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Abstract: The cocktails of antibiotics are utilized to study the functions of microbiota. There have
been studies on the alteration of not only the microbiota composition but also the host’s metabolism
or immunity. However, the bacterial species associated with these altered physiologic markers
are still unclear. Therefore, we supplied mice with drinking water containing ampicillin (AMP),
vancomycin (VAN), neomycin (NEO), or metronidazole (MET) to observe the effect of each antibiotic
on helper T cells and inflammation-related gene expression and metabolism, including amino acid
metabolism and changes in gut microbiota. We observed major changes in gut microbiota in mice
treated with AMP and VAN, respectively, immediately after administration. The abundance of the
genera Parabacteroides and Akkermansia increased in the AMP and VAN groups, while Prevotella almost
disappeared from both groups. The compositional changes in intestinal metabolites in the AMP and
VAN groups were more distinct than those in the NEO and MET groups, which was similar to the
microbiome results. In particular, the most distinct changes were observed in amino acid related
metabolism in AMP and VAN groups; the amounts of phenylalanine and tyrosine were increased in
the AMP group while those were decreased in the VAN group. The changed amounts of intestinal
amino acids in each of the AMP and VAN groups were correlated with increases in the abundance
of the genera Parabacteroides and Akkermansia in the AMP and VAN groups, respectively. The most
distinctive changes in intestinal gene expression were observed in the ileum, especially the expression
Th17-related genes such as rorgt, il17a, and il17f, which decreased dramatically in the guts of most
of the antibiotic-treated groups. These changes were also associated with a significant decrease in
Prevotella in both the AMP and VAN groups. Taken together, these findings indicate that changes in
gut microbiota as well as host physiology, including host metabolism and immunity, differ depending
on the types of antibiotics, and the antibiotic-induced gut microbiota alteration has a correlation with
host physiology such as host metabolic or immunological status. Thus, the immune and metabolic
status of the host should be taken into account when administering antibiotics.

Keywords: microbiome; intestinal metabolites; Th17 cells; ampicillin; vancomycin; Parabacteroides;
Akkermansia
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1. Introduction

The gut is a major habitat for microbial communities residing in the human body;
indeed, it is colonized by trillions of bacteria. Colonization of the gut is initiated imme-
diately after birth. However, the composition of the bacteria is subject to alteration by
species acquired from various environments. The intestine forms part of both the digestive
and immune systems, because it is constantly exposed to antigens, including microbes.
In response to these antigens, the gut has developed its own immune characteristics to
maintain homeostasis. In particular, microorganisms play important roles in intestinal
immunological functions. A previous study shows that germ-free mice have defective
immunological function in the gut (including mesenteric lymph nodes (MLN) and Peyer’s
patches) [1]. Studies in germ-free mice also show that Peyer’s patches are smaller, and that
the number of CD4+ T cells and IgA-plasma cells is lower, in animals raised in the absence
of microorganisms [2]. Moreover, germ-free mice show functional defects in T helper 17
(Th17) cells [3] and regulatory T (Treg) cells [4].

In addition to immunity, the gut microbiota impacts host metabolism [5]. Host
metabolism comprises both microbial metabolism and the host’s own metabolism be-
cause the two are entwined [6]. The gut microbiota connect the intestine to other organs
such as the liver and brain; this, in turn, regulates systemic metabolism [7]. Interestingly,
microbial metabolites play the role of messengers during host–microbiota interactions [8].
For example, microbial aromatic amino acid metabolites act as signaling molecules during
biological processes, including immune homeostasis. Thus, these microbial aromatic amino
acid metabolites are promising therapeutic targets in animal autoimmune disease models,
including models of inflammatory bowel disease and multiple sclerosis [9].

Usually, germ-free mice are used to explore the role of the microbiota in host physiol-
ogy. However, this model is not easy to access for many researchers due to a requirement
for specialized facilities, high costs, and complex and labor-intensive techniques. Therefore,
a cocktail of broad-spectrum antibiotics has been developed to regenerate microbiota-
depleted mice easily [10]. The combination of ampicillin, vancomycin, neomycin, and
metronidazole is one of the most common cocktails utilized to achieve this [11–13]. Previ-
ous studies have shown the effects of each of these antibiotics on physiological activities
such as metabolism and immunity, as well as microbiota composition in normal or diseased
mice models [14–16]. However, studies on the association between specific bacterial species
and physiologic markers altered by antibiotic administration are still scarce.

Therefore, the aim of this study was to investigate the effect of each of these antibiotics
on host intestinal metabolism and on expression of immune-related genes, as well as their
effects on the gut microbiota. Mice received one of four antibiotics (ampicillin (AMP),
vancomycin (VAN), neomycin (NEO), and metronidazole (MET)) or a cocktail of all four
(AVNM) via drinking water. First, we sought to study the effects of each antibiotic on
(i) the composition of fecal microbiota, (ii) intestinal microbial metabolite profiles, and
(iii) host immune-related gene expression in the gut. Next, we examined the association
between antibiotic treatment-induced gut microbiota changes and the changes in intestinal
metabolic profiles and immunological gene expression.

2. Results
2.1. Antibiotic-Induced Changes in the Diversity and Structure of the Fecal Bacteria Community

First, we wondered whether different microbiota communities are formed in the presence
of different antibiotics. Each group of mice was treated with antibiotics for 14 days. There
was no significant difference in the average water intake per individual mouse per day in any
group (Supplementary Figure S1). We analyzed fecal samples from each antibiotic-treated
mouse immediately before treatment (Day 0), and then again on Days 1, 4, 7, and 14 after
treatment. The alpha diversity of the fecal microbiota at each time point was assessed using
the Chao1, Shannon, Simpson evenness, and Observed Species indices. We observed distinct
alterations in alpha diversity in the AMP- and VAN-treated groups compared with other
groups. AMP and VAN induced significant decreases at all the measurement days only in the



Antibiotics 2022, 11, 1762 3 of 14

Shannon and Simpson evenness indices. Alpha diversity changed little in the neomycin NEO-
and MET-treated groups. AVNM treatment induced a steady decrease only in the Simpson
evenness index, while other parameters tended to recover from Day 7 (Figure 1A).
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Figure 1. Effects of antibiotic treatment on fecal microbiota in mice. (A) Changes over time of
alpha diversity in each antibiotic group. (B) NMDS plot of the fecal microbiota structure with
Bray–Curtis distance. (C) Microbial composition comparison at phylum level. Data are expressed
as the mean ± SEM. Asterisks indicate a statistically significant difference (* p < 0.05, ** p < 0.01;
Mann–Whitney U test, CON, control; AVNM, mixture of ampicillin, vancomycin, neomycin and
metronidazole; AMP, ampicillin; VAN, vancomycin; MET, metronidazole).

Changes in the beta diversity of the fecal microbiota were visualized in an NMDS plot
based on the Bray–Curtis dissimilarity distance. The fecal microbiota in the AMP, VAN,
and AVNM groups changed markedly from Day 1 of antibiotic treatment (Figure 1B and
Supplementary Figure S2).

To observe compositional changes, the fecal microbiota of each group were compared
at the phylum level. Phylum composition changed from Day 1 of treatment. Compositional
changes were most conspicuously observed in AMP, VAN, and AVNM at the phylum level
on Day 14 (Figure 1C).

2.2. Major Bacterial Alterations under Antibiotic Treatment

To determine the dominant taxa in each treatment group, we analyzed the fecal
microbiota at the genus level. The heatmap shows the top 10 most abundant genera on
Day 14 after the start of antibiotic treatment. Similar to the microbiota community (see
Figure 1), AMP and VAN had the greatest effect on genus composition (Figure 2A). In
particular, we observed a marked increase in the abundance each of Parabacteroides in
the AMP group and of Akkermansia in the VAN group, whereas a distinctly decreased
abundance of Prevotella was observed in both groups (Figure 2A). LDA effect size (LEfSe)
analysis revealed that Prevotella and rc4-4 in the CON group, Parabacteroides in the AMP
group, Akkermansia and Proteus in the VAN group, Bacteroides in the NEO group, Oscillospira
and Ruminococcus in the MET group, and Dehalobacterium in the AVNM group were the
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significantly dominant genera (Figure 2B). In particular, Parabacteroides in the AMP group
and Akkermansia in the VAN group were the most dominant (LDA score > 5.0).
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Figure 2. Dominant taxa comparison of each antibiotic group on Day 14 after the start of antibiotic
treatment. (A) Heatmap of -log of relative abundance of top 10 abundant genera. (B) Histograms of
the linear discriminant analysis (LDA) scores for abundant genus in each antibiotic-treated group.
(C) Relative abundance of major discriminative taxa in AMP and VAN groups. (D) Relative abun-
dance of Parabacteroides, Prevotella, and Akkermansia by date from antibiotic treatment. Data are
expressed as the mean ± SEM. Asterisks indicate a statistically significant difference (* p < 0.05;
** p < 0.01; *** p < 0.001 Kruskal–Wallis one-way analysis of variance with the Dunn’s post hoc test.
The LDA score cut-off was set to 2.0; CON, control; AVNM, mixture of ampicillin, vancomycin,
neomycin and metronidazole; AMP, ampicillin; VAN, vancomycin; MET, metronidazole).

Additionally, these results were replicated in the Kruskal–Wallis test. In the AMP-treated
group, Parabacteroides increased, but Oscillospira and Ruminococcus decreased. VAN treatment
boosted Akkermansia and Proteus, and reduced Prevotella and Ruminococcus (Figure 2C and
Supplementary Figure S3). The significant increase in the abundance of Parabacteroides and
Akkermansia in the AMP and VAN groups, respectively, was observed from Day 4. However,
the abundance of Prevotella fell immediately (Day 1) (Figure 2D and Supplementary Figure S4).

2.3. Antibiotic-Induced Changes in Gut Metabolites

Given that alterations in the gut microbiome composition and microbial metabolic
changes influence the host’s metabolism, we performed non-targeted metabolomics analy-
sis. Although metabolite composition in all antibiotic-treated groups was distinguishable
from that in the control group, the AMP, VAN, and AVNM groups had more diverse com-
positions than the NEO and MET groups (Figure 3A and Supplementary Figure S5). To
confirm that these metabolomic compositional alterations are related to specific metabolic
pathways, enriched metabolic pathways were assumed in each AMP and VAN group
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through functional analysis based on the KEGG pathway at the Metaboanalyst website
(Figure 3B). In the AMP group, D-glutamine and D-glutamate metabolism and tyrosine
metabolism pathways were enriched significantly, whereas the phenylalanine metabolism
pathway was enriched in the VAN group. In parallel, the amount of tyrosine and pheny-
lalanine was significantly different between the AMP and VAN groups and the CON group;
AMP increased the amount of both amino acids in the cecum, while VAN significantly
decreased the amount of phenylalanine and had a tendency to decrease the amount of
tyrosine (Figure 3C).
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Figure 3. Effects of antibiotic treatment on gut metabolites and correlation with the gut microbiota.
(A) The principal component analysis (PCA) score plot of untargeted mass spectrometry data in cecal
contents of each group. (B) Enriched pathway in cecal metabolite of AMP and VAN group. (C) The
quantity of phenylalanine and tyrosine in cecal content. (D) The Spearman’s correlation analysis between
relative abundance of major discriminative taxa and the quantity of amino acids in significantly enriched
pathways in AMP and VAN group. (E) NMDS plot of the predicted function of fecal microbiota with
Bray–Curtis distance. (F) The relative abundance of predicted function of phenylalanine and tyrosine
metabolism in fecal microbiota. Data are expressed as the mean ± SEM. Asterisks indicate a statistically
significant difference (* p < 0.05, ** p < 0.01, *** p < 0.001; Mann–Whitney U test and Spearman’s
correlation, CON, control; AVNM, mixture of ampicillin, vancomycin, neomycin and metronidazole;
AMP, ampicillin; VAN, vancomycin; MET, metronidazole).
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The amount of most amino acids increased in the AMP group but decreased in the
VAN group. In the AMP group, the amount of threonine, serine, tyrosine, lysine, methion-
ine, phenylalanine, isoleucine, leucine, and valine increased. By contrast, the amount of
arginine, tyrosine, lysine, methionine, phenylalanine, isoleucine, and leucine decreased
(Supplementary Figure S6).

Considering that the gut microbiota is involved in host amino acid metabolism [17],
we performed Spearman’s correlation analysis to see if there was a correlation between the
abundance of particular genera and the amount of amino acids (Figure 3D). The amount
of tyrosine and phenylalanine correlated positively with the abundance of Parabacteroides,
the major taxa in the AMP group. Moreover, there was a negative correlation between
the amount of these amino acids and the abundance of Akkermansia, which was dominant
in the VAN group. However, there was no significant correlation between the amount of
these amino acids and the abundance of Prevotella, which was decreased in the AMP and
VAN-treated groups (Figures 2C and 3D, and Supplementary Figure S7).

To clarify that these associations were induced by changes in the gut microbiota after
antibiotic treatment, we performed PICRUSt analysis, which shows potential changes in
the functions of the gut microbiota (Figure 3E,F). The NMDS plot revealed that differences
in the potential function of the gut microbiota occurred only in the AMP, VAN, and AVNM
groups (Figure 3E). In parallel with the enriched pathway of metabolomics data observed
in Figure 3B,C, phenylalanine and tyrosine metabolism by gut microbiota was altered
significantly in the AMP and VAN groups (Figure 3F).

2.4. Changes in Expression of Immune-Related Genes in the Gut in Response to Antibiotic Treatment

The gut microbiota play a major role in the development of gut immunity; thus, we
investigated whether antibiotic administration affects the expression of genes related to
immunity in the intestine. To analyze the intestine overall, we extracted RNA from MLN,
ileum, and colon, and categorized target genes as helper T cell (Th) 1-, Th2-, Th17-, Treg-,
and pro-inflammatory-related. The NMDS and heatmap plots revealed that changes in gene
expression were more pronounced in the AMP, VAN, and AVNM groups than in the CON,
NEO, and MET groups, which was similar to the observations regarding the microbiome
(Figure 1B and Supplementary Figure S2). However, the change in immunological gene
expression was more pronounced in the ileum than in the MLN and colon (Figure 4A,B,
and Supplementary Figure S8). With the exception of Th2-related genes, such as gata3 and
il4, there were significant reductions in the expression of most genes in the AMP and VAN
groups; only the expression of il1b, a pro-inflammation-related gene, was increased in the
AMP group (Figure 4B,C). In particular, the expression of Th17-related genes, including
rorgt, il17a, and il17f was most affected by antibiotic treatment; the expression of those
genes was decreased in all antibiotic treated groups (Figure 4B,C).

To determine whether these changes in gene expression are associated with the gut
microbiota, we performed Spearman’s correlation analysis to assess the correlation between
genes that showed significant changes in expression in the AMP and VAN groups and
the abundance of Parabacteroides, Akkermansia, and Prevotella (Figure 4D). Interestingly, the
amounts of amino acids were correlated with the abundance of Akkermansia, which was
increased in the VAN group, and Parabacteroides, which was increased in the AMP group
(Figure 3D) whereas ileal immunological gene expression was mainly associated with the
abundance of Prevotella, the declined genus in both AMP and VAN groups (Figure 4D).
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3. Discussion

Gut microbiota perform diverse functions, including the regulation of host metabolism
and immunity [18]. As such, the diversity of the gut microbiota is important for health [19].
However, intestinal microbial dysbiosis can be caused by many environmental factors,
including antibiotic use. Antibiotics are used to treat infectious diseases. As each antibiotic
has a particular mode of action, their prescription is targeted at particular classes of microbe.
Therefore, it is essential to study changes in host physiology in response to individual
antibiotics, because each can have a different effect on host metabolism and immune
responses. In this study, we examined changes in the microbiome, gut metabolites, and
expression of genes related to immune responses in mice treated with AMP, VAN, NEO,
MET, or a cocktail of all four antibiotics.

First, the most distinct alterations in alpha and beta diversity were observed in the
groups treated with AVNM, AMP or VAN; these changes were observed immediately
after the start of antibiotic treatment. The abundance of Parabacteroides and Akkermansia
increased in the AMP and VAN groups, respectively, as observed in other studies [20,21],
which could be due to bacterial resistance to these antibiotics [20]. Parabacteroides distasonis
is resistant to AMP, a β-lactam antibiotic, by producing β-lactamase [22]. Akkermansia
muciniphila is initially resistant to VAN because VAN with a molecular weight more than
1400 Da cannot pass through the outer membrane of gram-negative bacteria [23,24]. How-
ever, in silico gene prediction analysis also revealed that a strain of Akkermansia muciniphila
expresses vancomycin-resistance genes, including the glycopeptide vanX [25,26]. Al-
though to a lesser extent, changes in the microbial composition were also observed in the
neomycin-treated group. In particular, an abundance of Bacteroides was increased in the
NEO group, which was also observed in a previous study on the effect of neomycin on
the gut microbiota [27]. This could be due to the incapability of Bacteroides in carrying out
oxygen- or nitrate-dependent electron transport, thereby failing to transport aminoglyco-
sides, to which neomycin belongs [28]. Additionally, in the group treated with AVNM,
distinct compositional changes in the gut microbiome were also observed as in the AMP
and VAN groups. Interestingly, the changes in the alpha diversity showed different results
depending on the index. This tendency is also observed in a previous study [16], which
may be due to the difference in the calculation method for each alpha-diversity index [29].
For example, Observed species is an index indicating richness and Simpson evenness is an
index indicating evenness, while the Shannon index is an index calculated considering
both richness and evenness. Therefore, the results of this study indicate that index types of
alpha diversity should be determined according to the purpose of each study. On the other
hand, MET hardly showed an alteration in the gut microbial community, which has also
been reported in previous papers [30,31]. This is likely due to the fact that MET is absorbed
mainly in the small intestine; thus it does not reach the ileum, cecum, or colon [32].

The gut microbiota composition, as well as microbial metabolism, can contribute
to host metabolism [5]. We discovered that pathways related to amino acid metabolism
were enriched in the intestine of antibiotic-treated mice; also, the amount of tyrosine and
phenylalanine, aromatic amino acids, was positively correlated with the abundance of
Akkermansia and Parabacteroides in the VAN and AMP groups. Interestingly, a ketogenic diet
has a marked effect on amino acid metabolism, increasing the abundance of Akkermansia
and Parabacteroides [33]. Thus, these two taxa may be closely related to aromatic amino
acid metabolism in response to environmental changes. Interestingly, recent studies have
reported that the metabolism of aromatic amino acids by gut microbiota acts as a signal
for communication between the host and the microbiota [9]. Production of tryptophan,
phenylalanine, and tyrosine (all aromatic amino acids) is regulated by the gut microbiota,
and changes in the circulating concentration of these amino acids affect gut permeabil-
ity and systemic immunity [9]. Additionally, phenylalanine is converted to tyrosine by
phenylalanine hydroxylase (PAH) in a healthy human subject. Tyrosine is further used as a
precursor to neurotransmitters such as epinephrine, norepinephrine, and dopamine [34,35].
Thus, the phenylalanine metabolism plays an important role in mental health. On the other
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hand, phenylketonuria, an inborn disease or kidney disorder, impairs the function of the
phenylalanine metabolism [36]. Therefore, these results suggest that the types of antibiotics
for patients with impaired amino acid metabolism should be considered.

Our study showed that each type of antibiotic affected immune responses in the MLN,
ileum, and colon. The majority of changes were observed in the ileum, an immunologically
active compartment in the gut [37]. However, colonic immunity should not be overlooked, as
it also plays an important role in the host, different to that of the immune system of the small
intestine. The colon is the reservoir for huge numbers of commensal microorganisms [38].
Therefore, the immune system of the colon recognizes these microbiota and concentrates on
maintaining an appropriate distance from the host. This involves the production of a thick
mucus layer, the generation of IgA antibodies and the presence of large numbers of regulatory
T cells [39]. In the present study, only RNA expression of cytokine was confirmed without
investigating the overall immune responses in the colon. Further studies are needed through
wider measurement experiments for the precise effects of antibiotics on colonic immunity.

Among helper T cells, antibiotic administration had the greatest effect on intestinal
Th17-related immune responses. This phenomenon was also observed in other studies [3].
However, dampened Th17-related immune responses in antibiotic-treated mice are also
observed in other organs such as the lung [40,41] and spleen [41]. These previous studies
show a correlation between Th17-mediated immunity and segmented filamentous bacteria.
However, since there are many other abundant immune-related bacteria in the gut, it
is necessary to examine the role of these bacteria in the reduction of Th17 responses
upon treatment with antibiotics. In this context, our study showed an additional major
association between Prevotella and immune responses. Indeed, previous studies show that
Prevotella induces Th17 responses [42]. In addition to Th17-mediated responses, including
the expression of il17a and il17f, we found that antibiotic-induced changes in immunological
gene expression, such as those of ifng, il6, tbet, and foxp3, were closely related to the
abundance of Prevotella, raising the possibility that Prevotella might be one of most influential
genera involved in the control of intestinal immunity. Th17-related immune responses
have been involved in the pathogenesis of autoimmune diseases such as rheumatoid
arthritis (RA) and inflammatory bowel disease (IBD) [43]. On the other hand, Th17 cells
are also known to regulate protective immunity against various pathogens, including
Mycobacteria tuberculosis or Klebsiella pneumonia [44]. Given that administration of AMP and
VAN reduced the expression of Th17-related genes in the present study, administration of
these antibiotics may be a double-edged sword depending on the immune pathogenesis
of various diseases. Therefore, not only the mode of action but also these immune effects
of antibiotics should be considered when administering antibiotics to patients with these
immune diseases.

However, there are some limitations in this study. First of all, there is an issue that
some antibiotics such as metronidazole may induce avoidance to drinking water containing
the antibiotics, which, in turn, induces the death of mice [45]. Thus, the information
on basic health conditions such as body weight needs to be provided. Moreover, this
study was conducted using a small size of animal numbers per group. Further studies
using increased numbers of mice are required to improve the reliability of the findings.
In addition, our study analyzed intestinal microbiomes using 16S rRNA gene amplicon
sequencing, which gives us an information based on the relative abundance. Considering
the fact that the antibiotics can inhibit the growth of bacteria, the total number of bacteria
needed to be measured. Moreover, metagenomic shotgun sequencing would be required
for better species-level resolution. It is also necessary to confirm the actual protein levels of
immunological genes considering the unreliability of mRNA. Finally, this study focused
on biological changes observed in intestines. Further studies about systemic changes on
immune profiles would be valuable, because gut microbiota could affect other organs.

In conclusion, we revealed that antibiotic administration affected both the gut micro-
biota and host physiology, including amino acid metabolism and immunity. The magnitude
of these effects depended on different types of antibiotics. Moreover, there was an asso-
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ciation between altered gut microbiota and host physiology. Thus, our results provide a
basis for guidelines for antibiotics treatment, especially for patients with metabolic and/or
immune diseases. In addition, bacteria associated with specific host physiology could be a
good target for such diseases.

4. Materials and Methods
4.1. Mice and Antibiotic Treatment

Female BALB/c mice (6 weeks old) were purchased from Orient Bio, Inc. (Seongnam,
Republic of Korea) and housed in a conventional laboratory animal facility at the Research
Institute of Pharmaceutical Sciences at Seoul National University, according to the experi-
mental animal use guidelines of Seoul National University. All experimental protocols were
approved by the Seoul National University Institutional Animal Care and Use Committee
(IACUC: SNU-180104-2-3). The experimental groups were divided into six groups, namely a
control group (no antibiotic treatment; CON, and N = 5) and five antibiotic treatment groups
(AMP, VAN, NEO, MET, and AVNM). The characteristics of each antibiotic used in this study
are summarized in Table 1. For antibiotic treatment, mice received autoclaved drinking water
supplemented with 1 g/L AMP, 0.5 g/L VAN, 1 g/L NEO, 1 g/L MET, or an AVNM cocktail
consisting of 1 g/L AMP, 0.5 g/L VAN, 1 g/L NEO, and 1 g/L MET for 2 weeks (N = 5 per
group; N = 3 for AVNM group and N = 4 for MET group at Day 14 due to death). These
concentrations were based on the literature [46]. All antibiotics were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Water consumption was monitored every 3–4 days during
the treatment period. Fecal samples were collected immediately before antibiotic treatment,
and on Days 1, 4, 7, and 14 after treatment. The provided diet was normal laboratory chow
purchased from Purina (Seongnam, Korea; contents: crude protein = 20.0%, crude fat = 4.5%,
crude fiber = 6.0%, ash = 7.0%, and added minerals = 2.5%). On Day 14 after the start of
antibiotic administration, mice were euthanized, and MLN, ileum, colon, and cecum were
harvested. Feces and tissue samples were stored at −80 ◦C for further analyses.

Table 1. Characteristics of antibiotics used in this study.

Antibiotics Abbreviation Class Spectrum of Activity

Ampicillin AMP β-lactams Gram-positives and -negatives
Vancomycin VAN Glycopeptide Gram-positives
Neomycin NEO Aminoglycoside Gram-negatives

Metronidazole MET Anaerobic DNA inhibitor Anaerobes

4.2. Microbiome Analysis Using 16S rRNA Gene Amplicon Sequencing

DNA was extracted from fecal sample suspensions using the QIAamp DNA Fecal Mini
Kit (Qiagen, Hilden, Germany) and stored at−20 ◦C until use. The V4 region of the 16S rRNA
gene was amplified from fecal DNA using Illumina-adapted universal primers 515F/806R
(515 F: forward primer, 5′-AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTG
TGCCAGCMGCCGCGGTAA-3′; 806 R: reverse primer containing a unique 12-base golay bar-
code for tagging each polymerase chain reaction [PCR] product, 5′-CAAGCAGAAGACGGCA
TACGAGATNNNNNNNNNNNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3′).
The amplicons were pooled and sequenced using the MiSeq platform (Illumina, San Diego,
CA, USA). PCR amplicons were purified using the QIAquick PCR Purification Kit (Qiagen),
and quantified using the KAPA Library Quantification Kit (KAPA Biosystems, Woburn, MA,
USA) and an ABI 7300 (Applied Biosystems, Carlsbad, CA, USA) machine.

Sequence data were analyzed using the QIIME software package (version 1.8.0) [47].
Closed-reference OTU picking was performed at 97% sequence similarity, based on the
gg_13_5 Greengenes database. Representative sequence sets were chosen using UCLUST,
and processed sequences were aligned using PyNAST. Taxonomy was assigned using the
ribosomal database project classifier, with the minimum confidence score for taxonomy
assignment to sequences set to 0.8. Chimeric sequences were excluded from downstream
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analyses prior to the generation of OTU tables using the ChimeraSlayer algorithm. OTUs
were rarefied to 4000 sequences. Rarefied OTUs were collapsed at the genus level.

Alpha diversity within the microbial communities of each treatment group was measured
using the Chao1, Shannon, Simpson evenness, and Observed species indices. Analysis of beta
diversity was based on Bray–Curtis distance. Heatmaps and nonmetric multidimensional
scaling (NMDS) plots were generated using R packages pheatmap and vegan, respectively.
The linear discriminant analysis (LDA) effect size (LEfSe) algorithm was run using the Galaxy
application tool (http://huttenhower.sph.harvard.edu/galaxy/ accessed on 15 July 2017),
with a linear discriminant analysis cut-off score of 2.0 and a p-value of <0.05.

4.3. LC-QTOF-MS/MS Analysis

Cecal contents were weighed, and 80% methanol was added at a 1:1 ratio to extract
metabolites. This was followed by sonication for 3 min until the samples were fully
homogenized. After centrifugation at 16,000× g for 1 min, the supernatant was passed
through a 0.22 µm filter. The filtered supernatant was then evaporated in a Speedback
(Eppendorf, Germany). Finally, metabolites within the cecal contents were obtained in
powder form and stored at −80 ◦C until analysis.

Amino acids in the cecal samples were measured as previously described [48].
Amino acid derivation was conducted using AccQ•Tag reagents (Waters Corporation,
Milford, MA, USA). Amino acid separation was performed using an ACQUITY UPLC®

HSS T3 column (100 mm × 2.1 mm, 1.7 m) and an Acquity UPLCTM system (Waters
Corporation). The analysis conditions for chromatography were as follows: mobile
phase A = water with 0.1% formic acid; mobile phase B = acetonitrile with 0.1% formic
acid; injection volume = 4 µL. The time gradient of the mobile phase was maintained at
4% B at 0.5 min, increasing to 10% B at 2.5 min, 28% B at 5 min, and 95% B at 5.1 min, and
reverting to 4% B at 6.2 min for a 1.3 min re-equilibration. The flow rate was 0.6 mL/min.
Qualitative amino acid analysis was conducted using a Waters Synapt G2-Si Q-TOF mass
spectrometer (Waters Corporation) equipped with an electrospray (ESI) probe in positive
ionization mode and MRM mode. For the Synapt G2-Si QTOF, the following mass
spectrometer parameters were applied: capillary, 25 kV; source temperature, 100 ◦C;
sampling cone, 40; source offset, 80; desolvation temperature, 250 ◦C; cone gas flow,
50 L/h; desolvation gas flow, 600 L/h; nebulizer gas flow, 6.5 Bar. Each measured amino
acid was quantified using the QuanLynx of MassLynx program [49].

The untargeted metabolites analysis was based on a previous study [50]. Measurement
of total untargeted metabolites was performed using an Acquity UPLC BEH C18 column
under UPLC conditions and in positive ionization mode and MSe scan mode. The mass
range was set from 50 to 1200 Da, and the scan time was set to 0.2 s. The following
mass spectrometer parameters were used: capillary, 2 kV; source temperature, 120 ◦C;
sampling cone, 40; source offset, 80; desolvation temperature, 400 ◦C; cone gas flow, 50 L/h;
desolvation gas flow, 600 L/h; nebulizer gas flow, 6.5 bar. The identity of the amino acids
was confirmed by alignment to the AA-S-18 analytical standards mixture (Sigma-Aldrich).
All systems were controlled by Mass-LynxTM software 4.1 (Waters Corporation) [49].

Intergroup metabolism analysis was carried out by transferring MassLynxTM software
to Progenesis QI software (Waters Corporation). A retention time window of 0.20 min and
a mass tolerance of 1.0 ppm were set to align the compounds. Then, ANOVA P-values
and max fold changes were used to filter compounds. The final data were exported to
Metaboanalyst for metabolome analysis.

4.4. Gene Expression Analysis

MLN, ileum, and colon samples were homogenized with a stainless-steel bead (di-
ameter, 5 mm; Qiagen) for 5 min at 30 Hz. Total RNA was isolated using an Easy-spin
Total RNA extraction kit (Intron, Seoul, Republic of Korea). Next, cDNA synthesis was
performed using the High-Capacity RNA-to-cDNA Kit (Applied Biosystems). Expression
of genes (tbet, ifng, gata3, il4, rorgt, il17a, il17f, foxp3, tgfb1, tnfa, il1b, and il6) was estimated

http://huttenhower.sph.harvard.edu/galaxy/
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using the Rotor-Gene SYBR Green PCR Kit (Qiagen) and the Rotor-Gene Q cycler (Qiagen).
The primers used for qPCR are listed in Supplementary Table S1. The 2-∆∆Ct method was
used for relative quantification of gene expression. Finally, mRNA gene expression was
normalized against gapdh expression.

4.5. Statistical Analysis

Statistical analysis of non-targeted metabolic data in MetaboAnalyst for principal
component analysis (PCA) was performed with the following conditions: normalization by
median, Log transformation, and auto scaling. The other statistical analyses were performed
using Prism 5 (GraphPad Software, San Diego, CA, USA). When comparing two groups,
statistical significance was measured using the Mann–Whitney test. Statistical comparisons
of relative abundance of genera and average water intake in each group were analyzed
using Kruskal–Wallis one-way ANOVA, followed by Dunn’s post hoc test. In all graphs,
data are presented as the mean ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01,
and *** p < 0.001 denote statistical significance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11121762/s1, Figure S1: Average water intake per
individual mouse per day. Figure S2: Changes of gut microbial community according to the date
from antibiotic treatment. Figure S3: Relative abundance of top 10 abundant genus except for
genus shown in Figure 2C on day14 after treatment. Figure S4: Changes of relative abundance
of top 10 abundant genus according to the date from antibiotic treatment. Figure S5: Heatmap
of non-targeted metabolites in cecal content in each antibiotic group on day14. Figure S6: The
quantification of amino acids in cecum samples in each antibiotic group on day14 after treatment.
Figure S7: The individual spearman’s correlation analysis between relative abundance of major
discriminative taxa and the quantity of amino acids in significantly enriched pathways in AMP
and VAN group. Figure S8: The relative gene expression in MLN and Colon in each antibiotic
group on day14. Table S1: LC-QTOF-MS data in cecum in each antibiotic group on day14.
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