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Abstract: Orthopaedic device implants play a crucial role in restoring functionality to patients suffer-
ing from debilitating musculoskeletal diseases or to those who have experienced traumatic injury.
However, the surgical implantation of these devices carries a risk of infection, which represents a
significant burden for patients and healthcare providers. This review delineates the pathogenesis of
orthopaedic implant infections and the challenges that arise due to biofilm formation and the impli-
cations for treatment. It focuses on research advancements in the development of next-generation
orthopaedic medical devices to mitigate against implant-related infections. Key considerations im-
pacting the development of devices, which must often perform multiple biological and mechanical
roles, are delineated. We review technologies designed to exert spatial and temporal control over
antimicrobial presentation and the use of antimicrobial surfaces with intrinsic antibacterial activity. A
range of measures to control bio-interfacial interactions including approaches that modify implant
surface chemistry or topography to reduce the capacity of bacteria to colonise the surface, form
biofilms and cause infections at the device interface and surrounding tissues are also reviewed.

Keywords: orthopaedic implants; infection; biofilm; bioinspired; drug delivery; implant coating;
polymer; antimicrobial; nanotechnology; medical device

1. Introduction

Orthopaedic medical devices are a significant area of focus in healthcare provision.
They are primarily used for fixation of long bone fractures and non-unions, spinal fracture
stabilisation and replacement of diseased (arthritic) or damaged joints [1]. Intramedullary
nail fixation devices have been used in the treatment of closed fractures of the long bones
(femur and tibia), whilst hip and knee arthroplasties involve replacement of joints by
implantation of prosthetic devices. These procedures are common, with an estimated six
hundred thousand joint prostheses and two million fracture fixation devices implanted
in the United States alone [2]. In the case of orthopaedics, metallic implants are primarily
employed as they provide the necessary mechanical strength in high load-bearing envi-
ronments that are subject to repeated cyclic loads and strains [3]. The success in restoring
biological function and implant integration with host tissue (where desirable) can be ham-
pered by many variables including patient factors, procedural complications and those
owing to the implant device itself (stress-shielding effects). The leading causes of implant
failure are attributed to aseptic loosening and infection [4].

All surgical procedures are associated with a risk of infection, the incidence varying
from 0.5% to 4% in total hip and knee implants, respectively, even with the systemic
administration of antibiotics prior to surgery [5]. However, more substantive infection
rates (up to 40%) may occur in cases of revision surgeries on failed prosthetic joints [6],
whilst up to 44% of open fractures are reported to develop post-operative infections [2].
The health and economic impacts of orthopaedic device-related infection (ODI) to patients
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and healthcare providers are significant, owing to longer hospital stays and greater hospital
costs for revision surgeries where infection is implicated compared to aseptic cases [7]. A
review of the Nationwide Inpatient Sample (Q4 2005–2010) to quantify the clinical and
economic burden of periprosthetic infection revealed infection to be the leading indication
for revision total knee arthroplasty procedures and the third most common reason for
revision total hip arthroplasties. These patient cohorts had the longest hospital stays
and with the exception of periprosthetic fracture patients, the highest costs [8]. Together
with the expected increase in orthopaedic medical device usage (e.g., a sixfold increase in
arthroplasty procedures by 2030 has been projected) [9], it is clear that ODIs represent a
major concern for patients and healthcare providers.

Drug treatment regiments typically comprise part of the management and treatment
of device-related infections. Gentamicin is the preferred antimicrobial agent used in or-
thopaedic device infections [10]. However, challenges associated with polymicrobial infec-
tions, drug resistance and limitations of systemic drug delivery including subtherapeutic
drug concentrations at the target site due to compromised vascularity and poor perfu-
sion can lead to treatment failure and poor patient outcomes. Depending on the severity
of the infection, previous attempts to cure the infection, antibiotic resistance, symptoms
present and their duration, patient risk factors, comorbidity and implant stability [11,12],
intervention may involve surgical debridement with retention of the prosthesis, one- or
two-stage implant exchange or implant removal without replacement. In very serious cases
of uncontrolled infection, amputation may be necessary [12,13]. Local delivery of antibiotics
has already been successfully translated to the clinic in the guise of antibiotic-loaded bone
cements (ALBC), antibiotic-impregnated collagen sponges and poly (methyl methacrylate)
(PMMA) beads [14]. Antibiotic-impregnated PMMA cements have been employed as
spacers in two-stage revision surgeries or the management of infections in revision pro-
cedures [15]. Local antibiotic elution for prophylactic purposes has been employed more
readily in joint replacement surgery in comparison to fracture treatment as the prosthetic
joints are stabilized using ALBC [16]. These approaches have a number of drawbacks
including incomplete and variable drug release, the non-degradable properties of PMMA
and the incompatibility of some drugs with PMMA arising from exothermic reactions
during curing [12]. Additionally, the presence of antibiotics may decrease the internal
strength of the cement, thereby decreasing its overall mechanical performance [17,18].

Consequently, the problem of implant failure owing to infection has led researchers
to examine implant design in a bid to address this problem. This review will focus on the
progress to date in the development of the next-generation orthopaedic medical devices to
control ODI. Strategies to mitigate against the risk of infection including the application of
surface coatings will be discussed. Bactericidal surfaces that inactivate bacteria primarily
by chemical mechanisms using antimicrobial agents or materials with intrinsic antibacterial
activity will be discussed. A range of measures to control bio-interfacial interactions
including approaches that modify implant surface chemistry or topography to reduce the
capacity of bacteria to colonize the surface, form biofilms and cause infections at the device
interface and surrounding tissues will also be reviewed.

2. Orthopaedic Device-Related Infection (ODI)
2.1. Origin and Causative Organisms

Infection may occur at the perioperative stage (sources of infection include surgical
equipment, clothing worn by operating theatre personnel and the atmosphere of the operat-
ing room) [19], contiguously (wound contamination occurs during trauma—in penetrating
injuries or from a source adjacent to the wound) or the infection may be hematogenous
in origin (infection spread by the lymph or blood occurs from a distant site of infec-
tion) [20]. The primary causative organisms in orthopaedic infections are Staphylococcal in
origin [21,22] with Staphylococcus aureus (S. aureus) and coagulase negative staphylococcus
species a factor in more than 50% of prosthetic hip and knee infections [23]. Although other
Gram-positive (Streptococcus, Enterococcus, Propionibacterium species) and Gram-negative
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(Pseudomonas aeruginosa, Escherichia coli) pathogens are also implicated [24–26]. Epidemio-
logical studies confirm the predominance of staphylococci and signal the complexity of the
treatment challenges due to the broad spectrum, variability and virulence of pathogens im-
plicated, changing species profiles in early and late infections, and the consistent presence
of polymicrobial infections [24,27–29]. The development of methicillin resistant S. aureus
(MRSA) strains further complicates the problem. Conventional culture tests are used to
diagnose infections; however, they are limited by low sensitivity in detecting the causative
organisms. Advancements in diagnostic technology offering enhanced sensitivity, e.g., next-
generation sequencing, will likely lead to more comprehensive analysis and detailed
insights into the infectious organisms in patients’ samples [30].

A further complication includes the presence of infections with a biofilm aetiology,
where microbes form multicellular communities on biological and non-biological sur-
faces [31]. Biofilms help retain nutrients and offer protection against the patient’s immune
system [32]. The presence of foreign bodies, e.g., implants are thought to further exacerbate
the infection risk [33], as they provide substrates for colonisation and biofilm formation.
Studies have shown that the presence of an implant influenced S. aureus infection patho-
genesis in a subcutaneous guinea pig model with 102 colony-forming units (CFU) causing
infection in the majority of animals, whereas in the absence of the foreign body no infection
was present even at 108 CFU [34]. There may be further complications if the presence of the
implant evokes a foreign body response attributed to “non-self” materials, compromising
the immune system and leading to an increased infection risk [35].

Infections have been classified based on their occurrence post-operatively. “Early”
infections develop less than 3 months after surgery, those categorized as “delayed” oc-
cur within a 3–24 month timeframe and “late” manifest greater than 24 months after
surgery [20]. Infection with virulent organisms, e.g., S. aureus and Gram-negative bacilli at
the time of implantation typically gives rise to acute infections within the first 3 months
post-operatively, while infections with less virulent organisms are more typically asso-
ciated with chronic infections over time frames of many months or years after surgical
implantation [13]. The symptoms of early infections typically manifest as pain, swelling,
erythema and fever. Delayed infections are characterized by persistent joint pain and
implant loosening that may be difficult to differentiate from aseptic loosening [36]. Indeed,
infection is the primary cause of failure following total knee arthroplasty [11]. When
orthopaedic-associated infection goes untreated, it can progress to osteomyelitis and bone
destruction [37].

2.2. Biofilm-Related Infections
2.2.1. Biofilm Formation

The presence of a biofilm aetiology in device-related infections is widely recognized
as a primary pathogenic mechanism contributing to infections that are persistent and
difficult to eradicate [38]. Biofilms have been described by Donlan and Costerton (2002) as
“microbially derived sessile community characterized by cells that are irreversibly attached
to a substratum or interface or to each other, are embedded in a matrix of extracellular
polymeric substances that they have produced, and exhibit an altered phenotype with
respect to growth rate and gene transcription” [39]. Studies of biofilms have revealed
differentiated, structured groups of cells with community properties that are responsive to
the stresses of their surrounding environment [40].

The primary conceptual framework for biofilm formation involves four key stages
implicit in biofilm development beginning with initial attachment of planktonic bacteria
on the surface, followed by proliferation and cell accumulation, biofilm maturation and
cell detachment [29] (Figure 1). Bacterial adhesion on material surfaces proceeds by a
two-step process. Attachment in the initial, reversible physical phase is mediated by
non-specific factors including implant surface properties (e.g., hydrophobicity, surface
tension, electrostatic interactions), whereas molecular and cellular interactions between
the bacteria and implant substrate dominate in the second, irreversible phase [31,41].
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Additionally, the host inflammatory response to the implant can play an important role in
facilitating bacterial adhesion to the surface [31]. The material substrate and bacteria can
influence the adhesion process in different ways. Adsorption of host proteins including
fibronectin and fibrinogen on the implant surface after exposure to physiological fluids
can provide anchorage sites for S. aureus cells, mediated by bacterial surface adhesion
proteins, e.g., MSCRAMMs (microbial surface components recognising adhesive matrix
molecules) [31]. The MSCRAMMs are complex receptor proteins anchored to the bacterial
cell and thought to be multifunctional with some MSCRAMMS recognising extracellular
matrix (ECM) ligands, acting as invasins or facilitating bacterial cell accumulation [42].
Cells form microcolonies on the surface, which arises due to translocation across the surface
or due to clonal growth of attached cells. The discrete cell clusters grow in size to form
macrocolonies with a classical mushroom-like tower structure interspersed with fluid-
filled voids proposed to support the diffusion of nutrients and waste by-products [43].
Other mechanisms implicated in biofilm maturation include the release of eDNA and the
production of an extracellular polysaccharide matrix [44]. In staphylococci, the presence of
polysaccharide intercellular adhesin (PIA) in the polymeric matrix is an important factor
in bacterial adhesion and accumulation within the biofilm [45]. Other protein factors
have also been identified to play a role in staphylococcal biofilm formation including the
accumulation associated protein (Aap) in Staphylococcus epidermidis (S. epidermidis) isolated
from human infections [46].
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Figure 1. Schematic representation of the main steps in biofilm formation on a surface. Biofilm
formation is a cyclic process that begins with surface contact by single planktonic cells. Cells go
through reversible attachment whereby bacteria attach to a surface via their flagella or cell pole,
to irreversible attachment when flagella reversal rates decrease, and biofilm matrix component
production occurs. Biofilm maturation follows, and dispersion occurs due to extracellular polymeric
substance (EPS) degradation. Created with BioRender.com.

Biofilm production can be impacted by environmental conditions and changes in
cell density through the quorum-sensing system, whereby cell-to-cell communication
between bacteria mediated through the release of signalling molecules can coordinate
changing patterns of gene expression within bacterial populations [31,47]. The continued
expansion of bacterial colonies creates an increase in the internal pressure in the biofilm
that is followed by detachment of cells and reversion to the planktonic state, granting
them the ability to infect surrounding tissue or initiate biofilm development elsewhere [48].
Dispersal of clumps of cells encased in extracellular polymer substances more reminiscent
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of attached biofilm rather than the planktonic state is also a feature of S. aureus biofilms [49].
Other factors expressed under the control of quorum sensing are also implicated in biofilm
disruption; detachment and bacterial dispersion include the production of β-type phenol-
soluble modulins (a group of pro-inflammatory peptides with surfactant-like properties),
extracellular proteases and murein hydrolases [29,50,51].

2.2.2. Biofilms—The Clinical Consequences

Bacterial growth in aggregates and encased in the biofilm “slime” matrix affords
the microbes protection from environmental (shear forces) and the host’s defences (op-
sonisation and phagocytosis) [39,49]. Sessile bacteria cells are also less susceptible to
antibiotics compared to non-attached, planktonic cells. Biofilm bacteria are reported to
tolerate exposure to drug concentrations ranging from 10 to 1000 times that required to
eliminate genetically equivalent planktonic forms [52]. This reduced susceptibility has
also been attributed to poor antimicrobial penetration of the biofilm due to impaired drug
diffusion or the retardant effect of the polymeric matrix [53,54]. Reductions in bacterial
metabolic activity can lead to profound differences in antibiotic susceptibility [55]. Indeed,
the heterogeneity of a biofilm matrix may represent an important survival strategy because
differences in the metabolic activity of the cells increase the likelihood that some bacterial
cells may survive a metabolically directed attack [56]. This reduced antibacterial suscep-
tibility has important clinical implications as it necessitates high doses of antibiotics to
target and eradicate infection, often with limited success. Indeed, infections recalcitrant
to antibiotic therapy despite planktonic sensitivity to the drug is one of several clinical
and microbiological criteria that have been defined in an attempt to classify and diagnose
infections with a biofilm aetiology [49,57,58]. Given the reduced susceptibility to antibi-
otics, the high proportion of biofilm-based infections (up to 65%) [59], the propensity for
these infections to be chronic [57], the difficulty in targeting effective concentrations to the
infection using systemic drug delivery and owing to side-effects associated with high-dose
antibiotic regimes [60], the most effective strategy to eradicate problematical biofilm in-
fections involves removal of the implanted device and debridement of the surrounding
tissue [21]. Such procedures are not always possible and carry the risk of complications,
underscoring the challenges biofilm-related infections pose for patients and healthcare
providers [61].

3. Infection Control and Orthopaedic Implant Design
3.1. Orthopaedic Device Materials

A range of materials including metals, ceramics and plastics or a combination of these
has been used to construct orthopaedic implants. Orthopaedic implants perform many
different functions, which impacts the choice of material used [4]. Strong materials are
required for load-bearing applications, while durability and wear resistance are important
requirements in articulating surfaces [62]. Key factors influencing material choice include
tensile strength, elastic modulus, corrosion resistance, ductility, longevity, potential to
release metal debris, and the impact on device functionality and performance [63]. Irrespec-
tive of application, desirable features include biocompatibility and a minimal foreign body
response. Three generations of orthopaedic biomaterials have been described by Hench
and Polak [64]: First generation, bioinert materials, elicit a minimal response from host
tissue. Second generation encompass resorbable or bioactive materials that form bonds
with the tissue and material, while third generation materials stimulate cell responses to
encourage healing.

Metals are commonly used for load-bearing applications in joint replacements, den-
tal implants and fracture-fixation devices in a bid to match desirable mechanical and
wear resistance properties with the functional application [65]. Commonly used metals
include biomedical grades of stainless steel (e.g., 316L stainless steel), alloys of cobalt
including cobalt–chromium–molybdenum (CoCrMo) and titanium (Ti) and titanium-based
alloys (Ti-6Al-4V, Ti-6Al-7Nb) [66]. Biodegradable metals including magnesium-based
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compounds are increasingly investigated as they are biocompatible and mechanically supe-
rior to biodegradable polymers [67,68]. However, their strength is lower than other metal
substates, and rapid degradation of implants in vivo can lead to the evolution of hydrogen
gas that causes inflammation and irritation [67,69].

Second generation, bioactive materials are used in scenarios where device integration
with the host tissue and augmentation of healing is required. For example, osteointegration
is not a priority in cases where the device is removed following healing (fracture fixation
plates, screws). In cases where osteointegration is desirable deposition of ceramic biomateri-
als including calcium-phosphate-based materials, e.g., hydroxyapatite (HA) and tricalcium
phosphate [70–72], on implant surfaces is common due to the similarity of these materials
to natural bone minerals. Calcium phosphate-based materials with different compositions,
chemical and physical properties have been investigated in an effort to control cell adhesion,
differentiation behaviour and osteointegration [73]. Other strategies to promote integration
of the device include increasing implant surface roughness [74,75] and increasing wetta-
bility [76]. However, efforts to support osteointegration can also give rise to increased
bacterial attachment and promote the development of infection [77]. Alternative ceramics
include alumina, which is exploited for its hardness and wear resistance in arthroplasty to
produce femoral head components, while it is combined with zirconia (ZTA) to enhance
its toughness [66,78]. Zirconia ceramics are amenable to 3D printing, which advances the
prospect to create bespoke, patient-specific devices, thereby addressing problems during
implantation due to the mismatch between the patient and prosthesis shape [79].

A range of synthetic polymeric materials are also utilised, including highly cross-
linked ultrahigh molecular weight poly(ethylene) (UHMWPE), poly(L-lactic acid) (PLLA),
polyether–ether–ketone (PEEK) and PMMA [66]. The most well-known is PMMA, a
polymeric cement used for hard tissue applications that is inserted between the device and
bone to ensure that stress is more uniformly distributed [80]. Antibiotic-loaded cements are
also utilised for local antibiotic delivery for infection prophylaxis and treatment [81], and as
a spacer in two-stage reconstruction of infected joints [82]. Resorbable PLLA-based devices
have been used in non-load-bearing applications, e.g., maxillofacial fractures [69]. PEEK,
which exhibits many desirable properties, e.g., elastic modulus, strength, wear resistance,
radiolucency, and biocompatibility, has been used to manufacture maxillofacial and spinal
implants. Drawbacks include its bioinert and hydrophobic properties, and its susceptibility
to microbial infections [83].

3.2. Infection Control

Extensive research has been undertaken to address the problem of ODI and a range
of infection control strategies has been pursued including inhibition of bacterial adhesion,
interference with biofilm formation or presentation of antimicrobial agents (Figure 2).
Non-eluting coatings that impede or prevent bacterial adhesion through surface chemistry
or engineering the surface have been described as passive, while the presentation of
antimicrobial agents incorporated on the surface, in a coating or carrier and which prevent
infection by killing bacteria are classed as active [1,84]. In the case of implants intended for
integration with the host, the competition between microorganisms and host cells to adhere
and coat the surface has an important influence on the long-term device success. Gristina
and colleagues described this phenomenon as the “Race for the surface” [85]. Repellent
surfaces may compromise host integration in the case of permanent implants as many of
the mechanisms crucial to host cell adhesion also promote adhesion of microorganisms [86].
This has prompted research in the use of multifunctional coatings that exploit variations
in surface chemistry and patterned topography to create both adhesive and non-adhesive
sites and have been reviewed elsewhere [86–88]. In contrast, the use of coatings that do
not promote host integration may be desirable in trauma and fracture fixation, whereby
removal of the device after healing may be desirable [89]. The choice of material used to
combat biofilm-associated infections has a profound impact on the ensuing foreign body
response and should be closely considered [90].
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Figure 2. Schematic illustration of various antimicrobial and drug-free strategies currently under in-
vestigation to combat device-related infection. (A) Active antimicrobial surfaces utilise antimicrobial
agents that have been coated on the surface or encapsulated within coatings to kill or impede bacteria
growth. They exert their effect when (i) bacteria contact the antimicrobial surface or (ii) when released.
Drug-free strategies include engineering (B) bactericidal nanotopographies and (C) device surfaces
to minimise bacterial adhesion including polymeric brushes that impede microbial attachment owing
to steric hindrance, or (D) the use of superhydrophobic surfaces to repel microbes, such as SLIPS
(slippery liquid-infused porous surfaces). Created with BioRender.com.

Table 1 provides an overview of the salient considerations in the design and manu-
facture of orthopaedic implants for infection control. Irrespective of the infection control
strategy, materials employed to tailor the device surface should be biocompatible, possess
desirable mechanical properties, enable infection control both in the acute and latent phase
and promote integration with the host tissue where desirable [88]. Any added antimicrobial
agent should have a spectrum of activity against the primary causative agents. Rational
device design for implantation should take account of the interplay (Figure 3) between
the key features including the organisms responsible for the infection, their attraction
to the implant surface and their susceptibility to the antimicrobial agents [6]. Important
prerequisites in device design and infection control strategies include the need to ensure
that any advancement does not add complexity to the surgical implantation procedure and
that intricate designs do not act as a barrier to scale-up and manufacture [16].

Table 1. Considerations in the design of orthopaedic devices to mitigate device-related infections.

Property Features

Infection Bacteria species, strain, properties (charge), susceptibility to treatment, presence of biofilm

Device
Material (metal–titanium alloy, stainless steel; polymer—PEEK), Shape
Application—arthroplasty, fracture fixation, trauma
Permanent or temporary implantation
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Table 1. Cont.

Property Features

Infection
control strategy

Antimicrobial surfaces (antimicrobial release or contact inhibition)
Anti-adhesive surfaces, bacteria repellent.
Interference with biofilm formation (e.g., quorum-sensing inhibitors, quorum quenchers, enzymes, small
molecules, immunotherapy)

Antimicrobial cargo

Controlled release profile—spatiotemporal control over presentation of antimicrobial agents,
reproducible PK/PD parameters
Properties—MIC, pathogen selectivity, spectrum of activity, species selectivity, mode of action, toxicity to
host cells and tissue, resistance

Surface
properties

Surface roughness, chemistry, energy, and wettability
Physical architecture—nanotopography
Interaction with host proteins, host cells and bacteria
Influence on cell proliferation and differentiation

Mechanical
features

Sufficient to facilitate handling and surgical implantation.
Replicate those of the target tissue to provide important cues that instruct tissue development where
integration is desirable while simultaneously limiting stress shielding

Biomaterial properties

Biocompatibility—material and breakdown products should be biocompatible to avoid foreign body
responses that might otherwise lead to rejection or interfere with the healing cascade.
Host responses
Where integration is desirable, biomaterials should ideally be osteoconductive, osteoinductive and
support osseointegration.

Manufacture/
Production

Technology should facilitate translation from bench scale to the clinic.
Production according to GMP standards.
Cost-effective.

Development and
Regulation

Preclinical (in vitro, in vivo) and clinical models.
Regulatory requirements—e.g., testing the efficacy of combination medical devices.
Antimicrobial efficacy according to ASTM standards
Approval pathway and regulatory requirements in different jurisdictions.

GMP (good manufacturing practice), MIC (minimum inhibitory concentration), PEEK (polyether-ether-ketone),
PK/PD (pharmacokinetic/pharmacodynamic).
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4. Antimicrobials and Anti-Biofilm Strategies
4.1. Antimicrobial Cargoes and Materials

A diverse array of molecules has been investigated for the purpose of minimising
ODI including small drug molecules (e.g., antibiotics), polymers with intrinsic bactericidal
activity (e.g., chitosan), ions (silver, zinc, copper), quaternary ammonium salts and antimi-
crobial peptides (AMPs) [4]. Important considerations when selecting an agent include the
stability, tissue compatibility, toxicity, and spectrum of activity. A sizeable body of research
has investigated the local presentation of antibiotics (e.g., gentamicin and vancomycin) on
the surface of orthopaedic implants to prevent or ameliorate ODI, which has culminated
in limited clinical success to date. This may be attributed, in part, to insufficient clinical
evidence, concerns over the impact on bone growth, regulatory requirements, cost and
controversy surrounding the routine use of antibiotics and the associated risk of resistance.
Treatment of orthopaedic infections may be complicated by the diminished or lack of
efficacy of some drugs (e.g., gentamicin and vancomycin) against intracellular bacteria
prompting investigations based on combinations such as those involving rifampicin, which
targets intracellular bacteria [87]. Indeed, the premanufacture of devices coated with a
single antimicrobial agent may represent an oversimplified solution to the problem given
the challenges of infections with a biofilm aetiology, incidence of polymicrobial infections
and epidemiological differences [49]. Efforts to address some of these limitations have
focused on the use of carriers or coatings applied at the time of the surgical procedure [91].
Notably, even with diagnostic efforts to culture and identify causative organisms, isolated
bacterial strains deemed susceptible to an antibiotic in laboratory testing can be completely
resistant to the same antibiotic when growing under a biofilm [92]. Despite the limitations
highlighted here, data for local antibiotic delivery using ALBC suggests decreased infection
rates in primary procedures [93], or as part of a wider infection control strategy [94], while
a recent meta-analysis of in vivo studies concluded that antibiotic coatings on titanium
offered a promising infection prevention approach [95].

The rise in antibiotic resistance has prompted intensive research on the development of
new antimicrobials, the chemical modification of existing drugs and the development of ma-
terials with intrinsic antimicrobial activity. However, despite considerable investment, the
pace of new drug development and translation of new antimicrobial drugs to the clinical set-
ting has been slow and lagged the emergence of multi-drug resistant bacterial strains [96,97].
Scientists are also exploring new therapeutic moieties to treat infections, which are at vary-
ing stages of development and acceptance by the scientific community. These include
metallic ions and nanoparticles (NPs), biological agents including AMPs, phage technology
and gene-editing enzymes [98]. Indeed, quorum-sensing inhibitors and quenchers, which
impede biofilm formation by targeting the microbial communication mechanisms, have also
been investigated. Their role in biofilm formation and/or maturation has been reviewed
elsewhere [99] and is discussed in the next section. Multi-drug combinations or the combi-
nation of drugs with either antimicrobial materials or quorum-sensing inhibitors have also
been investigated to enhance the antibacterial spectrum, create synergy and circumvent
the risk of bacterial resistance. More recently, attempts to develop novel antimicrobials
for orthopaedic applications investigated bone-binding antibiotic (BBA-1), which was pro-
duced via a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90),
and the bisphosphonate, alendronate [100]. BBA-1 demonstrated rapid binding to bone
mineral and showed potent antibacterial activity against S. aureus and MRSA in vivo. Data
also indicated the potential to ensure lasting activity against osteomyelitis after systemic
delivery. Research into the use of natural (e.g., chitin and chitosan) and synthetic polymers
with intrinsic antimicrobial activity for infection control for different applications (health,
food, packaging) is well established. [101]. Cellulose-based materials with lignin or car-
boxylic functional groups have been proposed to be useful in anti-biofilm engineering [102].
Antimicrobial materials represent an attractive alternative to antimicrobial drugs and can
be used to functionalize surfaces without adversely affecting the antimicrobial properties,
although antimicrobial efficacy is dependent on the material and pathogen. Research in
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this area has focused on chemical modification of the materials to optimize physicochemi-
cal properties (e.g., solubility) and enhance antimicrobial functionality or exploiting key
structural features to generate new antimicrobial materials [101].

Of the various metal ion-releasing surfaces, silver (Ag) is the most widely investigated
to mitigate against the risk of infection. It has been used medically in wound dressings and
for the prophylaxis and treatment of burns. Silver application has evolved from the ionic
form in silver nitrate, or combined with antibacterial sulphonamide drugs in silver sulfadi-
azine, towards its use as a coating on urinary catheters or in NP form in dressings [103].
Although its popularity declined with the introduction of antibiotic drugs, there has been
a resurgence in interest due to emergence of antibiotic-resistant bacterial strains. In the
context of device-associated infection prevention, it has been presented using a number
of delivery vectors including Ag-doped ceramic and polymer coatings, Ag NP and thin-
films [48,104–106], with ion-releasing coatings demonstrating good antibacterial activity
in vitro [107,108]. More recently, silver was encapsulated in carboxymethyl cellulose (CMC)
microparticles by spray-drying and included in a calcium phosphate bone cement [109].
Loading silver into the microparticles rather than the cement itself yielded faster release of
silver within the first few days, yet mitigated the undesirable silver–cement interactions
during setting. However, concerns over toxicity in some eukaryotic cell lines when high
concentrations are used and the lack of sufficient clinical evidence of Ag efficacy in in vivo
orthopaedic applications has limited the widespread use of this approach [16,110]. Several
other metal ions have also been investigated for their antimicrobial effects. A copper
(Cu)-containing bioactive glass–collagen scaffold composite was demonstrated to promote
bone generation owing to its osteogenic and angiogenic potential [111]. Its antimicrobial
capacity was demonstrated through elution of Cu ions.

The inclusion of AMPs in device coatings has also been proposed to combat infection.
These compounds, described as next-generation antibiotics because they are far less sus-
ceptible to the development of pathogen resistance compared to conventional antibiotics,
are potent and exhibit rapid and broad-spectrum antibacterial activity [112,113]. AMPs
play a key role in natural defence mechanisms and have been isolated from various natural
sources including bacteria, fungi, viruses, plants, and animals. They are generally com-
posed of between 12–50 amino acids and exert their action by altering the cell membrane.
Four main classes exist, including (i) cationic, (ii) anionic, (iii) anionic and cationic peptides
with disulphide bonds and (iv) linear, cationic peptides with an alpha-helical structure [114].
Recently, the anti-biofilm properties of human beta-defensin 2 in P. aeruginosa biofilms were
reported, including structural changes, outer membrane protein alteration and interference
with transfer of biofilm precursors into the extracellular space [115]. Their usage is limited
by problems with stability, cost, and the potential for antigenicity. Scientists are using natu-
ral peptides as templates to create synthetic compounds that vary in amino acid content,
sequence, and chain length to overcome some of the drawbacks and produce enhanced
activity and reduced cytotoxicity [116–118].

4.2. Combatting Bacterial Biofilms

Given that biofilm formation plays a key role in the persistence of infection enabling
bacteria to evade the host immune response and resist drug treatment, it too has be-
come an important target in eradicating device-related infection. Methods to reduce
biofilm-associated infections have focused on developing polymeric materials to reduce
non-specific bacterial adhesion [119] by targeting particular adhesion mechanisms and pro-
moting biofilm disaggregation; these have been reviewed elsewhere [120–122]. Materials
with intrinsic antifouling properties are attractive due to their ability to prevent biofilm
formation. The most well-known materials, poly(ethylene glycol) (PEG) brushes and
zwitterionic polymers are discussed in Section 7. High-throughput screening approaches
using combinatorial polymer microarrays have proven fruitful for the discovery of novel
polymeric materials resistant to bacterial attachment [119,123].
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Modulation of bacterial communication by targeting quorum-sensing using quorum-
quenchers and quorum-sensing inhibitors (QSI) or indeed activation of the agr quorum-
sensing system to produce staphylococcal proteases are more novel approaches to disrupt-
ing biofilm [38]. Variability in the agr system across staphylococcal strains would necessitate
an additional diagnostic step in the clinical setting to accurately identify agr type prior
to treatment with activators such as autoinducing peptides (AIP) because each agr type
recognizes a different AIP structure [120,124]. Several promising QSI have been tested
in vivo. In a model of biofilm formation, antibodies against quorum-sensing molecules
(AtlE, the autolysin of S. epidermidis, GroEL, a bacterial heat shock protein and polysac-
charide intercellular adhesion, essential in cell–cell adhesion in bacteria) reduced biofilm
formation in an in vitro model of S. epidermidis [125]. Anguita-Alonso et al., (2007) applied
an RNAIII-inhibiting peptide (RIP) to bone cement beads, which prevented S. aureus infec-
tion in vivo in a rat model [126]. Despite this, there is debate surrounding this approach
given that exact mechanisms are unclear and application of QSI to inhibit biofilm formation
in one species could lead to promotion of biofilm formation in another [38].

Three-dimensional printing of anti-biofilm structures has increased in popularity
in recent years. Some monomers are themselves resistant to bacterial attachment and
biofilm development, as was recently exploited by He et al. [127]. Inkjet-based 3D printing
was used to fabricate bespoke structures composed of various photoreactive monomers.
They found that poly-TCDMDA (tricyclo [5.2.1.02,6]decanedimethanol diacrylate) reduced
P. aeruginosa biofilm formation by ~99% compared to medical grade silicone. An in vivo
study using bioluminescent P. aeruginosa showed that such printed implants could reduce
the bacteria to negligible levels after 4 days.

Targeted drug delivery using nanotechnology is an alternative approach to specifically
targeting the biofilm when releasing drugs. This is often necessary, as conventional antibi-
otic therapy is difficult, owing to the high doses needed to eradicate biofilms. Aptamers
are single-stranded oligonucleotides that fold into a three-dimensional structure and bind
their target with high affinity by structural recognition. As such, aptamers against S. aureus
surface proteins, such as staphylococcal protein A are a promising means to uniquely target
proteins expressed exquisitely on the surface of S. aureus biofilms. Recently, rifampicin
and vancomycin were loaded into liposomes and conjugated to S. aureus surface target-
ing aptamers towards S. aureus biofilm eradication [128]. These successfully accumulated
around S. aureus cells in biofilms, while the liposomes penetrated the biofilm and released
sufficient levels of antimicrobial cargoes to eradicate S. aureus biofilms in vitro.

Exploiting biofilm characteristics such as local pH, hypoxia, and biofilm composition
including the presence of enzymes such as amidase has led to targeted drug delivery tech-
niques to release compounds within biofilms [129,130]. Recently, vancomycin was delivered
using DNA NPs modified with pH-responsive lipids [131]. Under physiological conditions,
the carrier has a neutral surface charge, while under acidic biofilm conditions, the ionizable
lipid gains protons and becomes positively charged, promoting biofilm binding and pene-
tration. These NPs successfully improved bacteria binding and biofilm penetration, and
the DNA NPs functioned as an anti-toxin against α-hemolysin. Controlled release of van-
comycin prevented biofilm attachment and reduced early-stage biofilm formation within
24 h in vitro. In another study, amphiphilic polymeric vesicles comprising poly(ethylene
glycol)-block-poly 2-(dimethylamino) ethyl methacrylate (mPEG-b-pDEAEMA), loaded
with the aminoglycoside antibiotic, apramycin, were developed [132]. These vesicles were
also pH-responsive in the low pH of P. aeruginosa biofilms and were more efficient at
eradicating biofilms compared to free drug in vitro.

Biofilm disaggregation strategies have also focused on weakening the biofilm by tar-
geting the extracellular polymeric substance (EPS), which features key matrix components
such as poly-N-acetylglucosamine, extracellular DNA and biofilm proteins using the re-
spective enzymes dispersin B, DNase I and proteinase K. However, this approach required
co-administration of antimicrobials to treat dispersed planktonic bacteria. The efficacy of
this dispersal approach was demonstrated in vitro using community-associated MRSA
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LAC biofilms on titanium substrates. The biofilms were sensitive to dispersal by proteinase
K and DNase I, indicating that the matrix was composed of proteinaceous material and
extracellular DNA. Furthermore, the dispersed cells were susceptible to rifampicin and
levofloxacin treatment. [133]. A cocktail of two EPS-degrading enzymes, DNase I and
dispersin B, inhibited staphylococcal skin colonization in an in vivo pig skin colonization
model [134]. A recent study found that the EPS of Salmonella biofilms is a cooperative
trait, with benefits shared among cells, and that EPS inhibition reduces cell attachment and
antimicrobial tolerance. As such, the work suggests that targeting cooperative traits such as
EPS could be a solution to the problem of antimicrobial resistance [135]. Even though many
biofilm disruption technologies are at an early stage of development and lack scientific
and clinical evidence to support their safety and efficacy, it is salient to note that implant
removal represents the most effective means of eradicating clinical infections with a biofilm
aetiology, underscoring the need for innovative technologies.

5. Antimicrobial Surface Coatings

Antimicrobial agents may be incorporated on the device either directly (physically
or chemically by grafting) or in a coating platform to achieve temporal control over local
presentation at the target site [136–138]. Antimicrobial effects owing to nanotopography,
and surface engineering are described in Sections 6 and 7 (Figure 2).

5.1. Direct Antimicrobial Application to the Implant Surface

Local antimicrobial presentation at the biological interface offers a number of advan-
tages compared to the standard approach of systemic delivery including (i) the potential
to use lower drug doses due to localized targeting, (ii) greater control over toxicity and
bioavailability, (iii) reduced likelihood of promoting antibiotic resistance in one respect
because delivery is proximal to infection site, (iv) the possibility to achieve extended drug
release and to combine drugs with different kinetics, (v) controlled release from surfaces of
combination devices directly to the target site, (vi) avoidance of systemic drug exposure,
and (vii) direct mitigation of device-related infection [138]. However, the merits of strate-
gies based on the release of antimicrobials, particularly drug cargoes, have been debated
due to poor control over drug kinetics, with many systems displaying burst and short-term
release profiles, whilst prolonged subtherapeutic drug levels carry the risk of promoting
drug resistance.

One of the earliest approaches to preventing ODI involved coating intramedullary
nails with a combination of antiseptics (chlorhexidine and chloroxylenol) [139]. The nails,
which were coated with antiseptics using a dipping technique, offered substantial pro-
tection against S. aureus in a rabbit model of open tibial fracture, without releasing the
antiseptics into the serum [139]. Meanwhile, rifampicin and minocycline-coated titanium
(Ti) implants were implanted into the femoral medullary canal of rabbits and reduced
bacterial colonisation and osteomyelitis for one week, compared to uncoated implants [140].
Teicoplanin was directly sprayed onto Ti wires [141]. After 24 and 48 h, inhibition of
S. aureus growth was observed in vitro. Furthermore, in an in vivo rabbit model, there was
no growth of S. aureus on the Ti wires, on the bone tissue or in the blood cultures [141].

One common drawback to the abovementioned examples is the lack of any “controlled
release” aspect to the systems. An alternative approach involved covalent conjugation of
an antibiotic to implants [142], whereby antibiotic is not eluted into the systemic circulation
but prevents attachment of bacteria to the implant. When vancomycin was covalently
tethered to the surface of Ti rods, attachment of S. epidermidis bacteria was reduced and
biofilm formation was inhibited compared to control Ti rods [143]. This system exerted
specific activity against Gram-negative bacteria and maintained its activity after exposure to
serum proteins and after repeated exposure to high bacterial loads [143]. Such an approach
minimizes the risk of systemic toxicity and provides a longer duration of protection. Antibi-
otics have also been covalently attached to implant surfaces via a linker such as ethylene
glycol [144]. Vancomycin was covalently tethered to Ti beads via an aminoethoxyethoxy
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acetate linker and inhibited biofilm formation and proliferation of S. aureus [144]. An-
timicrobials have also been directly conjugated to haemodialysis catheters. For example,
polyurethane catheters were coated with selenocyanatodiacetic acid (an organoselenium
antimicrobial) by covalent attachment, resulting in reduced biofilm formation both in vitro
and in vivo in a mouse model of chronic biofilm infection for up to five days [145].

5.2. Antimicrobial Delivery from Polymer Coatings

Non-degradable polymers, most notably PMMA beads, are extensively used in the
clinic to prevent implant-related infections. Several antibiotic-loaded PMMA bone cement
products have been approved by the FDA, including Simplex with tobramycin and gen-
tamicin (Stryker Howmedica Osteonics) [146] and SmartSet GHV with gentamicin(DePuy
Orthopaedics) [147,148]. However, there are some critical disadvantages associated with
such non-degradable polymers including the requirement of a follow-up procedure for
removal of the beads and the potential for resistance due to sustained release of subthera-
peutic levels of antibiotics [149]. Biodegradable polymers containing various antibiotics
have been investigated for coating implants, with some demonstrating considerable success
in experimental models. A key advantage of biodegradable polymer coatings is that they
can be designed to accurately release the antibiotic over a specified period, often exhibiting
two phases of drug release. The early “burst” release phase is useful for killing the microor-
ganisms found in the implant area before they settle and create a biofilm [150,151]. The
second phase of drug release is slow and sustained, ranging from several days to weeks,
and this prevents the development of infections at the implant site during healing. The
burst effect is obtained due to diffusion of drug molecules located on the surface and in
polymer layers close to the surface, while the continuing release is obtained due to drug
diffusion and polymer degradation [151].

The most widely investigated biodegradable polymers are the poly(α-hydroxy esters)
including PLLA, poly-D-L-lactic acid (PDLLA) and polylactic-co-glycolic acid (PLGA). PLA
and PLGA have been used to coat implants with a whole range of antibiotics as well
as antiseptics and the efficacy of these in infection prophylaxis has been assessed both
in vitro and in vivo in several animal models including rat and rabbit models of induced
implant-related infection [152–154]. These polymers have numerous benefits, principal
among them includes their biocompatibility, and the potential for tuneable drug release
depending on monomer type and ratio (in copolymers). The polymers, which are used in a
number of currently marketed parenteral depots and implants, offer the ability to control
the release of a range of cargoes types including hydrophilic and hydrophobic drugs, both
small molecule cargoes and larger biological molecules [155], [71]. Selected examples of
antibiotic containing PLLA, PDLLA and PLGA coatings are detailed in Table 2. In one
instance, the in vitro and in vivo results were so promising that eight patients with open,
tibial fractures were treated with antibiotic polymer-coated intramedullary nails, and after
one year there were no signs of soft-tissue reactions or systemic infection [156].

Although these polymers have been extensively investigated for the purpose of deliv-
ering antibiotic therapy for the local treatment of infections in bone, there has been some
debate surrounding their use. Several studies have questioned the biocompatibility of
PLA and PLGA due to the release of acidic by-products of degradation, which have been
attributed to a delayed adverse biological response often reported in humans [157,158].
The drop in pH associated with the acidic by-products may also adversely affect the func-
tionality of some antimicrobial compounds whose efficacy is dependent on maintenance
of pH in the physiological range [159]. Despite these concerns, this technology has been
successfully translated to the clinic by DePuy Synthes to impede bacterial colonization on
the implant surface. The marketed tibial nail device “Expert PROtect” is designed to deliver
gentamicin sulphate from a thin, resorbable PDLLA coating (approx. 50 µm) immediately
after implantation for a duration of approximately 2 weeks. The device is deemed suitable
in cases where an increased risk of infection exists, and bacteria are gentamicin sensitive.
Such scenarios include all open fractures (Gustilo–Anderson Grade I to III) and secondary
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nailing (exchange of nail to nail or external fixator to nail) in cases where revision surgeries
are necessary due to infections and instances of polytrauma [160].

Alternative polymer coatings that have been investigated include poly(trimethylene
carbonate) (PTMC) [161], polycaprolactone (PCL) [162] and polyurethane (PU) [163]. These
may offer some advantages over the traditionally used PLLA and PLGA carriers. For exam-
ple, degradation of PTMC does not yield acidic by-products, and its potential suitability
as a carrier for antibiotics including vancomycin and gentamicin has been shown [161].
Polyelectrolyte films, composed of biodegradable polymers, assembled in a layer-by-layer
process and incorporating drugs such as antibiotics, have also been investigated as implant
coatings [164]. In a proof-of-principle study, a biodegradable coating composed of polyelec-
trolyte (cationic β-amino ester and anionic polyacrylic acid) multilayers with gentamicin
was applied to Ti dowels and investigated for antibacterial efficacy in a rabbit model of
implant-related osteomyelitis [164]. In vitro, the films exhibited a burst release (two-thirds
of antibiotic released within three days), followed by a sustained release for up to 5.5 weeks,
with the concentration of gentamicin exceeding the minimum inhibitory concentration
(MIC) for S. aureus throughout the study. Furthermore, gentamicin-loaded films signifi-
cantly inhibited growth of bacteria compared to uncoated implants [164]. Polyelectrolyte
films have also been investigated for controlled release of AMPs, such as ponericin G1,
which is active against S. aureus [165], and a combination of anti-inflammatory and antibac-
terial drugs [166]. The latter approach may be of particular interest when considering the
co-existence of inflammation and infection in osteomyelitis. Diclofenac and gentamicin
were successfully loaded into polyelectrolyte films and spray-coated onto a range of med-
ical devices including bandages and intraocular lenses, with therapeutic efficacy shown
against S. aureus in vitro [166].

As an alternative to the manufacture of antimicrobial coated implants, the delivery of
high concentrations of antibiotics to the surgical site during the perioperative period has
also been proposed using antibiotic-loaded thermo-responsive gels. Other advantages of
this approach include flexibility in terms of spatial distribution and applications in complex
wounds, e.g., open fracture care. A biodegradable, gentamicin-loaded, thermo-responsive
poly(N-isopropylacrylamide)-grafted hyaluronic acid (HApN) hydrogel prevented implant-
related infection in a rabbit osteosynthesis model [167] and did not adversely affect fracture
healing [168]. The early and local application of a gentamicin-loaded hydrogel was demon-
strated to be superior to perioperative systemic prophylaxis [169].

There has been debate about the long-term efficacy and risk of resistance associated
with coated implants. Meta-analysis of animal studies evaluating the performance of coated
titanium implants to prevent S. aureus infections concluded that active coating of titanium
implants produced positive data against both MSSA and MRSA [95], while patient data
has shown that antibiotic-coated implants are beneficial in the management of open tibial
fractures in patients at high risk of infection, reducing infection by 75% [170,171].
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Table 2. Antimicrobial delivery systems based on PLA and PLGA coatings for metal implants. The table highlights polymer type, antibiotic/antiseptic, implant
substrate, in vitro or in vivo model, release kinetics and experimental outcome.

Polymer Antimicrobial Implant Model Release Kinetics Outcome Reference

PDLLA Norvancomycin Stainless steel plate Rabbit tibia fractures,
inoculated with S. aureus

Sustained release above minimum inhibitory
concentration for up to 28 days

Significant reduction in infection rate (32%
compared to 92% for uncoated plates) [152]

PLGA Vancomycin
Cefuroxime Ti alloy discs S. aureus culture in vitro

Effective antibiotic release duration from 5 to
17 days depending on antibiotic
and concentration

Up to 17 days antibiotic release from optimal
double layer formulation [154]

PLLA
Rifampicin and fusidic
acid; octenidin and
triclosan (antiseptics)

Ti plates Rabbit tibia model, inoculated
with S. aureus

Release of 60–62% within 1 h, then sustained
release for at least 42 days

Significant reduction in infection rate (17%
for antibiotic and antiseptic groups compared
to 83% for control groups)

[153]

PDLLA Gentamicin and/or teicoplanin Stainless steel and Ti
alloy K-wires S. epidermidis culture in vitro Initial burst release within 6 h, then sustained

release for at least 96 h

Reduction in adhesion of viable bacteria to
undetectable levels with either or
both antibiotics

[172]

PLGA Gentamicin Stainless steel fracture plates S. aureus culture in vitro Initial burst release, with sustained high levels
for 3 weeks (for the 20% gentamicin coating)

Significant reduction in bacterial growth
compared to uncoated implants) [173]

PDLLA Gentamicin Ti K-wires S. aureus induced
intra-medullary infection

60% release within 24 h, then sustained release
over 6 weeks (from previous study)

Significant reduction in histological and
radiological signs of infection in treated
groups compared to control groups

[156]

PDLLA Gentamicin Ti K-wires
S. aureus induced
intra-medullary infection
in rats

80% gentamicin release within 48 h
(demonstrated in previous study)

Significant reduction in radiological signs of
infection compared to control group [174]

PDLLA Gentamicin Ti K-wires
S. aureus induced
intra-medullary infection
in rats

60% release within 24 h, up to 90% released in
the following 6 weeks (demonstrated in
previous study)

Significantly lower histological infection
score (with or without systemic gentamicin)
compared to other groups

[175]

PLA Chlorhexidine Ti plates S. aureus culture in vitro Rapid release during first day, followed by
slower release up to 14 days

Greatest antibacterial effects with lowest %
PLA coating [176]

Copolymer of
glycolide,
caprolactone,
trimethyl carbonate,
lactide

gentamicin, triclosan
or combination

Stainless steel plates, covered
with polymer sleeve Adult sheep

Gentamicin: 50% release within 24 h, then
sustained release over 2–3 weeks
Triclosan: slow release over 2–3 weeks

Tissue biocompatibility and normal bone
healing demonstrated [177]

PDLLA Gentamicin Ti K-wires Rat with intramedullary
implant

Burst release within 1 h, then gradually
reducing levels over 7 days

Significantly reduced bacterial adhesion
compared to uncoated wires [178]

PLGA Gentamicin Ti coupons Staphylococcal cultures in vitro Release of 90% within 24 h, then short,
sustained release over 4 days

Greater antibacterial activity compared to
uncoated coupons [179]

K (Kirschner), PLLA (poly-L-lactic acid), (PDLLA (poly-D-L-lactic acid), PLGA (polylactic-co-glycolic acid)), S. aureus (Staphylococcus aureus), S. epidermidis (Staphylococcus epidermidis),
Ti (titanium).
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5.3. Antimicrobial Delivery from Inorganic and Ceramic Coatings

Ceramic coatings for implants, including tri-calcium phosphate and HA, have also
been investigated for antimicrobial delivery. These bioactive materials exhibit composi-
tional properties similar to native bone, are inherently osteoconductive and offer the added
benefit of improved integration at the implantation site. This is particularly desirable in the
case of devices intended for permanent implantation where integration with host tissue is
key to long-term device success. Calcium phosphate coatings have been used as a platform
to present an array of antibacterial agents including drug molecules gentamicin [180] and
vancomycin [181], metal ions, e.g., Ag [182] and biological cargoes e.g., AMPs [116]. Exam-
ples of antimicrobial agent incorporation into inorganic coatings are provided in Table 3.

Extensive drug incorporation into HA coatings and slower release profiles have been
observed for more acidic antibiotics, including cephalothin and carbenicillin, likely due
to chelation of calcium ions in the HA by the carboxylic groups in these antibiotics [5].
Meanwhile, basic antibiotics, such as gentamicin, were incorporated to a lesser extent
and were rapidly released from the coating. Another factor found to influence antibiotic
delivery from HA was the porosity of the carrier material, with higher levels of antibiotic
adsorbed onto microporous HA, as well as prolonged release [5]. Antibacterial effects from
HA coatings have been shown in vitro to occur rapidly within 1 [181] to 24 h [183] and
have in some instances been reported to last for 28 to 70 days, depending on the technique
of application and the amount of HA in the coating [184].

There are several reports of antibiotic-containing ceramic coatings for implants in the
literature, showing favourable outcomes in vivo. One of the earliest studies investigated
gentamicin-loaded HA coating of stainless-steel K-wires [180]. Infection rates were sig-
nificantly reduced with these antibiotic ceramic-coated implants compared to standard
HA-coated implants in a rabbit intramedullary S. aureus infection model. In a similar
animal model, tobramycin-loaded peri-apatite-coated Ti implants showed significantly
reduced levels of infection compared to controls [185]. Introduction of the gentamicin
antibiotic to a calcium phosphate-based implant coating at the intraoperative stage using a
dipping process immediately prior to implantation was also investigated as a simplified
strategy for targeted delivery of antibiotics. In vivo evaluation using a rat proximal tibia
model showed that device-related infection was prevented in seven out of eight animals at
7 days in contrast to infection in all drug-free controls [186].

Sol–gel coatings have also been investigated as an alternative mechanism for time-
controlled local release of antibiotics from orthopaedic implants [187]. For example, a
silica sol–gel containing vancomycin was coated onto Ti alloy rods and antimicrobial
activity was assessed in a rat osteomyelitis model [188]. The authors reported that bac-
terial colony counts were reduced and clinical signs of osteomyelitis were minimal com-
pared to non-coated implants, although it appeared that the antibiotic was fully eluted
by 2–3 weeks [188]. In another study, nitric oxide (NO) was incorporated into N-(6-
aminohexyl)-aminopropyltrimethoxysilane/butyltrimethoxysilane (AHAP3/BTMOS) sol–
gel and coated onto stainless steel slides [189]. The rate of NO release was found to
be dependent on temperature and adhesion of S. aureus was significantly lower for NO
releasing sol–gels compared to uncoated slides in vitro [189].

Several methods have been investigated to deposit antimicrobial ion coatings on im-
plant substrates. Bose’s group utilized plasma-spraying to deposit an HA coating with a
ternary dopant system composed of ZnO to induce osteogenesis, SiO2 to induce angiogene-
sis, and Ag2O to provide secondary infection control [182]. A silver-immobilized HA PEEK
coating on Ti implants was developed by immobilizing ionic silver onto a HA film via inosi-
tol hexaphosphate chelation, using a series of immersion and drying steps performed at low
heat. The coating enabled complete eradication of a bioluminescent S. aureus infection and
biofilm formation in a soft tissue model in murine superficial gluteus muscle (Figure 4) [190].
A novel, ambient temperature grit-blasting process, CoBlast™ has been used to deposit
HA- and metal ion-doped apatite coatings on Ti substrates. [70,107]. Both single-ion Ag, Zn
and Sr and binary dopants (Ag-Sr) have been investigated. Silver-substituted HA coatings
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on Ti demonstrated good antibacterial activity (eluted and immobilised ion) against sev-
eral clinical isolates including MRSA and methicillin-sensitive S. aureus although it poorly
inhibited S. epidermidis. The co-substituted Ag-Sr apatite surface did not show enhanced
osteoblast or anti-colonising properties compared with the single dopant Sr and Ag apatite
surfaces [191].
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Figure 4. Example of an ionic silver antimicrobial coating immobilized onto hydroxyapatite covering
a polyether–ether–ketone (PEEK) implant coating. The surface of PEEK (A) was immersed in
98% concentrated sulfuric acid (H2SO4) for 10 min (B), after which a porous configuration was
observed on the surface by SEM. (C) Hydroxyapatite aggregates were homogeneously coated on
the PEEK coated with immobilized Ag+ ions (PEEK-Ag+). (D). Sequential analysis of the bacterial
bioluminescence in the mouse soft tissue infection model, where a non-coated PEEK of PEEK-Ag+

plate was placed into the superficial gluteus muscle of mouse, followed by inoculation with a
bioluminescent strain of S. aureus. The bacterial photon density was measured at 3, 12 and 24 h, and
then each day until 10 days after the operation). Modified and reproduced from [190] under CC BY
4.0 http://creativecommons.org/licenses/by/4.0/ (accessed on 27 July 2022).
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Table 3. Antimicrobial-containing inorganic coatings on orthopaedic implants. Table highlights the carrier type, antimicrobial, implant type, in vitro or in vivo
model, antimicrobial release kinetics and experiment outcome.

Carrier Antimicrobial Implant Loading and Release
Kinetics Model Outcome Ref.

Silica sol–gel films Triclosan
Percutaneous external
fixator pins—stainless steel
316L rods

Continuous release in vitro
with 33% of original load by
8 weeks.

Percutaneous tibial implant rabbit
model, inoculated with S. aureus
(ATCC™ 25923)

No infection in animals with pin implants
coated with sol–gel 20% triclosan in contrast
to uncoated implants. Normal bone tissue
ingrowth observed at 4 weeks in coated
implant model.

[192]

Silica sol–gel films Vancomycin + farnesol
(adjuvant) Ti alloy rods and K-wires

Drug release from 5-layer
thin films is concomitant
with film degradation over
6 days.

In vitro bacterial challenge (i) MSSA
(ATCC 25923) 5 mL
1 × 106 CFU/mL (rods), (ii) MRSA
(ATCC 33591) 5 mL
1 × 104 CFU/mL (wires)

Bactericidal effect impacted by drug loading
and farnesol on K-wires. Bacterial (MRSA)
counts 1.11 × 103 and 1.56 × 102 CFU for
Vancomycin 10% w/w and 20% w/w loading,
respectively. Further reduction to
2.44 × 102 CFU when farnesol added to
10% vancomycin.

[193]

TNT Vancomycin Ti rods

Drug loading by
lyophilization, with rapid
release −58% release within
15 min.

Femur Sprague–Dawley rat
model—intramedullary
implantation of rod contaminated
with 0.1 mL of 1 × 108 S. aureus
(29213 ATCC)

Agar plate and clinical assessment at 30 days
showed all animals receiving
vancomycin-containing nanotubes were
infection-free, while 11 out of 12 drug
free-TNT controls were infected.

[194]

Hybrid coating—TiO2
and PDMS Ag PEEK discs

Release rate depends on Ag
doping and ratio of
coating constituents.

S. aureus (ATCC 25923) and S.
epidermidis (ATCC 35894) 5 ×
106 CFU/mL used for Kirby–Bauer
testing and biofilm growth studies.

Kirby–Bauer testing showed greater zones of
inhibition for higher Ag loading, with
similar results for both bacterium types.
SEM analysis revealed small colonies of
S. aureus for the lower Ag loading compared
to controls. Colonies were absent in higher
Ag loadings.

[195]

HA Ag PEEK
Ionic Ag is immobilized
via inositol hexaphosphate
chelation

A non-coated PEEK or PEEK-Ag+
plate was placed into the superficial
gluteus muscle of mouse, followed
by inoculation of bioluminescent S.
aureus (1× 1011 CFU/mL)

Mean bacterial photon intensity decreased
after 8 days and reduced to background
level at day 10 in the PEEK-Ag+ model,
compared to non-coated PEEK where strong
photon intensity was still observed at day 10.

[190]

HA Zn, Ag and Sr Ti (Grade 5, Ti-6Al-4V)
At 30 days <10% of Sr and
Zn but > 90% of the
Ag released

Antimicrobial activity of the
released ions and anti-colonizing
potential of the surface using
modified ASTM E2149-01 and
S. aureus ATCC 1448

MG-63 osteoblast cells cultured on the Sr
apatite surfaces displayed the highest
metabolic activity using the MTT assay. Ion
release and direct surface contact important
for antibacterial effects. Ag-substituted
apatite produced superior biofilm inhibition
compared to Sr and Zn substituted
apatite surfaces.

[107]
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Table 3. Cont.

Carrier Antimicrobial Implant Loading and Release
Kinetics Model Outcome Ref.

Ti Zn Ti

For 1 cm2 coatings, total Zn
loading ranged from 1.2 to
60.2 µg, depending on time
of hydrothermal treatment
in Zn solution and voltage
used during NT fabrication

Incubation of implants in S. aureus
and viable bacteria in suspensions
collected from samples were
evaluated by spread plate method.

Inhibition of adherent and planktonic
bacteria was greatest for the coatings with
the highest Zn content. Inhibition was
greatest at day 1 and decreased
at days 4 and 7.

[196]

Three-layer. Outer and
inner vanco-mycin
loaded in vaterite.
Middle layer IL-12
containing liposomes
embedded in alginate.

Vancomycin Ti
Vaterite coating released
100% of vancomycin
within ~2 days.

In vitro: soaking of different layers
of the coating with 1 mL of sterile
LB broth and inoculated with 200 µL
of LB broth with a concentration of
1 × 106 CFU/mL ATCC 25923
(MSSA) and ATCC 43300 (MSSA)
bacterial strains.
In vivo: rats were inoculated with
MSRA in the tibial platform and Ti
alloy screw was implanted in the
tibial channel, re-injection of MSRA
after two weeks and injection of
0.1 mL of LB broth containing
1 × 106 CFU/mL bacteria in the
bone marrow cavity.

In vitro: complete three-layer sandwich
yielded a bacterial death ratio of ~100% of
ATCC 25923 by day 7; complete three-layer
sandwich yielded a bacterial death ratio of
~100% of ATCC 43300 by day 7.
In vivo: bacterial colonization in the bone
tissue reduced in the three-layer sandwich
compared to control.

[197]

Biphasic calcium
phosphate

Vancomycin
Tobramycin

Drug-loaded biphasic
calcium phosphate granule
complex with additive
antibiotic powder in
gypsum binder, coated
with PLGA

Human trial composing of
43 patients with previously
diagnosed chronic
osteomyelitis subjected to
prosthesis removal (if
present), debridement of
necrotic tissue, and 20–40 g
of cements containing beads
were implanted into bone
defects before primary
wound closure.

Serum concentrations of
vancomycin and tobramycin
decreased gradually from ~
20 µg/mL to 0 µg/mL over 14 days.

Higher success rate, faster sepsis control and
bone regeneration achieved compared to
PMMA cement and parenteral
antibiotic therapy.

[198]

Ag (Silver), AMP (antimicrobial peptide), ATCC (American Type Culture Collection), HA (Hydroxyapatite), IL-12 (Interleukin-12), K (Kirschner), NTs (nanotubes), PEEK (polyether–
ether–ketone), PDMA (polypolydimethylsiloxane), PDMA (Poly (N,N-dimethyacrylamide)), PAPMA (Poly N-(3-aminopropyl) methacrylamide)), SEM (scanning electron microscopy),
Sr (strontium), S. aureus (Staphylococcus aureus), S. epidermidis (Staphylococcus epidermidis), Ti (titanium), TiO2 (titanium dioxide), TiO2 nanotubes (TNT), Zn (zinc).
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6. Nanotechnology and Infection Control

There is increasing interest in the field of nanotechnology to address both existing
challenges in the field of medicine and to advance the scientific field beyond what is
currently possible. The diversity of materials and the ability to tailor their functionality and
properties has extended the repertoire of applications to include drug delivery, diagnostics
and immunization across a range of clinical applications including cancer therapy, diabetes,
bone-healing, and cardiovascular applications [199]. Nanoparticles (NPs) have at least
one dimension less than 100 nm, often exhibiting distinctive physicochemical properties
and high surface–volume ratios at the size domain that contribute to their efficacy. In
the context of infection control, antimicrobial nanomaterials, nanosized drug carriers
and nanostructured surfaces are of particular focus because they offer the prospect to
increase targeting and eliciting multiple mechanisms simultaneously to combat microbes,
thereby decreasing the likelihood of resistance developing [200,201]. However, the toxicity
profile associated with long-term exposure to many nanosized materials and drug carriers
needs to be demonstrated, particularly if intended for repeated use [202]. Bactericidal
nanostructuring of materials has emerged as a trend in nanoscale approaches to infection
control on the surface of implants and is discussed in Section 7.

6.1. Antimicrobial Nanomaterials

The intrinsic antimicrobial activity of a range of nanostructured materials including
polymers (chitosan), metals (Ag, gold, copper) and metal oxides (Al2O3, ZnO, TiO2) to-
gether with the capacity to modify the functionality of the implant surface (surface charge,
topography) or enhance the effectiveness of antimicrobial cargoes highlights the versatility
and promise of their usage to prevent or treat device-related infections. The mechanism of
antibacterial action is not completely understood in all cases but is generally understood
to stem from the disruption of the bacterial cell membrane, induction of oxidative stress,
interference with cell processes including energy transduction, enzyme activity and DNA
synthesis. The composition and physicochemical properties of the nanostructured material
in addition to bacteria type impact this activity [96,203]. Of the materials listed, some are
at an earlier stage of investigation for the purpose of infection prevention, whilst the use
of Ag metal and Ag ions for antibacterial purposes is particularly well-established. The
mechanism of action is thought to differ depending on whether Ag is present in the ionic or
NP form, or if it is surface immobilized [103]. Concomitant release of ionic silver from Ag
NPs can augment the bactericidal activity [204]. Although this resurgence in interest stems
primarily from broad spectrum activity of Ag and the need for strategies to treat multi-
resistant pathogens, it has been facilitated by the advance of nanotechnology approaches
allowing application of pure Ag in NP form, thereby enabling efficacy at smaller doses
and decreased toxicity [205]. One group recently functionalized porous Ti implant with
silver and zinc NPs by plasma electrolytic oxidation. The surfaces maintained release of
silver and zinc ions for at least 28 days and implant surfaces containing 75% silver and
25% zinc NPs fully eradicated MRSA bacteria in vitro and in an ex vivo murine femora
models. The antibacterial synergism of silver and zinc enabled a 120-fold reduction in
the amount of silver ions required for such effects [206]. Recently, a hybrid nanocoating
with different modes of action was designed and tested to prevent implant infections.
The hybrid nanocoating deposited on etched Ti surfaces featured self-assembled AMP
(dGL13K) nanofibrils decorated with AgNPs. The hybrid nanocoating had higher in vitro
antimicrobial potency against MRSA compared to P. aeruginosa, and the hybrid coating was
superior to both AgNP and AMP coatings [207].

Other NPs composed of TiO2 and ZnO also mediate their activity by damaging the cell
membrane. TiO2 has been used to impart antibacterial properties in addition to controlling
drug release from biomedical device surfaces and has been reviewed elsewhere [208,209].
Its activity is dependent on photocatalytic activation by irradiation with near-UV and UVA
to generate reactive oxygen species (ROS), but efficacy apart from photoinduced activity
has also been reported [96]. Antibacterial efficacy arising from surfaces based on photocat-
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alytically activated anodized TiO2 [210] has been demonstrated. Titania nanotubes are also
of interest because control over their geometrical and physiochemical properties is reputed
to endow the TiO2 structures with inherent antimicrobial potential [86]. Additionally, the
surface chemistries of such TiO2 nanotubes can be modified in a variety of ways, including
covalent attachment of PEG [211].

6.2. Nanotechnology Approaches for the Delivery of Antimicrobials

Nanoparticulate drug delivery platforms offer the advantage of improving drug tar-
geting and pharmacokinetics, and the opportunity to sustain drug release whilst reducing
adverse drug events. Owing to their size they possess a number of properties, which
has prompted interest in their infection control potential including the possibility to facili-
tate high levels of drug loading [150], of a range of antimicrobial cargoes and their high
surface-to-volume ratio makes them amenable to surface functionalization and an increased
potential to interact with pathogens [212]. Materials that can be used for NPs can be clas-
sified based on their character and origin, e.g., organic/inorganic, or natural/synthetic.
A variety of NP formulations have been investigated to enhance drug delivery includ-
ing those composed of polymers, dendrimers, metals and lipid constituents (solid lipid
NPs, liposomes) [155]. Nanoparticles composed of polymeric materials are of particular
interest as they can be tailored to release the drug cargo either continuously due to the
biodegradable nature of the carrier or in response to specific stimuli. For example, NPs
synthesized from poly(ethylene oxide) macromonomers, linked to gentamicin by means
of a pH sensitive bond, were tethered to Ti disks, yielding a “smart” system, in order to
release the antibiotic in the low pH conditions of an infection [150]. Inhibition of bacte-
rial growth was maximal at the lowest pH (pH = 4) after 48 h [150]. In another study,
PEG/PLGA co-polymer NPs delivered in a temperature-responsive hydrogel were used
to encapsulate teicoplanin and were implanted into the femurs of an osteomyelitis rabbit
model, showing equivalent therapeutic efficacy to traditionally used PMMA beads, with
the advantage of biodegradability [213]. Mesoporous silica nanoparticles (MSNs) were
investigated for multiple antibiotic delivery in a bid to achieve a synergistic therapeutic
effect [214]. The loading capacity for moxifloxacin was 54.18 ± 1.86 µg/mg MSNs and
37.88 ± 3 µg/mg MSNs in the case of rifampicin. Drug release was biphasic with an initial,
rapid release phase followed by sustained release. Coating of particles with gelatine and
colistin decreased moxifloxacin release from 100% to ~60% at 24 h, while rifampicin release
decreased from 100% to 40% at 24 h. In vivo studies were conducted in New Zealand white
male rabbits implanted with cylindrical Ti-6Al-4V implants. The implants were infected
with MRSA strain SAP231 for 24 h to achieve a bacterial density of 6.82 CFU/cm2 prior to
placement. After 2 days, the animals received multi-drug-loaded (moxifloxacin MSN and
rifampicin MSN) coated MSNs or controls. After 24 h of treatment, the SAP231 quantity per
gram of femur was reduced to ~3.5 log10 CFU/g of femur in the treated group compared
to ~4.5 log10 CFU/g of femur in the control.

Titania nanotube arrays on the surface of Ti implants have also been investigated as
reservoirs for antibiotics with the aim of minimizing bacterial adhesion and infection [215].
The release profile of gentamicin from Ti nanotubes on Ti Kirschner wires was, in one
study, found to be similar to that from polymeric coatings, with an initial and rapid burst
release of antibiotic, followed by sustained release over the next 11 days [216] (Figure 5).
Furthermore, the topography of the surface could be modified by altering the method
of preparation, with the greatest release of the antibiotic, in this case cefuroxime, by the
nanotubular surfaces compared to the nano-smooth surfaces, likely due to the higher
loading capacity [217].
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Figure 5. SEM images of titania nanotubes (TNT) grown on Ti wire using the anodization technique.
(A) The top surface showing cracks, (B) the entire structure showing TNT on Ti wire with dimensions,
(C) the cross-section showing array of TNTs and (D) the hollow nanotubes. (E) Overall release and
(F) burst release of gentamicin (corresponding to the first 6 h of fast diffusion of drug) from TNT-Ti
wire. Modified and reproduced from [216] CC BY 2.0 http://creativecommons.org/licenses/by/2.0
(accessed on 18 October 2022).

7. Controlling Bacterial Infection by Preventing/Minimizing Bacterial Adhesion

Numerous factors influence bacterial adhesion and colonisation of the implant surface,
including properties of the pathogen (genus and species, gram positive or gram negative,
shape, and adhesion expression) and environmental conditions (pH, host proteins, volume,
viscosity and shear properties of physiological fluids) [218]. It is recognised that the implant
surface has a key influence on bacterial adhesion, and manipulation of its features may
be employed as a drug-free strategy to reduce ODI. Despite the lack of quality data in
the literature elucidating the exact mechanisms of bacterial adhesion, there are numerous
studies dedicated to engineering physicochemical properties of the surface (Figure 2)
including hydrophobicity/hydrophilicity, surface charge and functional groups, in addition
to controlling surface topography at multiple length scales (micro and nano) to control
bacterial adhesion and biofilm formation [219]. Examples of drug-free, surface-mediated
antimicrobial implants are described in Table 4 and illustrated in Figure 6.

7.1. Surface Topography

Bactericidal nanostructure geometry is an emerging area of research in anti-infective
orthopaedic implants and offers a promising alternative approach to combating bacterial
contamination. Physical alteration of material surface topography obviates the need for
antibacterial agents and their associated limitations, including inevitable leaching and
depletion of drug and the promotion of antimicrobial resistance. Surface roughness is well
known to influence interactions between bacteria and the surface [224], but results have var-
ied, likely due to differences in topography, the size and shape of surface features, surface
chemistry and bacterial species [225]. The relationship between nanostructured surfaces
and bacterial attachment may vary depending on the exact nanoscale topographical features.
One study observed decreased adhesion of S. aureus, S. epidermidis and P. aeruginosa on
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nanoroughened surfaces produced by electron beam evaporation in contrast to nanotubular
and nanotextured Ti surfaces produced by anodization processes [220].
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Figure 6. Architectural representation of various bactericidal or repellent surface engineering strate-
gies outlined in Section 7. (A) Nanotubular Ti after anodization, adapted with permission from [220].
(B) Multilevel (micro- and nano-) roughened aluminium alloys adapted from [221] under CC BY 4.0
http://creativecommons.org/licenses/by/4.0/ (accessed on accessed on 18 October 2022). (C) Re-
duced graphene oxide (rGO) nanosheets on silicon wafer adapted with permission from [222].
(D) Hyperbranched poly-L-lysine coating on Ti implant adapted with permission from [223].

Bactericidal topography approaches have taken inspiration from nature, including the
cicada wing, which can kill bacteria such as E. coli and P. aeruginosa [226]. The mechanism
of bactericidal action was attributed to mechanical rupture of bacterial cell membranes
induced by cell interaction with the wing’s nanotopography. The Psaltoda claripennis cicada
wing is composed of spherically capped nanopillar surface structures that exhibit bacterici-
dal properties against Gram-negative bacteria. The chemically inert nanopillars exert their
bactericidal effect via a physical mechanism. It has also been postulated that adsorption
of bacterial cell membrane onto the cicada wing leads to a stretching effect, leading to cell
membrane rupture and death [227]. It seems that bacteria initially sink down onto the wing
nanotopography, spread between nanopillars, then suddenly experience a short downward
displacement, indicating lethal rupture of the cell. However, it is not effective against
Gram-positive species, likely because this species of bacteria has thick peptidoglycan layers,
hence generating a stress-bearing and more rigid surface. The nanopillar architecture of the
cicada wing has inspired research teams to recapitulate such nanotopography on implant
surfaces to prevent bacterial contamination. Linklater et al. (2021) recently conducted and
in-depth review on the different physicochemical and mechanical interactions between
nanostructured surfaces and bacteria that are purported to prevent bacterial attachment
and elicit bacterial killing [228].

Important factors in antibacterial efficacy of biomimetic nanotopography include the
spacing between two adjacent structures, as well as the aspect ratio. It has been shown
that the region of the cell membrane stretched between two neighbouring nanopillars
is the critical region that leads to rupture [229]. A recent systematic review summated
the common design parameters for nanopattern topographies that result in effective bac-
tericidal activity, based on previous research [230]. The review analysed recent studies
of nanopattern design and characterized the optimum height, diameter and interspac-
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ing required for achieving antibacterial effect for a plethora of nanopatterns (nanopillars,
nanocones, spikes/spinules, nanowires, nanopores, nanopits, nanogrooves). One of the
main drawbacks of nanoscale structures and geometries with bactericidal properties (once
described as “mechano-bactericidal nanostructures” [231]) is that they can only inactivate
bacteria that make direct contact with the nanostructures. Ivanova et al. [232] reported the
first successful bactericidal activity of a hydrophilic surface. Modelled on the dragonfly
Diplacodes bipuncata wing, which naturally possesses high aspect ratio nanoprotrusions,
they investigated black silicon using ion etching of silicon as a potential bactericidal ap-
proach. Unlike the cicada wing, which only has activity against Gram-negative pathogens,
both the dragonfly and its biomimetic analogous black silicon nanopillars were shown
to be effective for both Gram-positive and Gram-negative pathogens. Another problem
with spiky nanowire topographies includes potential adverse impacts on osteogenesis
and repair [233]. To address this issue, one recent study investigated application of a thin,
poly(ethyl acrylate) (PEA) coating to Ti nanowires to enhance bioactivity through organiza-
tion of fibronectin and delivery of bone morphogenetic protein 2 (BMP2) in a bid to enhance
mesenchymal stem cell (MSC) adhesion and osteo-specific activity while simultaneously
preventing biofilm formation [234]. The hydrophobic PEA allowed proteins, e.g., fibronectin
(FN) to displace interfacial water and interact directly with the PEA surface. This organiza-
tion of FN and presentation of BMP2 on the PEA nanowire substrates enabled enhanced
MSC adhesion and reduction of P. aeruginosa biofilm formation (Figure 7).

Surface roughness is known to affect the adhesion force of bacterial cells [235]. It has
been challenging to precisely engineer nanoscale sophisticated surface structures using
simple and scalable techniques. Recently, one group used a scalable, one-step wet etching
technique to generate a multiscale topography on aluminium and its alloys [221]. They
found an enhanced reduction in the proliferation of S. aureus and E. coli cells on the altered
alloy surface on account of its roughness at multiple scales. The nanostructures in this
study were observed to specifically rupture the cell membrane, while the microstructures
offered geographical limitation to bacterial adherence. Another promising non-coating
method to mitigate bacterial adherence on implant surfaces involves laser surface treatment.
One study investigated laser surface treatment on common orthopaedic metallic metals
(various Ti grades and a cobalt–chromium–molybdenum composite) and demonstrated the
ability to noticeably reduce adhesion of S. aureus [236]. Although it is generally accepted
that bacteria prefer to adhere to rougher surfaces, this group created surfaces with a higher
Ra value and yet attained a reduction in bacterial attachment, rather than an increase. This
is thought to be because of “spiky” surfaces in the treated samples, like the bactericidal
mechanism of cicada wings.

Suspended colloids may also act as mechano-bactericidal nanostructures. The most
investigated colloids are carbon nanotubes, which can act to severely pierce and damage
cell membranes of Gram-positive bacteria; their mechanism has led to the dubbing of
nanotubes as “nanodarts” [237]. Aside from carbon nanotubes, another class of bactericidal
colloidal suspensions frequently reported includes graphene nanosheets, which exert their
antibacterial effects similar to carbon nanotubes using penetration-type mechanisms [222].



Antibiotics 2022, 11, 1822 25 of 42Antibiotics 2022, 11, x FOR PEER REVIEW 26 of 44 
 

 
Figure 7. SEM of P. aeruginosa response to the (A) D900 uncoated flat control (top, middle rows). 
Flagella were observed on the control samples (arrows) (bottom row in column A). (B) P. aeruginosa 
response to the 90 s pPEA-2 hr fibronectin (FN), bone morphogenetic protein-2 (BMP2)-coated D900 
surface (top, middle rows, column B). Flagella were absent in bacterial cells observed on 90 s pPEA-
2 hr FN/BMP2-coated D900, with ruptured bacterial cells also observed on the nanowires (arrow-
heads). In the control uncoated samples, large areas of confluent biofilms were observed in contrast 
to small, more diffuse bacterial accumulation on the nanowire-coated samples. Modified and repro-
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Suspended colloids may also act as mechano-bactericidal nanostructures. The most 
investigated colloids are carbon nanotubes, which can act to severely pierce and damage 
cell membranes of Gram-positive bacteria; their mechanism has led to the dubbing of 
nanotubes as “nanodarts” [237]. Aside from carbon nanotubes, another class of bacteri-
cidal colloidal suspensions frequently reported includes graphene nanosheets, which ex-
ert their antibacterial effects similar to carbon nanotubes using penetration-type mecha-
nisms [222]. 

7.2. Surface Charge 
The surface of implants can be modified by functionalization with charged groups. 

Different types of bacteria exhibit differently charged glycocalyces, whereby Gram-nega-
tive bacteria are generally associated with a polyanionic glycocalyx and Gram-positive 
bacteria with polycationic glycocalyx [218]. Implant surfaces that have been 

Figure 7. SEM of P. aeruginosa response to the (A) D900 uncoated flat control (top, middle rows).
Flagella were observed on the control samples (arrows) (bottom row in column A). (B) P. aeruginosa
response to the 90 s pPEA-2 hr fibronectin (FN), bone morphogenetic protein-2 (BMP2)-coated D900
surface (top, middle rows, column B). Flagella were absent in bacterial cells observed on 90 s pPEA-2
hr FN/BMP2-coated D900, with ruptured bacterial cells also observed on the nanowires (arrowheads).
In the control uncoated samples, large areas of confluent biofilms were observed in contrast to small,
more diffuse bacterial accumulation on the nanowire-coated samples. Modified and reproduced with
permission from [234].

7.2. Surface Charge

The surface of implants can be modified by functionalization with charged groups.
Different types of bacteria exhibit differently charged glycocalyces, whereby Gram-negative
bacteria are generally associated with a polyanionic glycocalyx and Gram-positive bacteria
with polycationic glycocalyx [218]. Implant surfaces that have been functionalised with
charged groups can repel bacteria by electrostatic means or promote interactions with adhe-
sive proteins, thereby inhibiting bacterial adhesion. Negatively charged functional groups
such as carboxylate and sulfonate groups have been investigated for this purpose [238].
Carboxylate- and sulfonate-functionalised PMMA polymer coatings demonstrated inhi-
bition of S. aureus adhesion on discs in vitro despite the presence of a fibronectin coating,
which is known to mediate S. aureus adhesion on polymer substrates. The surfaces were
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also observed to support osteoblast function, although this effect depended on optimisation
of the chemical composition of the functionalisation groups [239].

7.3. Controlling the Hydrophilic/Hydrophobic Properties at the Biological Interface

Increasing hydrophilicity of the implant surface can minimise bacterial attachment
by reducing hydrophobic interactions and by minimising protein adsorption [240]. One
of the commonest approaches investigated has been to functionalise the surface with the
hydrophilic polymer, PEG or poly(ethylene oxide) (PEO). Its anti-fouling properties stem
from its flexible and hydrophilic chains that create a wide exclusion volume which can
sterically hinder bacterial adhesion [241]. The molecular weight of the PEG can impact
on the efficacy. For example, modification of polyurethane surfaces with a higher MW
PEG (3.4 kDa) reduced adhesion of S. epidermidis and E. coli in media and plasma, while
lower MW PEG (1 kDa) was not effective [242]. There have been many reports of surface
modification with PEG and PEG copolymers for the purpose of minimising implant-related
infections. Coating Ti films (smooth surface) or discs (rough surface) with various PEG
copolymers, including PEG-polylysine, reduced colonisation by S. aureus [243] and by
S. epidermidis, S. mutans and P. aeruginosa [244]. Other examples include PMAA, dextran,
or hyaluronic acid [86,89], while heparin coatings have also been employed to generate
hydrophilic surfaces, thereby reducing adhesion of bacteria such as S. epidermidis [245].
However, a potential drawback with the use of these antifouling hydrophilic surfaces is the
inhibition of mammalian cell adhesion, which is problematic in cases where osteointegra-
tion is desirable.

Hydrophilic polymer brush coatings on implants have also been developed and
investigated as anti-adhesive surfaces. The brush coating forms a dense steric barrier
to bacterial attachment. Examples include PEO brushes and poly-acrylamide brushes.
A PEO brush coating on glass and silica surfaces successfully inhibited adhesion of a
range of bacterial strains in vitro, including S. epidermidis, S. aureus and E. coli, although
the reduction was not statistically significant in the case of some strains of the more
hydrophobic P. aeruginosa [246]. Another study showed that PEO-PPO co-polymer brush
coating of silicone surfaces reduced attachment of S. aureus and S. epidermidis and slowed
biofilm formation [247]. Polyacrylamide brushes were covalently introduced onto silicon
wafers and resulted in slower and lower rates of bacterial and yeast attachment, compared
to uncoated controls [248]. While Ti implants modified with polyacrylamide brushes and
the AMP (Tet-20) demonstrated a reduction in bacterial adhesion. In vivo evaluation in
the dorsal pocket of a Sprague–Dawley rat model inoculated with 0.25 mL of 1 × 108

S. aureus revealed that CFUs decreased by at least 85% on Tet-20-coated implants compared
to peptide-free controls in 10 out of 14 rats at 7-days [249].

Nature has provided inspiration for the design of novel repellent surfaces. One
of the most prominent examples includes the lotus leaf, wherein the superhydrophobic
properties are reputed to be derived from a combination of hierarchical architecture and a
hydrophobic waxy surface [250]. Deposition of nanoscale wax crystals on a microstructured
papillae surface gives rise to a very high contact angle (>150◦) that enables water to
easily roll off the leaf [250]. To recapitulate the repellent properties, surface structuring to
control the nanotopography and enable contact angles greater than 120◦ in the design of
superhydrophobic surfaces has been undertaken [251,252]. Various synthetic, micro- or
nanostructured superhydrophobic surfaces possessing low surface energies that attempt
to control the contact area between surfaces and liquids/cells have been investigated and
shown to minimise bacterial attachment. One study reported a surface coating composed of
a superhydrophobic xerogel based on fluorinated silica colloids, which significantly reduced
adhesion of S. aureus and P. aeruginosa [251]. Femtosecond laser ablation technology was
used to engineer the surface pattern of Ti at the micro and nano level leading to an increase
in water contact angle from θW 73 ± 3◦ to 166 ± 4◦. The creation of a superhydrophobic
surface on Ti discs was investigated with bacteria possessing two different morphologies.
The adhesion of rod-shaped P. aeruginosa was inhibited below minimum detectable levels,
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although S. aureus successfully colonised the modified discs, which was attributed to their
smaller size and spherical shape [252].

Advances in developing novel non-wetting surfaces include SLIPS technology. This
technology was developed to address some of the limitations (e.g., failure under pressure
and physical damage) that had restricted the practical application of other liquid-repellent
surfaces. Taking their cue again from nature and the Nepenthes pitcher plant, researchers
designed the SLIPSs technology (slippery liquid-infused porous surface(s)) that was com-
posed of a micro/nanoporous substrate, infiltrated with a lubricating fluid such as liquid
perfluorocarbons that prevented adhesion through formation of an immobilised, molecu-
larly smooth, liquid overlayer [253,254]. SLIPS were evaluated for their ability to prevent
biofilm formation and adhesion of bacteria, including P. aeruginosa. E. coli and S. aureus,
and were found to be vastly superior to alternative superhydrophobic surfaces and to
PEGylated surfaces, highlighting their potential for application in the development of
self-cleaning and antifouling materials [255]. Extension of this SLIPS technology to create
surfaces with antithrombogenic and antifouling potential was undertaken by covalently
binding a flexible molecular perfluorocarbon layer on a range of medical-grade materials
and then coating it with a mobile layer of perfluorodecalin, a liquid perfluorocarbon. The
authors demonstrated an eightfold reduction in biofilm formation on medical grade PVC
tubing for up to 6.5 weeks [254]. Another example of a slippery surface focused on BMA-
EDMA (poly(butyl methacrylate-co-ethylene dimethacrylate) coated onto glass substrates,
when challenged with various strains of P. aeruginosa, prevented biofilm formation by some,
but not all, of the bacterial strains [256].

Further SLIPS research has sought to understand how modified surface compositions
and textures can influence biofilm formation and attachment. Bruchmann et al. assessed
P. aeruginosa biofilm formation on various patterned SLIPS substrates (superhydrophobic
in nature). They found that SLIPS substrates patterned with hydrophilic regions are not
resistant to biofilm formation and suggested that biofilms can form provided there are
sufficient anchorage points available [257]. Thus, establishing a SLIPS substrate that is com-
pletely hydrophobic may be necessary to eliminate biofilm initiation and growth. A variety
of structures have been used to hold the lubricant in SLIPS technology, including porous
Teflon and epoxy resin and porous polymer layers. One group took advantage of fluoropor,
a highly fluorinated polymer foam with adjustable porosity and surface roughness [258].
They showed that surface roughness has an important influence in formation and attach-
ment of a P. aeruginosa biofilm, with lower surface roughness leading to reduced biofilm
formation. Another group developed a lubricated orthopaedic implant surface (LOIS), a
micro/nanostructured implant surface functionalized with fluorine with liquid-repellent
and anti-biofouling properties [259]. The authors aimed to mimic the surface of the pitcher
plant and thus combined a lubricant layer within the micro/nanostructure of the surface.
The lubricant-infused surface minimized contact between biological substances and the
surface, enabling anti-biofouling properties. The surface demonstrated virtually no adhe-
sion of P. aeruginosa or MRSA (Figure 8). Despite many articles demonstrating repellence of
such slippery surface materials, this was the first to demonstrate healing of damaged tissue
after its implantation. In their rabbit femur fracture model of implant-associated MRSA
infection, callus formation was greatest in the LOIS group, with similar healing to the bare
implant surface (without bacterial exposure) after 6 weeks. Importantly, from a transla-
tional perspective, in a surgical simulation ex vivo, the group confirmed the mechanical
durability of the implant coating technology against scratches and fixation force.
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ity between the surface and the subsequently added slippery perfluorocarbon-based lubricant. (B) 
Fluorescence microscopy images of each material (bare, etched, superhydrophobic (SHP), lubri-
cated orthopaedic implant surface (LOIS) incubated in P. aeruginosa and MRSA suspension for 12 
and 72 h. (C) Quantification of adherent CFUs of P. aeruginosa and methicillin-resistant Staphylococ-
cus aureus (MRSA) on each group of surfaces. (D) Quantitative analysis of the callus formation out-
side cortical bone with (1) micro-CT and (2) osteoclast activity based on TRAP activity. (E) X-ray 
images of fractured bone of bare negative (without being exposed to bacterial suspension) surface 
and LOIS 6 weeks post-implantation. Statistical significance, ns (not significant), * p < 0.05; ** p < 
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Figure 8. (A) Schematic of the fabrication process of LOIS. A stainless-steel bare substrate is chemi-
cally etched using hydrofluoric acid (HF) and passivated with nitric acid (HNO3) to slow corrosion.
The surface is then modified with a self-assembled monolayer (SAM) to increase the chemical affinity
between the surface and the subsequently added slippery perfluorocarbon-based lubricant. (B) Flu-
orescence microscopy images of each material (bare, etched, superhydrophobic (SHP), lubricated
orthopaedic implant surface (LOIS) incubated in P. aeruginosa and MRSA suspension for 12 and
72 h. (C) Quantification of adherent CFUs of P. aeruginosa and methicillin-resistant Staphylococcus
aureus (MRSA) on each group of surfaces. (D) Quantitative analysis of the callus formation out-
side cortical bone with (1) micro-CT and (2) osteoclast activity based on TRAP activity. (E) X-ray
images of fractured bone of bare negative (without being exposed to bacterial suspension) sur-
face and LOIS 6 weeks post-implantation. Statistical significance, ns (not significant), * p < 0.05;
** p < 0.01, *** p < 0.001, and **** p < 0.0001. Modified and reproduced from [259] under CC BY-NC
4.0 https://creativecommons.org/licenses/by-nc/4.0/ (accessed on 27 July 2022).
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Table 4. Surface feature, drug-free engineering approaches to impede microbial infection in orthopaedic implants. The table highlights surface features, fabrication
method and antimicrobial outcome.

Material Surface Features Fabrication Method Bacteria Studied Antimicrobial Outcome Reference

Aluminium Micro- and nano-roughed Wet etching E. coli, K. pneumoniae,
P. aeruginosa

Decreased cell attachment compared to
non-etched controls [221]

Black silicon High aspect ratio nanoprotrusions 500 nm
height; contact angle 80◦ Ion etching P. aeruginosa, S. aureus,

B. subtilis
Bactericidal; reduces cell viability compared to
non-etched controls [232]

Ti Nano-roughened; contact angle
59.3 ± 1.13◦ Electron beam evaporation S. aureus, S. epidermidis,

P. aeruginosa

Decreased adhesion of bacterial colonies
compare to conventional, nanotubular and
nanotextured Ti

[220]

Ti Functionalization with PMMA and
silk sericin

Atom transfer radical
polymerization S. aureus, S. epidermidis Threefold decrease in number of viable

S. aureus cells compared to pristine Ti [260]

Ti Coating with PEG-polylysine Polymer surface adsorption S. aureus
Decreased the adhesion of S. aureus to the
surfaces by 89–93% compared to bare
TiO2 surface

[243]

Ti

Two-tier micro- and nanoscale surface
structures: First tier, large grain-like
convex features 10–20 µm in size. Second,
≤200 nm wide irregular undulations on
the surface of these grains;
superhydrophobic, contact angle 166 ± 4◦

Femtosecond laser ablation P. aeruginosa, S. aureus

S. aureus colonized the surface. No
P. aeruginosa cells were able to attach to the
surface (i.e., any attached bacterial cells were
below the estimated lower detection limit)

[252]

Ti Micro/nanoscale surface roughness Etching and adding
perfluoropolyether lubricants P. aeruginosa, MRSA Reduction in log CFU count of P. aeruginosa

and MRSA to non-measurable [259]

Ti Nanopatterned arrays Hydrothermal etching P. aeruginosa,
S. aureus

Killed 50% of P. aeruginosa cells and about 20%
of the S. aureus cells contacting the surface [261]

Ti Nanocolumnar thin Ti films Glancing angle
sputter deposition E. coli, S. aureus E. coli viability significantly decreased;

S. aureus viability relatively unchanged [262]
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Table 4. Cont.

Material Surface Features Fabrication Method Bacteria Studied Antimicrobial Outcome Reference

Ti Titania nanowire arrays of
100 nm diameter

Alkaline hydrothermal
processing

P. aeruginosa,
S. aureus

Selectively bactericidal against P. aeruginosa
(highly mobile), but not against S. aureus [263]

Ti and CoCrMo
alloys

Surface roughened, “spiky”
protrusions produced

Continuous wave fibre laser
with near-infrared
wavelength

S. aureus biofilm
Laser treatment of Ti surfaces decreased viable
bacteria and biofilm area but effects not
evident in laser treated CoCrMo.

[236]

Ti plasma spray
implant Ti nano-spikes Glancing angle magnetron

sputter deposition E. coli, S. aureus

Partial destruction of E. coli adherent to the
nano-spikes via a physico-mechanical
mechanism, not useful against
Gram-positive bacteria

[264]

Ti Nanostructures with peaks and valleys
on surface Etching P. aeruginosa, S. aureus

Decrease in viability of P. aeruginosa and
S. aureus to ~4% and ~40% on nanostructured
surfaces, respectively, while viability did not
drop below 90% for control surface

[265]

B. subtilis (Bacillus subtilis), CFU (colony-forming unit), CoCrMo (cobalt–chromium–molybdenum alloy), E. coli (Escherichia coli), K. pneumoniae (Klebsiella pneumoniae), P. aeruginosa
(Pseudomonas aeruginosa), PMMA ((poly(methacrylic acid)), S. aureus (Staphylococcus aureus), S. epidermidis (Staphylococcus epidermidis), Ti (titanium), TiO2 (titanium dioxide).
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8. Conclusions and Future Perspectives

Orthopaedic medical devices play a crucial role in restoring functionality to patients
suffering from debilitating conditions, but their surgical implantation carries a risk of
infection, with a profound impact for patients and healthcare providers [266]. Given the
increasing patient life expectancy and anticipated increase in the number of orthopaedic
implantation procedures that will be undertaken, orthopaedic device infection represents a
salient problem for all stakeholders. This problem has culminated in a concerted research
focus and a broad spectrum of approaches and technology solutions being proposed to
address this problem. Despite research efforts, there has been little translation of novel,
effective solutions to the clinic.

Various approaches (passive and active) to minimise bacterial contamination of im-
plants and the development of infection have been investigated. The prospect of locally
delivering antimicrobial agents from the implant surface addresses many of the limitations
of systemic administration, e.g., poor perfusion of drug to the implant site in sufficient
therapeutic concentrations. Local targeting overcomes the necessity for high dose, sys-
temic administration and offers the prospect for controlled drug delivery. Despite these
advantages, concern exists in relation to the risk of drug resistance with routine use and
whether therapeutic drug concentrations over the desired timeframe are achievable. It
is possible that coatings can prevent infection in the acute phase, but there is a paucity
of data regarding their performance in chronic infections [267]. Prolonged antimicrobial
delivery proximal to the implant site usually requires a platform technology to control the
presentation of the antimicrobial cargo. Biomaterials including polymers and ceramics have
been intensively investigated for this purpose, but problems with biocompatibility, foreign
body reaction and device performance may complicate technology development. Coating
orthopaedic devices with a single antimicrobial agent is also limited by differences in the
causative organism and the susceptibility to treatment, and an increasing prevalence of
polymicrobial and resistant infections. Despite these limitations, evidence has shown that
antibiotic coated implants are beneficial in the management of high-risk patients with open
fractures and the higher implant costs can be offset by the savings due to lower infections,
reduced hospital stays and procedures [170].

There is also interest in developing alternative strategies to those involving traditional
antimicrobial drugs. This stems primarily from the increasing challenge of drug resistance
and the lack of new antimicrobial drugs being developed. Examples of new therapeutic
moieties include AMPs, nanomaterials with intrinsic antimicrobial activity and agents
that interfere with quorum sensing and biofilm formation. At the same time, research has
increasingly focused on engineering device features to prevent bacterial attachment and
biofilm formation. Drug-free strategies also offer the advantage of simplifying the regula-
tory pathway compared to drug-device combination products. Multi-prong, synergistic
strategies that work at multiple targets against infection or approaches that differentially
engineer surfaces to confer osteogenic potential, while also inhibiting infection are in-
creasingly being researched and offer much promise [95]. However, many of these novel
technologies and approaches are at an earlier stage in their development and require further
investigation. Further studies are required to address challenges including toxicological
concerns associated with the use of nanotechnology [202], and further exploration of the
potential microbial resistance to nanomaterials and nano-engineered surfaces is warranted
over timeframes that approximate their usage [268]. Studies have been predominantly
conducted in vitro, with fewer in vivo studies [201]. Given that a disconnect between
performance in vitro and in vivo can exist, it is important to conduct in vivo studies and
ensure that models and procedures mimic the infection scenario [269,270]. To this end,
there is also a need to develop robust, standardised, quantitative, and cost-effective method-
ologies both in vitro and in vivo that accurately model physiological environments and
include established biofilm models to provide sound evidence of safety and efficacy and
ensure the most promising technologies are translated. Relatedly, the development of
standardized guidelines appropriate to assess the biocompatibility and toxicology of novel
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technologies would enable a more timely and accurate assessment of potential technologies.
The translation of next-generation devices that minimise device related infection has also
been impacted by a global divergence in the regulatory pathway requirements in different
markets and ongoing changes in the regulatory requirements for medical devices, especially
in the case of combination devices.

Furthermore, it is important to ensure that novel solutions readily translate to the
manufacture setting, do not act as a barrier to scale-up or adversely impact on surgical im-
plantation, or significantly add to the implant cost. Considering the significant challenges
posed by orthopaedic device-related infection and the promising array of technologies to
address this problem, a coordinated and proactive approach between all the major stake-
holders (researchers, industry, regulators, reimbursement, and patient groups) is required
to ensure that patients can safely access transformative and cost-effective technologies.
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