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Abstract: Extended-spectrum beta-lactamases (ESBLs) and AmpC producing Enterobacteriaceae are
public health threats. This study aims to characterize ESBL and AmpC producing Enterobacteriaceae
isolated from sepsis patients. A multicenter study was conducted at four hospitals located in central
(Tikur Anbessa and Yekatit 12), southern (Hawassa) and northern (Dessie) parts of Ethiopia. Blood
culture was performed among 1416 sepsis patients. Enterobacteriaceae (n = 301) were confirmed
using MALDI-TOF and subjected for whole genome sequencing using the Illumina (HiSeq 2500)
system. The overall genotypic frequencies of ESBL and AmpC producing Enterobacteriaceae were 75.5%
and 14%, respectively. The detection of ESBL producing Enterobacteriaceae at Hawassa, Yekatit 12,
Tikur Anbessa and Dessie was 95%, 90%, 82% and 55.8%, respectively. The detection frequency
of blaCTX-M, blaTEM and blaSHV genes was 73%, 63% and 33%, respectively. The most frequently
detected ESBL gene was blaCTX-M-15 (70.4%). The common AmpC genes were blaACT (n = 22) and
blaCMY (n = 13). Of Enterobacteriaceae that harbored AmpC (n = 42), 71% were ESBL co-producers.
Both blaTEM-1B (61.5%) and blaSHV-187 (27.6%) were the most frequently detected variants of blaTEM

and blaSHV, respectively. The molecular epidemiology of ESBL producing Enterobacteriaceae showed
high frequencies and several variants of ESBL and AmpC genes. Good antimicrobial stewardship
and standard bacteriological laboratory services are necessary for the effective treatment of ESBL
producing Enterobacteriaceae.

Keywords: multicenter study; molecular epidemiology; ESBL; AmpC; Enterobacteriaceae; sepsis; Ethiopia

1. Introduction

Globally, Enterobacteriaceae that harbor extended-spectrum beta-lactamase (ESBL)
genes are spreading and causing serious infections, such as sepsis [1]. Sepsis is a life-
threatening condition resulting from a dysregulated immune response to the infection,
which ultimately results in organ dysfunction [2,3]. Antibiotic options for the management
of septic patients caused by ESBL producing Enterobacteriaceae (ESBL-pE) is narrow, which
can lead to longer hospital stays, increased hospital costs and increased mortality [4].

ESBL-pE has become a global health problem [5] because ESBL can make a diverse
range of β-lactam antibiotics ineffective, including penicillins, cephalosporins and monobac-
tams [6]. Enterobacteriaceae acquire and disseminate these ESBL-encoding genes horizontally,
mainly through plasmids [7]. In addition to Escherichia coli, various species of Klebsiella,
Enterobacter, Serratia and Salmonella are major ESBL producers in the family Enterobacteri-
aceae [8–10].
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Generally, all beta-lactamase variants are classified into four classes, A (serine penicilli-
nases), B (metallo-beta-lactamases), C (cephalosporinases) and D (oxacillinases), which give
resistance to penicillins, most β-lactams, cephalosporins and cloxacillin, respectively [11].
Some key families of ESBL-encoding genes, such as blaCTX-M, blaTEM and blaSHV are grouped
in class A [8,12,13]. The blaCTX-M family, that spread rapidly during the last decade, orig-
inated from environmental bacteria and its variants have developed due to point muta-
tions [14]. All blaCTX-M variants are ESBL genes [8,13] in which blaCTX-M-15 is presently the
most prevalent [10]. Other ESBL genes include blaOXA, blaVEB, blaVER and blaGES [7,8,13].
The co-presence of ESBL genes in the same species is a significant threat of transfer to other
species [11].

Enterobacteriaceae that produce AmpC enzymes can also hydrolyze β-lactams and
inhibitor–β-lactam combinations [15]. AmpC may be encoded in the chromosomes or
plasmids of most members of Enterobacteriaceae [16]. Around the globe, several AmpC
genes are detected in Enterobacteriaceae and of these genes the blaCMY and blaDHA families
are the most common [17–20].

The World Health Organization (WHO) has listed ESBL producing Enterobacteriaceae
as critical priority pathogens [21] and the magnitude of such strains is increasing world-
wide [6,22,23]. However, there is scarcity of data related to the genetic epidemiology of
ESBL and AmpC producing Enterobacteriaceae in sub-Saharan countries, including Ethiopia.
It is a crucial time to determine the genetic epidemiology of ESBL and AmpC producing
Enterobacteriaceae at a larger scale in order to guide future antimicrobial resistance control
programs. Hence, this study aims to determine the molecular epidemiology of ESBL and
AmpC producing Enterobacteriaceae among patients investigated for sepsis at four Ethiopian
teaching/referral hospitals, which are located in the central, southern and northern parts
of the country. These hospitals are serving millions of people in the surrounding catchment
area and people who are referred to these hospitals.

2. Results
2.1. Sociodemographic Characteristics

In the present study, a total of 1416 patients investigated for sepsis from four different
hospitals were enrolled. The number of patients from Tikur Anbessa Specialized Hospital
(TASH) was 501, and the numbers from Yekatit 12 Specialized Hospital Medical College
(Y12HMC), Dessie Referral Hospital (DRH) and Hawassa University Comprehensive
Specialized Hospital (HUCSH) were 298, 301 and 316, respectively. The male participants
were 55.3% while the females were 44.7%. The patients’ ages ranged from half a day to
90 years with a mean age of 8.85 years (Table 1).

Table 1. Sociodemographic data of the patients investigated for sepsis at four different hospitals
in Ethiopia.

Sociodemographic Data Number of Patients Percentage

Hospitals

TASH 501 35.4
Y12HMC 298 21

DRH 301 21.3
HUCSH 316 22.3

Gender
Male 783 55.3

Female 633 44.7

Age category

<29 days 586 41.4
≥30 days to ≤1 year 256 18.1

1–5 years 135 9.5
5–18 years 158 11.2
≥18 years 281 19.8
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Table 1. Cont.

Sociodemographic Data Number of Patients Percentage

Ward

EOPD 104 7.3
ICU 38 2.7

Medical ward 148 10.5
NICU 596 42.1

Pediatrics 497 35.1
Surgical ward 33 2.3

Referral patient Yes 722 51
No 694 49

Previous admission
Yes 299 21.1
No 1117 78.9

Hospital stay duration

1 week 828 58.5
2 weeks 222 15.7
3 weeks 146 10.3

4 weeks and above 220 15.5

Underlying diseases Yes 665 47
No 751 53

Previous antibiotic treatment
before recruitment to the study

Yes 440 31.1
No 976 68.9

Fever

Up to 3 days 687 64.4
4–6 days 207 19.4

7 days and above 173 16.2
No 349 24.6

Total 1416 100
TASH—Tikur Anbessa Specialized Hospital; Y12HMC—Yekatit 12 Specialized Hospital Medical College; DRH—
Dessie Referral Hospital; HUCSH—Hawassa University Comprehensive Specialized Hospital; EOPD—emergency
outpatient department; ICU—intensive care unit and NICU—neonatal intensive care unit.

2.2. Enterobacteriaceae: Frequencies and Distributions per Study Site

From the 1416 patients, blood cultures were performed at each study site, and a total
of 301 Enterobacteriaceae isolated from all the study sites were subjected for whole genome
sequencing (WGS). Of these, Klebsiella pneumoniae (n = 103), Klebsiella variicola (n = 74) and
Escherichia coli (n = 53) were most frequently identified and their frequency varied between
the 4 hospitals (Table 2).

Table 2. Frequency and distribution of Enterobacteriaceae isolated from the patients investigated for
sepsis and subjected for whole genome sequence in four Ethiopian hospitals.

Enterobacteriaceae DRH
n (%)

TASH
n (%)

HUCSH
n (%)

Y12HMC
n (%)

Klebsiella pneumoniae (n = 103) 12(11) 39(43) 22(39) 30(75)
Klebsiella variicola (n = 74) 44(39) 2(2) 28(49) -

Escherichia coli (n = 53) 17(15) 28(31) 4(7) 4(10)
Enterobacter cloacae (n = 21) 10(9) 6(7) 1(2) 4(10)

Pantoea dispersa (n = 20) 20(18) - - -
Klebsiella oxytoca (n = 13) 5(4) 6(7) 1(2) 1(3)

Enterobacter xiangfangensis (n = 3) 3(3) - - -
Raoultella ornithinolytica (n = 2) 1(1) 1(1) - -

Serratia marcescens (n = 2) - 2(2) - -
Leclercia adecarboxylata (n = 2) - 2(2) - -

Achromobacter xylosoxidans (n = 1) - - 1(2) -
Enterobacter bugandensis (n = 1) - 1(1) - -

Enterobacter kobei (n = 1) - 1(1) - -
Enterobacter ludwigii (n = 1) - 1(1) - -

Kosakonia cowanii (n = 1) 1(1) - - -
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Table 2. Cont.

Enterobacteriaceae DRH
n (%)

TASH
n (%)

HUCSH
n (%)

Y12HMC
n (%)

Lelliottia amnigena (n = 1) - 1(1) - -
Salmonella spp. (n = 1) - - - 1(3)

Shigella dysenteriae (n = 1) - 1(1) - -
Total (n = 301) 113 91 57 40

TASH—Tikur Anbessa Specialized Hospital; Y12HMC—Yekatit 12 Specialized Hospital Medical College; DRH—
Dessie Referral Hospital and HUCSH—Hawassa University Comprehensive Specialized Hospital.

2.3. Detection of blaCTX-M, blaTEM and blaSHV Genes

Among all Enterobacteriaceae, blaCTX-M, blaTEM and blaSHV were detected in 73%, 63%
and 33% of the samples at least once (Figure 1). Among the Enterobacteriaceae isolated at
each hospital, the detection of blaCTX-M at HUCSH, Y12HMC, TASH and DRH was 95%,
88%, 78% and 54%, respectively. At DRH, blaTEM (59%) was detected at a higher frequency
while blaSHV (10%) detection was low (Figure 1) At HUCSH, blaTEM was detected at 82%
while blaSHV detection was relatively low (35%). At TASH, blaTEM was more frequent than
blaSHV. At Y12HMC, while the detection of blaCTX-M was the highest with 88%, blaTEM and
blaSHV detection was the same at 75%. Differences in the detection of blaCTX-M, blaTEM and
blaSHV showed statistically significant associations per study site (p < 0.001).
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K. pneumoniae was the most frequent isolate and harbored high frequencies of blaCTX-

M (95%), blaSHV (93%) and blaTEM (78%) genes (Figure 2). Similarly, most Enterobacteriaceae 
were found to have blaCTX-M and blaTEM gene families with different detection rates between 
the strains. The detection of blaSHV in K. variicola (1%) and E. coli (2%) was very low, while 
there was no detection of blaSHV among E. cloacae (n = 21) and P. dispersa (n = 20). No blaCTX-

Figure 1. Frequency of blaCTX-M, blaTEM and blaSHV families detected at least once from Enterobacteri-
aceae subjected to WGS per study site. TASH—Tikur Anbessa Specialized Hospital; Y12HMC—Yekatit
12 Specialized Hospital Medical College; DRH—Dessie Referral Hospital and HUCSH—Hawassa
University Comprehensive Specialized Hospital.

K. pneumoniae was the most frequent isolate and harbored high frequencies of blaCTX-M
(95%), blaSHV (93%) and blaTEM (78%) genes (Figure 2). Similarly, most Enterobacteriaceae
were found to have blaCTX-M and blaTEM gene families with different detection rates between
the strains. The detection of blaSHV in K. variicola (1%) and E. coli (2%) was very low, while
there was no detection of blaSHV among E. cloacae (n = 21) and P. dispersa (n = 20). No
blaCTX-M, blaTEM and blaSHV genes were detected in the rare isolates of A. xylosoxidans,
E. bugandensis, K. cowanii, L. amnigena and S. dysenteriae (Figure 2).
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2.4. Molecular Epidemiology of ESBL Producing Enterobacteriaceae

Of all the Enterobacteriaceae subjected to WGS, 75.5% encoded at least one ESBL gene.
At least one ESBL gene was detected among 95% of Klebsiella pneumoniae, 68% of K. vari-
icola, 53% of E. coli and 43% of E. cloacae (Figure 3). The frequencies of ESBL producing
Enterobacteriaceae detected at HUCSH, Y12HMC, TASH and DRH were 95%, 90%, 82%
and 55.8%, respectively (p < 0.001) (Table 3). Of the Enterobacteriaceae obtained from the
neonatal intensive care units (n = 189) and pediatrics wards (n = 68), 73.5% and 87% had
at least one ESBL gene, respectively (Table 3). Among the patients who showed blood
culture positivity for Enterobacteriaceae, the possible risk factors for the increased ESBL
producing Enterobacteriaceae were assessed. However, the multivariate analysis did not
show any statistically significant association between the independent variables and higher
frequencies of ESBL producing Enterobacteriaceae (Table 3).
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Table 3. Frequency of Enterobacteriaceae that harbored at least one ESBL gene in relation to patient characteristics.

Patient Characteristics
ESBL Odds Ratio

Producer
n (%)

Non-Producer
n (%) COR (95% CL) p-Value AOR (95%CL) p-Value

Hospital

DRH (n = 113) 63(55.8) 50(44.2) 0.140(0.047–0.420) 0.001 0.111(0.031–0.403) 0.001
TASH (n = 91) 75(82) 16(18) 0.521(0.162–1.671) 0.273

HUCSH (n = 57) 54(95) 3(5) 0.200(0.422–9.472) 0.382
Y12HMC (n = 40) 36(90) 4(10) Constant

Gender
Male (n = 174) 128(73.6) 46(26.4) 0.751(0.437–1.292) 0.301

Female (n = 127) 100(78.7) 27(21.3) Constant

Age category

≤29 days (n = 187) 137(73) 50(27) 1.534(0.739–3.184) 0.250
30 days–≤1 year (n = 32) 30(94) 2(6) 8.4(1.741–40.529) 0.008 4.564(0.285–73.109)

>1–≤5 year (n = 21) 18(86) 3(14) 3.360(0.840–13.441) 0.087
>5–<18 year (n = 22) 18(82) 4(18) 2.520(0.711–8.934) 0.152
≥18 years (n = 39) 25(64) 14(36) Constant

Ward

EOPD (n = 12) 9(75) 3(25) 3.750(0.587–23.936) 0.162
ICU (n = 8) 5(63) 3(38) 2.083(0.298–14.549) 0.459

Medical ward (n = 15) 12(80) 3(20) 5.000(0.806–13.457) 0.084
NICU (n = 189) 139(73.5) 50(26.5) 3.475(0.897–13.457) 0.071

Paediatrics (n = 68) 59(87) 9(13) 8.194(1.846–36.366) 0.006 3.722(0.209–66.238) 0.371
Surgical ward (n = 9) 4(44) 5(56) Constant

Hospital stay duration

1 week (n = 194) 135(69.6) 30.4) 0.277(0.094–0.818) 0.020 0.268(0.069–1.037) 0.056
2 weeks (n = 37) 33(89.2) 4(10.8) 0.808(0.164–3.989) 0.794
3 weeks (n = 23) 20(87) 3(13) Constant

≥4 weeks (n = 47) 40(85.1) 7(14.9) 0.693(0.186–2.572) 0.583

Underlying diseases Yes (n = 117) 99(84.6) 18(15.4) 2.363(1.306–4.278) 0.004 1.197(0.308–4.652) 0.795
No (n = 184) 129(70.1) 55(29.9) Constant

Previous hospitalization Yes (48) 38(79.2) 10(20.8) 1.267(0.597–2.689) 0.538
No (n = 253) 190(75.1) 63(24.9) Constant

Referred patient Yes (n = 140) 109(77.9) 31(22.1)
No (n = 161) 119(73.9) 42(26.1) 1.252(0.735–2.131) 0.409

Previous antibiotic
treatment history

Yes (n = 52) 47(90.4) 5(9.4) 0.283(0.108–0.742) 0.01 0.639(0.179–2.281) 0.490
No (n = 249) 181(72.7) 68(27.3) Constant

TASH—Tikur Anbessa Specialized Hospital; Y12HMC—Yekatit 12 Specialized Hospital Medical College; DRH—Dessie Referral Hospital and HUCSH—Hawassa University
Comprehensive Specialized Hospital.
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2.5. ESBL Genes

Several variants of blaCTX-M that are ESBL were detected among the Enterobacteriaceae
sequenced from all the study sites (Table 4). The most frequent gene was blaCTX-M-15 with
an overall detection rate of 70.4%. The frequency of blaCTX-M-15 at DRH, TASH, HUCSH
and Y12HMC was 50.4%, 73.6%, 93% and 87.5%, respectively. In addition to blaCTX-M-15,
two other blaCTX-M variants were found at DRH only. K. pneumoniae (92%) was the most
common blaCTX-M-15 producer (Figure 4). The detection of blaCTX-M-15 from K. variicola,
E. coli, P. dispersa and K. oxytoca was 65%, 51%, 90% and 69%, respectively (Figure 4).
blaSHV-106 was another ESBL gene detected at 3.7% frequency with a majority from DRH
and TASH. blaTEM-207, blaSRT-1, blaGES-11 and blaCMY-42 were the other rare ESBL genes
detected. K. oxytoca was found to carry several variants of the intrinsic blaOXY gene, also
classified as ESBL (Table 4).
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Table 4. Frequency and distribution of ESBL-encoding genes detected at four Ethiopian hospitals.

ESBL
Genes

Total

Hospitals ESBL Gene Harboring Enterobacteriaceae

DRH
n (%)

HUCSH
n (%)

TASH
n (%)

Y12HMC
n (%)

K. pneu-
moniae
n (%)

K.
variicola

n (%)

E. coli
n (%)

E.
cloacae
n (%)

P.
dispersa

n (%)

K.
oxytoca

n (%)

E. xiang-
fangensis

n (%)

S.
marcescens

n (%)

R. ornithi-
nolytica

n (%)

L. adecar-
boxylata

n (%)

Salmonella
spp.

n (%)

E.
kobei
n (%)

blaCTX-M-15 212(70.4) * 57(50.4) 53(93) 67(73.6) 35(87.5) 95(92) 48(65) 27(51) 8(38) 18(90) 9(69) 2(67) 1(50) 1(50) 1(50) 1(100) 1(100)
blaCTX-M-3 3(1) 3(2.7) - - - - 2(3) - - - - - - 1(50) - - -
blaCTX-M-9 1(0.3) 1(0.9) - - - - - - - 1(5) - - - - - - -
blaSHV-106 11(3.7) 5(4.4) 1(1.8) 5(5.5) - 11(11) - - - - - - - - - - -
blaSHV-65 2(0.7) - - - 2(5) 2(2) - - - - - - - - - - -
blaSHV-12 1(0.3) - - 1(1.1) - - - 1(2) - - - - - - - - -
blaTEM-207 3(1) 1(0.9) - 2(2.2) - 2(2) - - - 1(5) - - - - - - -
blaOXY-1-2 4(1.3) (1.8) 1(1.8) 1(1.1) - - - - - - 4(31) - - - - - -
blaOXY-1-5 3(1) - - 2(2.2) 1(2.5) - - - - - 2(15) - - 1(50) - - -
blaOXY-1-3 2(0.7) 1(0.9) - 1(1.1) - - - - - - 2(15) - - - - - -
blaOXY-2-2 1(0.3) - - 1(1.1) - - - - - - 1(8) - - - - - -
blaOXY-2-7 1(0.3) - - 1(1.1) - - - - - - 1(8) - - - - - -
blaOXY-2-8 1(0.3) 1(0.9) - - - - - - - - 1(8) - - - - - -
blaOXY-4-1 1(0.3) 1(0.9) - - - - - - - - 1(8) - - - - - -
blaOXY-5-1 1(0.3) - - 1(1.1) - - - - - - 1(8) - - - - - -
blaSRT-1 2(0.7) - - 2(2.2) - - - - - - - - 2(100) - - - -

blaCMY-42 1(0.3) - - 1(1.1) - - - 1(2) - - - - - - - - -
blaGES-11 1(0.3) - - - 1(2.5) - - - 1(5) - - - - - - - -

TASH—Tikur Anbessa Specialized Hospital; Y12HMC—Yekatit 12 Specialized Hospital Medical College; DRH—Dessie Referral Hospital and HUCSH—Hawassa University
Comprehensive Specialized Hospital. *—frequently detected.



Antibiotics 2022, 11, 131 9 of 18

2.6. Non-ESBL β-Lactamase Variants of blaTEM and blaSHV

While some blaTEM and blaSHV are considered as common ESBL determinants, most
variants detected in this study were different broad-spectrum beta-lactamase genes that
were not ESBL (Table 5). The most frequently detected blaTEM variant was blaTEM-1B (61.5%)
(Table 5) with frequencies of 57.5%, 80.7%, 49.5% and 72.5% at DRH, HUCSH, TASH
and Y12HMC, respectively. While blaTEM-1B and blaTEM-1A were detected at all the four
hospitals, other blaTEM variants were mostly detected at DRH and TASH only. Other than
the broad-spectrum beta-lactamases blaTEM-1B and blaTEM-1A, no other blaTEM variants were
detected at Y12HMC. Of the five inhibitor-resistant broad-spectrum beta-lactamase TEM
variants, three of them were detected at DRH. K. pneumoniae, K. variicola, E. coli and E. cloacae
harbored blaTEM-1B with the frequencies of 74%, 65%, 38% and 43% (Figure 4).

Table 5. Frequency and distribution of other blaTEM and blaSHV variants detected at four Ethiopian hospitals.

Total n(%)
Total Detection per Study Site

DRH
n (%)

HUCSH
n (%)

TASH
n (%)

Y12HMC
n (%)

TEM
Variants
Detected

blaTEM-1B 185(61.5) * 65(57.5) 46(80.7) 45(49.5) 29(72.5)
blaTEM-1A 5(0.9) 1(0.9) 1(20) 2(2.2) 1(2.5)
blaTEM-1C 1(0.3) 1(0.9) - - -
blaTEM-206 2(0.7) 1(0.9) - 1(1.1) -
blaTEM-219 2(0.7) - 1(1.8) 1(1.1) -
blaTEM-30 3(1) 1(0.9) - 2(2.2) -

SHV
variants
detected

blaSHV-187 187(27.6) * 11(9.7) 20(35.1) 38(41.8) 14(35)
blaSHV-28 10(3.3) 4(3.5) 1(1.8) 5(5.5) -
blaSHV-79 8(2.7) - - - 8(20)
blaSHV-85 8(2.7) - - - 8(20)
blaSHV-89 8(2.7) - - - 8(20)
blaSHV-40 7(2.3) - - - 7(17.5)
blaSHV-60 5(1.7) - - - 5(12.5)
blaSHV-119 2(0.7) - - 2(2.2) -
blaSHV-94 1(0.3) - - - 1(2.5)
blaSHV-172 1(0.3) - - - 1(2.5)
blaSHV-56 8(2.7) - - - 8(20)

TASH—Tikur Anbessa Specialized Hospital; Y12HMC—Yekatit 12 Specialized Hospital Medical College;
DRH—Dessie Referral Hospital and HUCSH—Hawassa University Comprehensive Specialized Hospital. *—
frequently detected.

Of the blaSHV variants that are not ESBL, blaSHV-187 (27.6%) was the most frequently
detected (Table 5) and most commonly at TASH (41.8%). Its detection at HUCSH and
Y12HMC was 35% while it was more infrequent at DRH (9.7%). The blaSHV-40, blaSHV-56,
blaSHV-60, blaSHV-79, blaSHV-85, blaSHV-89, blaSHV-94 and blaSHV-172 variants were only detected
at Y12HMC. The common producers of blaSHV-187 were K. pneumoniae (78%), while blaSHV-187
was rare among K. variicola (1%), E. coli (2%) and K. oxytoca (8%) (Figure 4).

2.7. Co-Occurrence of Multiple ESBL Genes

In several Enterobacteriaceae, either the co-occurrence of multiple ESBL genes or one
ESBL gene with other blaTEM and blaSHV variants was detected (Table 6). Enterobacteriaceae
that carried the blaCTX-M-15 gene were found to harbor several other ESBL genes or non-
ESBL variants of blaTEM and blaSHV. The co-occurrence of blaCTX-M-15 and blaTEM-1B (n = 166)
was the most frequent gene combination followed by blaCTX-M-15 and blaSHV-187. While the
3 combinations of blaCTX-M-15 * blaTEM-1B * blaSHV-187 were detected among 56 Enterobacte-
riaceae, the 4 blaCTX-M-15 * blaTEM-1B * blaSHV-187* blaSHV-106 gene combination was detected
from 9 Enterobacteriaceae. A combination of five multiple genes (blaCTX-M-15 * blaTEM-1B
* blaSHV-187 * blaTEM-207 * blaSHV-106) was detected from one Enterobacteriaceae (Table 6).
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Table 6. Co-occurrence of multiple ESBL genes and ESBL genes with other common non-ESBL
variants of blaTEM and blaSHV.

Combinations of Genes Total
n

DRH
n

HUCSH
n

TASH
n

Y12HMC
n

blaCTX-M-15 * blaTEM-1B 166 53 45 39 29
blaCTX-M-15 * blaSHV-187 78 11 20 34 13
blaCTX-M-15 * blaSHV-106 10 5 1 4 -
blaCTX-M-15 * blaOXY-1-2 3 2 1 - -
blaCTX-M-15 * blaTEM-207 1 - - 1 -
blaCTX-M-15 * blaOXY-1-5 3 - - 2 1
blaTEM-1B * blaSHV-106 10 5 - 5 -
blaTEM-1B * blaOXY-1-2 2 2 - - -
blaTEM-1B * blaOXY-1-5 3 - - 2 1
blaTEM-1B * blaTEM-207 3 1 0 2 1
blaSHV-187 * blaSHV-106 11 5 1 5 -
blaSHV-187 * blaTEM-207 2 - - 2 -
blaSHV-187 * blaTEM-207 2 - - 2 -

blaCTX-M-15 * blaTEM-1B * blaSHV-187 56 9 15 24 8
blaCTX-M-15 * blaTEM-1B * blaSHV-106 9 5 - 4 -
blaCTX-M-15 * blaTEM-1B * blaOXY-1-5 3 - - 2 -
blaCTX-M-15 * blaTEM-1B * blaTEM-207 1 - - 1 -
blaCTX-M-15 * blaSHV-187 * blaSHV-106 10 5 1 4 -
blaCTX-M-15 * blaSHV-106 * blaTEM-207 1 - - 1 -
blaSHV-106 * blaTEM-1B * blaSHV-187 10 5 - 5 -
blaTEM-207 * blaTEM-1B * blaSHV-187 2 - - 2 -

blaCTX-M-15 * blaTEM-1B * blaSHV-187 * blaSHV-106 9 5 - 4 -
blaCTX-M-15 * blaTEM-1B * blaSHV-187 * blaTEM-207 1 - - 1 -
blaTEM-207 * blaTEM-1B * blaSHV-187 * blaSHV-106 2 - - 2 -

blaCTX-M-15 * blaTEM-1B * blaSHV-187 * blaTEM-207 * blaSHV-106 1 - - 1 -

“*” means “and”.

2.8. Molecular Epidemiology of AmpC Producing Enterobacteriaceae

Among all the Enterobacteriaceae, 14% (n = 42/301) harbored at least one AmpC gene
and seven of these were multiple AmpC gene carriers. blaACT (n = 22) was the most
commonly detected AmpC gene family (Table 7). The variants of blaACT were blaACT-7
(n = 9), blaACT-16 (n = 6), blaACT-14 (n = 3), blaACT-5 (n = 2), blaACT-4 (n = 1) and blaACT-15
(n = 1). All these blaACT variants were found among Enterobacter species, and all were
related to the intrinsic AmpC gene of this genus. Another related gene, blaCMH-3, was
present in two samples of E. cloacae from DRH. Following blaACT, blaCMY (n = 13) was
another commonly identified AmpC gene family. The different variants of blaCMY were
blaCMY-6 (n = 7), blaCMY-148 (n = 3), blaCMY-2 (n = 2) and blaCMY-42 (n = 1). Another AmpC
gene detected was blaDHA-1 (n = 5). The two isolates of S. marcescens included also carried
variants of the intrinsic blaSRT genes. At least one acquired AmpC gene was identified from
K. pneumoniae and E. coli (9% each) (Table 7). Of the Enterobacteriaceae that harbored AmpC
(n = 42), 71% (n = 30/42) were found to co-produce ESBL genes while 29% (n = 12/42) were
not ESBL producers.

Table 7 shows the frequency and distribution of the AmpC genes per hospital and
Enterobacteriaceae species.
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Table 7. Frequency and distribution of the AmpC genes detected at four Ethiopian hospitals.

AmpC Genes Hospital AmpC Harboring Enterobacteriaceae

DRH
n

HUCSH
n

TASH
n

Y12HMC
n

K.
pneumoniae

n

K. variicola
n

E. coli
n

E.cloacae
n

K. oxytoca
n

E.
xiangfangensis

n

S.
marcescens

n

E. ludwigii
n

E. kobei
n

blaACT-7 (n = 9) 5 - 1 3 - - - 6 - 2 - - 1
blaCMY-6 (n = 7) 2 - 5 - 7 - - - - - - - -
blaACT-16 (n = 6) 1 - 5 - - - - 6 - - - - -
blaACT-14 (n = 3) 3 - 1 - - - - 4 - - - - -
blaACT-5 (n = 2) 3 - - - - - - 3 - - - - -
blaDHA-1 (n = 2) - 5 - - 2 2 - - 1 - - - -

blaCMY-148 (n = 3) - 1 2 - - - 2 - - - - 1 -
blaCMY-2 (n = 2) - - 2 - - - 2 - - - - - -
blaCMH-3 (n = 2) 2 - - - - - - 2 - - - - -
blaSRT-1 (n = 2) - - 2 - - - - - - - 2 - -

blaACT-15 (n = 1) - 1 - - - - - 1 - - - - -
blaACT-4 (n = 1) 1

blaCMY-42 (n = 1) - - 1 - - - 1 - - - - - -
blaSRT-2 (n = 1) - - 1 - - - - - - - 1 - -

Total AmpC genes detected 17 7 20 3 9 2 5 22 1 2 1 1 1
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3. Discussion

The current study is the first report showing the molecular epidemiology of ESBL
producing Enterobacteriaceae among patients investigated for sepsis at four referral hospitals
located in the northern, central and southern parts of Ethiopia. Of all the Enterobacteriaceae
subjected to WGS, 75.5% encoded at least one ESBL gene. Similar to our study, the previous
reports from different African countries also showed a high occurrence of ESBL [24–26].
The high frequency of Enterobacteriaceae producing ESBL enzymes among sepsis patients in
Ethiopia also showed similarities with studies conducted in other continents [4,27–29]. The
spread of bacteria producing ESBL enzymes among sepsis patients is worrying because of
the invasive nature of the disease, coupled with the limited antibiotics options left for its
management. More importantly, the high level of ESBL producing strains among sepsis
causing Enterobacteriaceae in low-income countries is a major public health problem, due to
the limited laboratory services and therapeutic options available. ESBL are often encoded
by plasmids that are able to transfer horizontally, which contributes to the rapid spread of
ESBL-pE. Additionally, as documented for developed countries, the ESBL genes detected
in food, animals and environment, human migration and limited access to sanitations
could also contribute to the rise of ESBL genes globally [30]; however, this needs further
investigation for the case of Ethiopia.

In a comparison between the hospitals, very high ESBL-pE levels were detected in the
three hospitals, HUCSH (95%), Y12HMC (90%) and TASH (82%), which are located in the
southern and central parts of Ethiopia. In contrast, the detection of ESBL enzymes at DRH
(55.8%), which is located in the northern part of Ethiopia, was comparatively low. However,
the lower level of ESBL detection at DRH was still higher compared to studies conducted in
South Africa [31], Mozambique [20] and South and South East Asia [32]. While it is known
that the spread of ESBL genes varies geographically [33], the factors that contribute to its
high occurrence in some hospitals and a lower detection rate in the other hospital within a
single country requires investigation so that effective control mechanisms can be designed.

In this study, blaCTX-M (73%) was the most frequently detected ESBL family across the
four referral hospitals. This finding was similar to a multicenter study performed in neigh-
boring Sudan that reported 78% of blaCTX-M [25]; however, a very low detection rate was
reported in the U.S.A. [34]. BlaCTX-M-15 (70.4%) was the most abundant ESBL gene detected.
This finding showed similarities with different studies across the globe [1,14,20,27,29,32].
BlaCTX-M-15 was very abundant at TASH (73.6%) and HUCSH (93%), while it was detected
at a comparatively lower rate at DRH (50.4%). While blaCTX-M-15 was disseminated in all
hospitals, blaCTX-M-3 and blaCTX-M-9 were detected only at DRH (northern). The detection of
high levels of blaCTX-M at TASH (central) may possibly be explained because the hospital is
the main destination of patients referred from all over the country, and these patients can
carry such strains to the hospital.

In this study, blaTEM (73%) was also detected in abundance, which showed agreements
with other studies [12,33]. Out of these, only blaTEM-207 were recorded as an ESBL gene,
though its detection rate was rare and restricted to only two hospitals (TASH and DRH).
This rare detection of blaTEM ESBL variants showed similarities with a study conducted in
Mozambique that reported a single detection of the blaTEM gene [20]. Of several variants
of blaTEM detected, blaTEM-1B (61.5%) was the most frequent. Other variants of blaTEM
were either broad-spectrum beta-lactamases or inhibitor-resistant beta-lactamases. Even
though most blaTEM beta-lactamases were not ESBL, it is worrying that the majority of
blaTEM variants were co-detected with ESBL genes, such as blaCTX-M variants and other
ESBL genes.

Similarly, the detection of blaSHV (33%) showed similarities with a study conducted in
Sudan that reported 28% of the blaSHV genes [25]. The ESBL variants of blaSHV detected in
this study were blaSHV-12, blaSHV-65 and blaSHV-106. The blaSHV-106 variant was detected at
DRH (northern) and TASH (central), but not at Y12HMC. A similar blaSHV-106 detection rate
was reported in Portugal [35]. However, a very minimal blaSHV occurrence was reported in
China that investigated 499 E.coli [36]. blaSHV-187 (27.6%), was the most frequently detected
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variant of blaSHV and is a broad-spectrum beta-lactamase. A majority of the blaSHV genes
were co-detected with blaCTX-M and other ESBL genes, which worsens the problem.

In addition, different intrinsic blaOXY variants encoded with K. oxytoca that are ESBL
were detected even though most were found at TASH and DRH, but rarely at HUCSH
and Y12HMC. After the first detection of blaOXY in Spain in 2009 [37], several variants
were detected in this study showing how fast the variants are spreading throughout the
world [38,39]. In addition to blaGES-11, the rarely detected ESBL genes that are grouped
in class C and has having ESBL activities were blaSRT-1 and blaCMY-42, and this showed
agreements with other studies [40,41].

Multiple ESBL genes were detected in several cases and most ESBL-encoding strains
were harboring other beta-lactamase genes. The blaCTX-M-15 gene co-occurred with several
other ESBL genes and the non-ESBL variants of blaTEM and blaSHV. The co-occurrence of
blaCTX-M-15 and blaTEM-1B was the most frequently detected gene combination, followed
by the blaCTX-M and blaSHV-187 combination. The findings of this co-occurrence of multiple
ESBL genes were in agreement with the other studies [20,25]. These findings showed the
successful spread of Enterobacteriaceae harboring multiple ESBL genes in the study settings,
which is very alarming.

In the current study, 14% of Enterobacteriaceae harbored at least one AmpC gene while
seven strains had multiple AmpC genes. However, a higher AmpC detection was reported
in Cairo, Egypt [16]. Several variants of AmpC were detected, with blaACT (n = 25) as the
most common variant, which was in accordance with another study [19]. blaACT-5, blaACT-7,
blaACT-16, blaACT-14 and blaACT-15 were the different variants of blaACT detected in this study.
Another commonly detected AmpC gene was blaCMY and its different variants blaCMY-6,
blaCMY-148, blaCMY-2 and blaCMY-42. The detection of blaCMY was in agreement with the other
studies [19,20]. The other rarely detected AmpC genes detected were blaDHA-1, blaCMH-3,
blaSRT-1, blaSRT-2 and blaADC-25. A majority of AmpC producing Enterobacteriaceae (71%)
were also ESBL producers that could easily facilitate the rapid spread of both ESBL and
AmpC genes, as described in a review article from Africa [24].

At least one ESBL gene was detected among 95% of K. pneumoniae, 68% of K. variicola,
53% E. coli and 43% of E. cloacae. These findings were in line with other studies that
recognized these organisms as the main ESBL carriers [9,10,42]. K. pneumoniae was the most
frequent isolate that harbored high frequencies of ESBL blaCTX-M-15 (92%), and also showed
high frequencies of blaSHV-187 (78%) and blaTEM-1B (74%). A similar high level of ESBL genes
encoded by K. pneumoniae were reported in Tanzania [43]; however, a very low detection
rate was reported in Germany [10] and the U.S.A. [34]. In addition to the ESBL genes, 9%
of K. pneumoniae were harboring different AmpC genes showing that these strains are the
main ESBL carriers in all hospitals. The detection of ESBL genes in sepsis isolates is very
important to guarantee that appropriate antibiotic therapy is prescribed when an ESBL
producing strain is identified, and to limit unnecessary antibiotic prescriptions when ESBL
genes are not identified [34].

4. Materials and Methods
4.1. Study Design and Study Sites

Among the patients investigated for sepsis, a multicenter prospective cross-sectional
study was conducted between October 2019 and September 2020 at four selected hospi-
tals located in the central, southern and northern parts of Ethiopia (Figure 5). University
and referral hospitals that had established microbiology laboratories or a link with a
nearby government regional microbiology laboratory were selected. These were the Tikur
Anbessa Specialized Hospital (TASH) and the Yekatit 12 Specialized Hospital Medical
College (Y12HMC) in the central, Hawassa University Comprehensive Specialized Hos-
pital (HUCSH) in the southern and Dessie Referral Hospital (DRH) in the northern parts
of Ethiopia.
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Figure 5. The four Ethiopian referral hospitals selected for this study and from where Enterobacteri-
aceae were isolated. TASH, located in Addis Ababa, is the teaching hospital of Addis Ababa Univer-
sity and the largest referral and oldest hospital in the country. It provides tertiary level referral di-
agnoses and treatment for patients referred from all over the country with over 800 beds. DRH is 
one of the largest public hospitals in the northern part of Ethiopia, located in Dessie. It is a referral 
hospital with 560 beds, providing services for the surrounding areas and residents of the neighbor-
ing regions. Y12HMC is located in Addis Ababa and provides health care services to Addis Ababa 
residents, referral cases from health centers in Addis Ababa and its bordering regions. The hospital 
has over 300 beds and serves more than 5 million people in its catchment area. HUCSH, located in 
Hawassa city, is one of the largest health facilities in the southern part of the country and provides 
teaching, public health services and research activities with over 400 beds. 

4.2. Blood Culture and Enterobacteriaceae Isolation and Identification 
All patients investigated for sepsis who sought medical service at the study sites were 

included. The attending physician’s decision was used to identify the eligible patients as 
sepsis cases and their socio-demographic and possible risk factors data were gathered. All 
age groups were included, but patients who had been on antibiotic treatment within the 
preceding ten days were excluded from the study. From all the study sites, a total of 1416 
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Figure 5. The four Ethiopian referral hospitals selected for this study and from where Enterobacteri-
aceae were isolated. TASH, located in Addis Ababa, is the teaching hospital of Addis Ababa University
and the largest referral and oldest hospital in the country. It provides tertiary level referral diagnoses
and treatment for patients referred from all over the country with over 800 beds. DRH is one of the
largest public hospitals in the northern part of Ethiopia, located in Dessie. It is a referral hospital
with 560 beds, providing services for the surrounding areas and residents of the neighboring regions.
Y12HMC is located in Addis Ababa and provides health care services to Addis Ababa residents,
referral cases from health centers in Addis Ababa and its bordering regions. The hospital has over
300 beds and serves more than 5 million people in its catchment area. HUCSH, located in Hawassa
city, is one of the largest health facilities in the southern part of the country and provides teaching,
public health services and research activities with over 400 beds.

4.2. Blood Culture and Enterobacteriaceae Isolation and Identification

All patients investigated for sepsis who sought medical service at the study sites were
included. The attending physician’s decision was used to identify the eligible patients
as sepsis cases and their socio-demographic and possible risk factors data were gathered.
All age groups were included, but patients who had been on antibiotic treatment within
the preceding ten days were excluded from the study. From all the study sites, a total of
1416 clinically diagnosed cases of sepsis from different wards were enrolled in the study.
A single blood culture bottle system was processed from all the patients, and bacterial
identification was performed in accordance with a standardized laboratory protocol. At
each study site, Enterobacteriaceae were characterized by their colony characteristics, Gram-
staining and conventional biochemical tests using triple sugar iron, indole, urea, citrate,
lysine decarboxylase, motility and malonate. All strains were stored at −70 ◦C or −16 ◦C
and transported to the Armauer Hansen Research Institute, and later brought to Sweden for
further characterization. All the Enterobacteriaceae were re-identified and confirmed using
MALDI-TOF MS at the Clinical Microbiology Department of Uppsala University Hospital,
Uppsala, Sweden, and the Karolinska Institute, Stockholm, Sweden. Each laboratory
test was processed in accordance with the established protocols and carefully recorded.
Each MALDI-TOF run included quality control using E. coli ATCC 25922. A total of
301 Enterobacteriaceae isolated from all the study sites was subjected for whole genome
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sequencing (WGS) for the current analysis. The number of Enterobacteriaceae subjected to
WGS from DRH, TASH, HUCSH and Y12HMC were 113, 91, 57 and 40, respectively.

4.3. DNA Extraction, Whole Genome Sequencing (WGS) and the Identification of Resistance Genes
From all the Enterobacteriaceae, DNA was extracted manually using a QIAamp DNA

Mini Kit (QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. DNA
extractions were performed by taking 2–5 pure colonies that grew on cystine lactose
electrolyte deficient agar at 37 ◦C for 24 h aerobically. After the extraction, the DNA
concentrations were measured with QubitTM3.0 (Thermo scientific, Waltham, MA, USA).
All the extracted DNA samples were kept at −20 ◦C until they were submitted for whole
genome sequence determination.

All the Enterobacteriaceae were subjected to WGS at the Science for Life Laboratory,
Solna, Sweden. From each DNA sample, 20 µL was transferred into a 96-well WGS plate.
Sequencing libraries were generated using Nextera XT (Illumina kits) and short-read
sequencing was run on Illumina (HiSeq 2500) systems with a 150 bp insert size paired
end sequencing protocol at the Science for Life Laboratory. SPAdes (version 3.9) was
used for the genome assembly. With the assembled genomes, the acquired antimicrobial
resistance genes were identified using the ResFinder 4.1 web tool at the Center for Genomic
Epidemiology http://www.genomicepidemiology.org/ (accessed on 16 August 2021) using
a threshold of 90% and 60% coverage. Each WGS run included quality control.

4.4. Statistical Analysis

The data was prepared using a Microsoft Office Excel sheet and was imported to SPSS
version 27 for analysis. The frequencies of the resistance genes, ESBL and AmpC producers
and the co-occurrence of multiple ESBL genes and other variables were calculated. The
binary logistic regression analysis was used to observe the associations of the sociodemo-
graphic and possible risk factors of ESBL producing Enterobacteriaceae. A p-value < 0.05
was considered as statistically significant.

5. Conclusions

To our knowledge, this is the first multicenter study that reported the molecular
epidemiology of ESBL and AmpC producing Enterobacteriaceae among sepsis patients at
four Ethiopian hospitals located in the northern, central and southern parts of the country. A
very high genotypic frequency of ESBL producing Enterobacteriaceae among sepsis patients
was detected. Several variants of ESBL genes were detected and the most frequent ESBL
gene was blaCTX-M-15. In addition to the ESBL genes, diverse variants of blaTEM and blaSHV
beta-lactamases were detected, where blaTEM-1B and blaSHV-187 were the most frequently
detected variants in their respective families. Multiple combinations of ESBL genes were
detected and most ESBL genes were concurrently detected with the blaTEM-1B and blaSHV-187
beta-lactamases. Different AmpC genes were detected in some Enterobacteriaceae where
variants of blaACT and blaCMY were commonly detected. The current findings strongly
suggest the urgent need for high standard bacteriological laboratory services to guide the
antibiotic treatment of sepsis and other life-threatening infections due to ESBL and AmpC
producing Enterobacteriaceae. It is also helpful for effective antimicrobial stewardship so
that infection control programs can be improved.
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