic
β-Citronellol 26.78 ± 0.00 107.13 ± 0.00 4 bactericidal

Menthone 448.00 ± 0.00 >448 ND ND
Geraniol 3.47 ± 0.00 6.95 ± 0.00 2 bactericidal
Eugenol 4.14 ± 0.00 >530 ND ND
Thymol 0.78 ± 0.00 1.56 ± 0.00 2 bactericidal

1,8-Cineole 14.41 ± 0.00 461.00 ± 0.00 32 bacteriostatic
Carvacrol 1.91 ± 0.00 1.91 ± 0.00 1 bactericidal

Gentamicin 20.00 ± 0.00 40.00 ± 0.00 2 bactericidal

Isolate no. 2

Linalool 1.62 ± 0.00 25.94 ± 0.00 16 bacteriostatic
β-Citronellol 3.35 ± 0.00 107.13 ± 0.00 32 bacteriostatic

Menthone 224.00 ± 0.00 >448 ND ND
Geraniol 1.74 ± 0.00 6.95 ± 0.00 4 bactericidal
Eugenol 4.14 ± 0.00 >530 ND ND
Thymol 0.78 ± 0.00 1.56 ± 0.00 2 bactericidal

1,8-Cineole 14.41 ± 0.00 >461 ND ND
Carvacrol 1.91 ± 0.00 1.91 ± 0.00 1 bactericidal

Gentamicin 20.00 ± 0.00 40.00 ± 0.00 2 bactericidal

Isolate no. 3

Linalool 3.24 ± 0.00 103.75 ± 0.00 32 bacteriostatic
β-Citronellol 1.67 ± 0.00 107.13 ± 0.00 64 bacteriostatic

Menthone 224.00 ± 0.00 >448 ND ND
Geraniol 0.87 ± 0.00 6.95 ± 0.00 8 bacteriostatic
Eugenol 4.14 ± 0.00 >530 ND ND
Thymol 0.78 ± 0.00 1.56 ± 0.00 2 bactericidal

1,8-Cineole 461.00 ± 0.00 >461 ND ND
Carvacrol 1.91 ± 0.00 1.91 ± 0.00 1 bactericidal

Gentamicin 1.25 ± 0.00 >40 ND ND

Legend: ND—not determined. Gentamicin was used as positive control.

2.3. Effect of Investigated Substances on the Anti-Biofilm Activity

Biofilm biomass reduction assay revealed that in the case of two uropathogenic
K. pneumoniae isolates (nos. 1 and 2), the use of EOCs and gentamicin at subinhibitory (MIC50)
concentrations significantly (p < 0.0001) decreased biofilm biomass formation. These results
appeared to be similar for the reference strain. However, there was no significant statistical
difference regarding the effect of MIC50 of 1,8-cineole and gentamicin. In turn, the use of
investigated substances did not significantly influence formed biofilm biomass in isolate no. 3.

Moreover, it was found that supplementing the MHB medium with 1% (v/v) Tween
80 or 2% (v/v) DMSO did not affect the biofilm biomass reduction. Results of the effect of
chemicals on biofilm biomass reduction and a comparative analysis of p-values are shown
in Figure 2 and Table 2.
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Figure 2. The effect of investigated substances on biofilm biomass reduction by: (a) reference
strain—K. pneumoniae ATCC BAA-2473; (b) isolate no. 1; (c) isolate no. 2; and (d) isolate no. 3.
Control—Mueller–Hinton broth (MHB); A—MHB supplemented with 1% (v/v) Tween 80; B—MHB
supplemented with 2% (v/v) dimethyl sulfoxide (DMSO); C—MHB supplemented with subinhibitory
concentration (MIC50) of linalool; D—MHB supplemented with MIC50 of β-citronellol; E—MHB
supplemented with MIC50 of menthone; F—MHB supplemented with MIC50 of geraniol; G—MHB
supplemented with MIC50 of eugenol; H—MHB supplemented with MIC50 of thymol; I—MHB
supplemented with MIC50 of 1,8-cineole; J—MHB supplemented with MIC50 of carvacrol; K—MHB
supplemented with MIC50 of gentamicin (positive control). The data are expressed as mean ±
standard deviation (SD). Significant differences in biofilm biomass reduction after using different
essential oil compounds and gentamicin were considered with the following values: * p < 0.05,
*** p < 0.001, **** p < 0.0001.
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Table 2. Comparative analysis of p values obtained in biofilm biomass reduction assay analysed in
this study.

Comparison of Group
p Value

Reference Strain
(K. pneumoniae ATCC BAA-2473) Isolate No. 1 Isolate No. 2 Isolate No. 3

Control vs. A 0.413 0.8177 0.9999 0.0652
Control vs. B 0.3198 0.5023 0.2472 0.9999
Control vs. C 0.0003 <0.0001 <0.0001 0.1817
Control vs. D <0.0001 <0.0001 <0.0001 0.4558
Control vs. E 0.0114 <0.0001 <0.0001 0.4394
Control vs. F 0.0008 <0.0001 <0.0001 0.4683
Control vs. G 0.0003 <0.0001 <0.0001 0.6886
Control vs. H 0.0005 <0.0001 <0.0001 0.9999
Control vs. I 0.1543 <0.0001 <0.0001 0.5959
Control vs. J 0.0004 <0.0001 <0.0001 0.9999
Control vs. K 0.8456 <0.0001 <0.0001 0.9959

Legend: Control—Mueller–Hinton broth (MHB); A—MHB supplemented with 1% (v/v) Tween 80; B—MHB sup-
plemented with 2% (v/v) dimethyl sulfoxide (DMSO); C—MHB supplemented with subinhibitory concentration
(MIC50) of linalool; D—MHB supplemented with MIC50 of β-citronellol; E—MHB supplemented with MIC50
of menthone; F—MHB supplemented with MIC50 of geraniol; G—MHB supplemented with MIC50 of eugenol;
H—MHB supplemented with MIC50 of thymol; I—MHB supplemented with MIC50 of 1,8-cineole; J—MHB
supplemented with MIC50 of carvacrol; K—MHB supplemented with MIC50 of gentamicin (positive control).

3. Discussion

It is known that overuse of antibiotics generates various resistant strains, such as
NDM-1-producing K. pneumoniae strain, which was first detected in 2008 in India in a
patient with a urinary tract infection. Safavi et al. [13], in their systematic review, based on
data for the years 2010–2019, revealed that the worldwide spread and genotype distribution
of human clinical isolates of NDM-producing K. pneumoniae observed in Asia, Europe,
America, Africa and Oceania was 64.6%, 20.1%, 9.0%, 5.6% and 0.4%, respectively. This
type of resistance poses a greater threat since the resistance mechanism, encoded by a
gene conditioning the NMD-1 enzyme, has also been detected in other bacterial species,
including E. coli, P. aeruginosa, and A. baumannii [14].

Carbapenems were considered one of the most effective groups of drugs for treating
bacterial infections. Therefore, growing resistance to these medicaments constitutes a
major public health concern. There are not many therapeutic options left after β-lactam
and carbapenem antibiotics were withdrawn from use. Treatment alternatives for UTIs
are antibiotics such as colistin, Fosfomycin, as well as aminoglycosides, including gen-
tamicin, tobramycin, and amikacin [15]. According to Parente et al. [16], in treatment
of pyelonephritis, where Gram-negative bacilli, including multi-resistant K. pneumoniae,
is the main etiological factor, the paediatric hospitalized population may benefit from
an alternative therapy, consisting of a combination of ampicillin and ceftazidime. In the
present study, the used strains were resistant to gentamicin, which dramatically reduces
therapeutic options of this antibiotic. According to current data of the European Com-
mittee on Antimicrobial Susceptibility Testing [17], gentamicin-resistant strains are found
at MIC > 2 mg/L. In the current study, MIC for gentamicin against K. pneumoniae strains
ranged from 1.25 mg/mL (1250 mg/L) to 20 mg/mL (20,000 mg/L).

A carrier of multidrug-resistant Enterobacteriaceae and their spread in the hospital
environment, which requires implementation of a number of sanitary procedures, also
poses a serious problem [18]. That is why it is necessary to search for new agents that
could aid treatment, but also would be able to effectively prevent build-up of resistance
and spread of these bacteria.

Our current study showed that selected EOCs such as thymol, carvacrol and geraniol
exhibited the best antibacterial (showing bactericidal efficacy) and anti-biofilm activities
among all tested EOCs against uropathogenic K. pneumoniae producing NDM-1. Addition-
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ally, these strains harboured the following genes: uge (encoding an enzyme involved in
envelope synthesis) [19], wabG (involved in synthesis of the outer polysaccharide core of
lipopolysaccharide) [20], and fimH (encoding adhesins) [21]. The mrkD gene is dominant in
K. pneumoniae involved in biofilm formation, but the dominant genes for urinary isolates
are also fimH, uge and wabG [22,23]. According to Hamam et al. [23], fimH (76%) and uge
(70%) were the most prevalent genes of biofilm-forming strains of K. pneumoniae, isolated
from hospital-acquired UTIs. Candan and Aksöz [24] also noted that carbapenems-resistant
K. pneumoniae isolates, obtained from urine, harboured genes encoding lipopolysaccharide
(uge, wabG), and adhesin gene fimH (type I fimbriae). Interestingly, in professional literature,
strains harbouring the wabG gene have been shown to exhibit higher virulence, which was
confirmed especially in UTIs [25].

Among all tested EOCs, thymol (dominant compound of thyme EO) and carvacrol
(dominant compound of clove EO) showed bactericidal activity against K. pneumoniae
NDM-1-producing strains. Thymol and carvacrol, being isomers with similar chemical
structures, are likely to demonstrate similar mechanisms of antimicrobial activity but the
locations of the hydroxyl groups differ between the two molecules [26]. Antibacterial
properties of these compounds are associated with their lipophilic character and their
accumulation in cell membranes, which leads to inhibiting electron transport for energy
production and disrupting the proton motive force, protein translocation, and synthesis of
cellular components. These physiological changes can result in cell lysis and death [27].
Lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria is a very drastic
barrier for hydrophobic molecules, including hydrophobic antibiotics. Thymol and car-
vacrol, formed from γ-terpinene, which is lipid in nature, in combination with hydrophobic
antibiotics can help to transport them inside the cell [28]. In turn, geraniol was effective
against the reference strain and two clinical isolates. Geraniol is an aliphatic monoterpene
structure with a functional hydroxyl group. The antimicrobial activity of geraniol is man-
ifested with its ability to adhere to bacterial cell membrane lipids. Geraniol makes the
cell membrane more permeable by interacting with its components [29]. Interestingly, in
our previous work we found that thyme EO, containing about 38.1% of thymol, had the
best antibacterial properties against extended-spectrum β-lactamase (ESBL)-producing and
NDM-1-producing K. pneumoniae isolates [12]. Interestingly, in the current study, thymol
(≥98.5% purity) used alone also exhibited bactericidal properties against reference strain
(K. pneumoniae ATCC BAA-2473) and all NDM-1-producing uropathogenic K. pneumoniae
clinical isolates. Our results received for thymol are similar to those obtained by other au-
thors. For example, Bisso Ndezo et al. [30] analysed the effect of thymol against four strains
of K. pneumoniae isolated from urine. The authors evaluated the MIC and MBC values of
thymol against bacteria, which ranged from 0.064–0.256 mg/mL and 0.256–0.512 mg/mL,
respectively. Similar results were obtained by Raei et al. [31], who evaluated the effect
of thymol and additionally carvacrol on the growth of metallo-β-lactamase-producing K.
pneumoniae strains. The MIC results for thymol and carvacrol ranged from 0.2 to 1.6 mg/mL
and from 0.06 to 0.25 mg/mL, respectively. Moreover, these authors also evaluated the
anti-biofilm activity of thymol and carvacrol, which ranged from 0.125 to 0.5 mg/mL and
0.4 to 1.6 mg/mL, respectively. The research conducted during the years 2007–2019 showed
that geraniol presents antimicrobial activity against 78 different microorganisms. These
results showed that MIC values of geraniol for K. pneumoniae were above 1500 µg/mL [29].
This is in line with our results. Yet, we observed a lower MIC value (870 µg/mL) for one
isolate. In our study, we also showed significant reduction of biofilm mass of K. pneumoniae
in the presence of geraniol at sub-inhibitory concentration, compared to biofilm that was
non-exposed to geraniol. According to our knowledge, it is the first study concerning the
effects of geraniol against biofilm formation by K. pneumoniae.

4. Materials and Methods

The flow chart of the experimental design is presented in Figure 3.
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4.1. Bacterial Strains and Growth Condition

The study included three NDM-1-producing uropathogenic K. pneumoniae strains
included in a collection of/collected by the Chair of Microbiology, Immunology and
Laboratory Medicine; Pomeranian Medical University in Szczecin (Poland). All the
strains were identified using the VITEK 2 Compact system (bioMérieux, Warsaw, Poland),
which confirmed their affiliation with K. pneumoniae species (≥98%). Before each stage
of the experiment the strains had been cultured on Columbia agar with 5% sheep blood
(bioMérieux, Warsaw, Poland) and incubated for 24 h at 37 ◦C under aerobic conditions.
The K. pneumoniae ATCC BAA-2473 reference strain was used as control.

4.2. Investigated Substances

The fifteen EOCs used in this study were: linalool (CAS: 78–70–6; 97% purity),
β-citronellol (CAS: 106–22–9; ≥95% purity), linalyl acetate (CAS: 115–95–7; ≥97% purity),
menthone (CAS: 10458–14–7; ≥97% purity), (–)-menthol (CAS: 2216–51–5; analytical stan-
dard), (+)-menthol (CAS: 15356–60–2; 99% purity), geraniol (CAS: 106–24–1; 98% purity),
eugenol (CAS: 97–53–0; 99% purity), thymol (CAS: 89–83–8; ≥98.5% purity), trans-anethole
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(CAS: 4180–23–8; 99% purity), farnesol (CAS: 4602–84–0; 95% purity), β-caryophyllene (CAS:
87–44–5; ≥80% purity), (R)-(+)-limonene (CAS: 5989–27–5; 97% purity), 1,8-cineole (CAS:
470–82–6; primary reference standard), and carvacrol (CAS: 499–75–2; 98% purity) (Table 3).

The EOCs were dissolved in 1% (v/v) Tween 80 (for linalool, citronellol, linalyl acetate,
menthone, geraniol, eugenol, trans-anethole, farnesol, β-caryophyllene, (R)-(+)-limonene,
1,8-cineole, and carvacrol) and in 2% (v/v) DMSO (Loba Chemie, Mumbai, India) (for (–)-
menthol, (+)-menthol, and thymol). Using the known densities of EOCs, the results were
expressed in mg/mL. The abovementioned chemicals and media were purchased from
Merck Life Science (Poznan, Poland). Gentamicin (KRKA, Warszawa, Poland; 40 mg/mL)
was used as positive control.

Table 3. Characteristics of the investigated substances (https://www.ncbi.nlm.nih.gov/pccompound)
(accessed on 15 December 2021).

Chemicals Structure Molecular Formula Flavor Profile Application

Linalool
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Linalool 
 

C10H18O Coriander, floral, lavender, lemon, rose Flavouring agent or 
adjuvant 

β-Citronellol 
 

C10H20O Citrus, green, rose Food improvement agent 

Linalyl acetate 

 
C12H20O2 Fruit Flavouring agent or 

adjuvant 

Menthone 

 

C10H18O Green, fresh, mint 
Flavouring agent or 

adjuvant 

(−)-Menthol 

 
C10H20O Mint, Cool Flavouring agent or 

adjuvant 

(+)-Menthol 

 
C10H20O Mint, Cool Flavouring agent or 

adjuvant 

Geraniol 
 

C10H18O Geranium, lemon peel, passion fruit, 
peach, rose 

Flavouring agent or 
adjuvant 

Eugenol 

 
C10H12O2 Burnt, clove, spice Flavouring agent or 

adjuvant 

Thymol 

 
C10H14O Spice, wood Flavouring agent or 

adjuvant C10H14O Spice, wood Flavouring agent or adjuvant

trans-Anethole
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with the use of a bacteriological loop and suspended in 3 mL of tryptic soy broth (Merck 
Life Science, Poznan, Poland). Next, the suspension was re-incubated for 24 h at 37 °C. 
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GeneMatrix Bacterial & Yeast Genomic DNA Purification Kit (EURx, Gdansk, Poland) 
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4.3.2. PCR Amplification 
PCR amplification was used to detect virulence (uge, wabG, and fimH), and 
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amplification (denaturation—95 °C for 30 s, annealing—53 °C and 52 °C for 30 s 
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gel (1.5%, w/v; DNA Gdansk, Poland) containing 0.5 µg/mL of ethidium bromide (Merck 
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C15H26O Oil Flavouring agent or adjuvant

https://www.ncbi.nlm.nih.gov/pccompound
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C15H24 Fried, Spice, Wood Flavouring agent or adjuvant

(R)-(+)-Limonene
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gel (1.5%, w/v; DNA Gdansk, Poland) containing 0.5 µg/mL of ethidium bromide (Merck 
Life Science, Poznan, Poland). PCR products were visualized and photographed using a 
gel image system (GelDoc-It2 Imager, Analityk Jena US LLC, Upland, CA, USA). 
  

C10H16 Citrus, Mint Flavouring agent or adjuvant
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eucalyptol, mint Flavouring agent or adjuvant
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4.3. Virulence and Carbapenemase Genes Detection
4.3.1. DNA Isolation

Before the isolation of DNA, the strains were seeded on the Columbia agar with 5%
sheep blood and incubated for 24 h at 37 ◦C. Then, a single bacterial colony was transferred
with the use of a bacteriological loop and suspended in 3 mL of tryptic soy broth (Merck Life
Science, Poznan, Poland). Next, the suspension was re-incubated for 24 h at 37 ◦C. Finally,
1.5 mL of the culture suspension was taken for further DNA isolation using GeneMatrix
Bacterial & Yeast Genomic DNA Purification Kit (EURx, Gdansk, Poland) according to the
manufacturer’s recommendations.

4.3.2. PCR Amplification

PCR amplification was used to detect virulence (uge, wabG, and fimH), and carbapene-
mase (blaNDM-1) genes. Primers’ sequences are listed in Table 4. Reference strains, including
E. coli ATCC 25922, K. pneumoniae ATCC BAA-2473 and K. pneumoniae ATCC 700603, were
used as positive controls.

Table 4. Primer sequences used in this study.

Gene Sequence Amplicon Length (bp) References

uge F: 5′-GAT CAT CCG GTC TCC CTG TA-3′

R: 5′-TCT TCA CGC CTT CCT TCA CT-3′ 534 [32]

wabG F: 5′-CGG ACT GGC AGA TCC ATA TC-3′

R: 5′-ACC ATC GGC CAT TTG ATA GA-3′ 683 [33]

fimH F: 5′-ATG AAC GCC TGG TCC TTT GC-3′

R: 5′-GCT GAA CGC CTA TCC CCT GC-3′ 688 [34]

blaNDM-1
F: 5′-GGA ATA GAG TGC CTT AAY TCT C-3′

R: 5′-CGG AAT GGC TCA CGA TC-3′ 612 [35]

PCR was conducted using StartWarm HS-PCR Mix (A&A Biotechnology, Gdynia,
Poland) mixture. Amplification was conducted using the Applied Biosystems Veriti
96 Well Thermal Cycler (Applied Biosystems, Norwalk, CT, USA) with the following
protocol: initial denaturation at 95 ◦C for four min was followed by 35 cycles of amplifi-
cation (denaturation—95 ◦C for 30 s, annealing—53 ◦C and 52 ◦C for 30 s respectively for
uge/wabG/fimH and blaNDM-1 genes, extension—72 ◦C for 60 s) and finished with final ex-
tension at 72 ◦C for 10 min. After PCR, obtained products were analysed by electrophoresis



Antibiotics 2022, 11, 147 11 of 14

(60 min, 100 V, 1 × tris/borate/ethylenediaminetetraacetic acid) in agarose gel (1.5%, w/v;
DNA Gdansk, Poland) containing 0.5 µg/mL of ethidium bromide (Merck Life Science,
Poznan, Poland). PCR products were visualized and photographed using a gel image
system (GelDoc-It2 Imager, Analityk Jena US LLC, Upland, CA, USA).

4.4. Determination of MIC, MBC, MBC/MIC Ratio and Effectiveness of Investigated Substance
against K. pneumoniae Strains

MIC of EOCs and gentamicin against K. pneumoniae strains was determined by the
serial microdilution method in MHB (Merck Life Science, Poznan, Poland) according to
the Clinical and Laboratory Standards Institute recommendations (protocol M07-A9) [36].
Briefly, 50 µL of appropriate concentration of EOCs/gentamicin was added to a 96-well
microplate. Then, 50 µL of bacterial suspension at 106 CFU/mL was added to each well
of the microplate. After an 18-h incubation at 37 ◦C, MICs for individual chemicals were
determined by adding 20 µL resazurin solution (0.02%, w/v; Merck Life Science, Poznan,
Poland) to the wells [37]. The colour change from dark blue to pink after a 3-h incubation
with resazurin at 37 ◦C indicated the presence of live bacterial cells. The first well in which
the dark blue colour persisted determined the MIC value.

MBC (the lowest concentration which kills about 99.9% of bacteria) was determined
by transferring 20 µL of bacterial culture at concentrations higher than MIC to a 96-well
microplate containing 100 µL of sterile MHB [12]. An incubation was performed for 18 h at
37 ◦C. After this period, the concentration at which no bacterial growth was observed in
the corresponding well was considered as MBC.

To demonstrate the effectiveness of the applied substances the MBC/MIC ratio was
calculated [38]. The following ratios: MBC/MIC ≤ 4 and MBC/MIC > 4 were defined as
bactericidal and bacteriostatic, respectively.

4.5. Effect of Investigated Substances on Biofilm Biomass Reduction

Biofilm biomass reduction was formed according to Barros et al. in sterile 96-wells
plates (F-bottom) [39] with a minor modification. Briefly, bacteria were grown onto
Columbia agar with 5% sheep blood (Merck Life Science, Poznan, Poland) at 37 ◦C for
24 h. Then, one colony of each strain was transferred to 3 mL of MHB (Merck Life Science,
Poznan, Poland) supplemented with 1% (w/v) glucose (Merck Life Science, Poznan, Poland)
and re-incubated in the same abovementioned condition. Next, 100 µL (5 × 105 CFU/mL)
of bacterial suspension was transferred into a microplate with the use of 100 µL subin-
hibitory concentration (MIC50) of EOCs or gentamicin. Simultaneously, control wells were
prepared (100 µL of MHB + 100 µL of bacterial suspension). The microplates were incu-
bated at 37 ◦C for 24 h in static conditions. Subsequently, they were gently washed with
phosphate-buffered saline (PBS, pH 7.2) (to remove planktonic cells) and allowed to dry (6 h
at room temperature). Then, 4 mL of 0.1% (w/v) crystal violet (Merck Life Science, Poznan,
Poland) solution was added. The samples were left static for 20 min in the dark. The crystal
violet solution was removed and the stained biofilms were washed with PBS three times to
remove excess unbound dye. Finally, 30% (v/v) acetic acid (Merck Life Science, Poznan,
Poland) solution was added to dissolve the dye and the absorbance values at 595 nm of
each well were calculated using a SynergyTM LX Multi-Mode microplate reader (BioTek,
Winooski, VT, USA). Acetic acid (30%, v/v) was used as a blank.

4.6. Statistical Analysis

All data were expressed as mean ± standard deviation (SD). All tests were conducted
in triplicate. A sstatistical significance between the groups in biofilm biomass reduction
assay was measured using the one-way ANOVA test and multiple comparisons. The
following values: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 were considered sta-
tistically significant. The sstatistical analyses were conducted using GraphPad Prism 8.0.1
(GraphPad Software Inc., San Diego, CA, USA).
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5. Conclusions

Overall, we can conclude that among investigated EOCs, thymol, carvacrol and geran-
iol exhibited the best antibacterial and anti-biofilm activities against NDM-1-producing,
uropathogenic K. pneumoniae isolates. Thus, it seems that these EOCs are promising
constituents for development of novel antibacterial combination therapies against biofilm-
associated infections. Further studies with the use of more clinical isolates and aiming to
investigate the mechanism of action of these combinations are considered. In future, it
would be advisable to conduct research on in vivo models of K. pneumoniae biofilms. It
would be interesting to test a potential application of these compounds in producing active
coatings for selected patient care equipment such as catheterization kits.
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